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A B S T R A C T

Plant tissue culture techniques have revolutionized various aspects of modern agriculture, horticulture, and 
pharmaceutical industries. This method contributes to enhancing the production of plant secondary metabolites, 
which have noteworthy applications in pharmaceuticals, agriculture, and industry. Presently, over 50,000 plant 
metabolites have been identified and categorized into three primary groups: terpenoids, flavonoids, and alka-
loids. Numerous studies have elucidated the metabolic pathways involved in the biosynthesis of plant com-
pounds to better understand the metabolic flux, with the aim of identifying and engineering the production of 
valuable constituents. In vitro precursor feeding is one phytochemical strategy that helps increase the accumu-
lation of plant compounds. Therefore, this review focuses on investigating the application of in vitro precursor 
feedings to the overproduction of a high-value phytochemicals. Moreover, it evaluates the influence of type and 
concentration of precursors, plant species and culture conditions as well as the phytochemical products providing 
insights into optimization strategies. Additionally, the potential application of accumulated terpenoids, flavo-
noids, and alkaloid-derived compounds for agricultural, pharmaceutical, and industrial purposes are discussed. 
Finally, perspective challenges and limitations related to in vitro precursor feeding strategy are addressed, 
including production stability, cytotoxicity effect, and uptake efficiency. The overall data presented might serve 
as an up-to-date report on the application of in vitro precursor feedings for enhancing plant secondary metabolite 
production.

1. Introduction

Plants are renewable sources, providing materials (biomass) and 
phytochemicals (both primary and secondary metabolites) (Guerriero 
et al., 2018). Moreover, plants serve as bio-factories, manufacturing 
human nutrition (Jadid et al., 2018). Diverse plant secondary metabo-
lites (PSMs) have been elucidated including terpenoids, flavonoids, and 
alkaloid-derived compounds (Dasari et al., 2020). The PSMs are bene-
ficial for medicinal purposes, food additives, flavorings, agriculture and 
other industrial ingredients. As an example, numerous ethnobotanical 
studies have indicated that tropical plants could be explored as alter-
native reservoirs for the production of medicinal drugs, owing to their 
varied plant secondary metabolites (PSMs) (Jadid et al., 2023). In 
addition, these organic substances also self-guard the plants from many 
adverse environmental conditions, including protecting the plants from 
pathogenic microorganisms, insects, and herbivore attacks. Moreover, 
in some cases, they protect the ecological equilibrium in nature by 
facilitating plant-animal pollinator contact (Slavković and Bendahmane, 

2023).
Rigorous use of crop products creates a large gap between demand 

and availability. Moreover, PSM are available in small quantities, and 
harvesting at current demand scales may be environmentally unpleasant 
and impractical (Marchev et al., 2020; Wilson and Roberts, 2012). 
Furthermore, the economic impracticality of chemical synthesis for 
plant secondary metabolites is frequently attributed to their structural 
complexity (Dziggel et al., 2017; Staniek et al., 2014). Hence, finding 
alternatives to sourcing plant materials from natural reserves, as well as 
suitable systems and approaches are necessary. Plant cell cultures offer a 
great advantage to address these challenges, especially for propagating 
high commercial or medicinal crops (Fig. 1) (Jadid et al., 2024a). 
However, the widespread adoption of plant cell culture in commercial 
settings is constrained, and only a tiny fraction of secondary metabolites 
can be produced. A few key reasons include inadequate yields, insta-
bility in biosynthesis, and challenges in scaling up production (Sevón 
and Oksman-Caldentey, 2002). Notably, the prevalent issue is the in-
efficiency of the biosystem in producing high concentrations of the 
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desired compounds (Qu et al., 2011). This predicament arises from the 
empirical approach in selecting cultures with high and consistent yields 
and limited information on the PSM biosynthetic pathways (Isah et al., 
2018).

A good biosystem in plant cell culture for boosting the PSMs could be 
seen in how the system consistently ensures substantial amounts of the 
desired compounds. Rigorous selection of productive plant cell types 
and careful control of culture conditions can lead to higher levels of 
specific products within cultured cells. Numerous approaches have been 
employed to stimulate biosynthetic activities, focusing on optimizing 
the production of phytochemicals (Rao and Ravishankar, 2002). Typi-
cally, culture cell systems amass significant quantities of secondary 
compounds under specific circumstances. Over time, diverse strategies 
have emerged to augment PSMs production using plant cell culture, 
including selecting high-productive cell lines (Tripathi et al., 2019). 
Moreover, many studies revealed that enhancing secondary metabolites 
could be achieved by elicitation using both abiotic (environmental stress 
or chemical compounds) (Anjalani et al., 2024) and living organism- 
based elicitors (Tothong et al., 2023). Recently, the use of metal-based 
nanoparticles has also been applied to the plant in vitro medium to 
induce the synthesis of commercially important substances. Previous 
work has been demonstrated that plants develop a fascinating physio-
logical and molecular strategies to cope with adverse environmental 
conditions, including the over-production of secondary metabolites 
(Jadid et al., 2017). However, the environmental inducers, in some 
cases, might also alter the genetic profile of the plants.

Another technique involves the addition of precursor feeding of the 
targeted PSM into the in vitro culture medium. Precursor feeding refers 
to supplementation of the primary building block that initiates the 
biosynthetic pathway leading to the production of specific plant me-
tabolites. Generally, precursors are derived from primary metabolites 
including amino acids, fatty acids, sugars or other organic acids. This in 
vitro supplementation can result in higher yields of the desired end 
products (Hussain et al., 2012; Rao and Ravishankar, 2002). A critical 
aspect of this method involves a comprehensive exploration of the entire 
biosynthetic pathway. This inclusive approach considers multiple ex-
amples that might influence the production of the compound (Espinosa- 
Leal et al., 2018). Particularly, this method is advantageous when the 
precursors are cost-effective (Namdeo et al., 2007). Many studies, 

including those by Marchev et al., Dasari et al., Skrzypczak-Pietraszek 
et al., Guerriero et al., and Kundu et al., have effectively isolated spe-
cific compounds using the precursor feeding approach (Dasari et al., 
2020; Guerriero et al., 2018; Kundu et al., 2018; Marchev et al., 2020; 
Skrzypczak-Pietraszek et al., 2018).

In this review, we emphasize the precursor feeding method as an 
advanced approach for augmenting the biosynthesis of PSMs through in 
vitro plant systems. Our review gathered some elements supporting the 
biosystem, including the plant species, plant organs used in the culture 
system, methods, target compounds, and precursors used in the exper-
iments. This review also briefly describes the potential applications of 
PSMs in agriculture, pharmacy, and industries. Finally, we discussed 
precursor feeding methods’ future prospects and limitations, including 
production stability, cytotoxicity effect, and uptake efficiency. This re-
view offers an overview of the current application of precursor feeding 
techniques via in vitro culture for augmenting the production of PSMs. 
This review also serves as valuable information for future research di-
rection on the synthesis of commercial plant metabolites in vitro using 
combinatorial strategies with biotic and abiotic elicitors.

2. In vitro precursor feeding

2.1. Precursor feeding method and common pathways in plant

The core idea behind the in vitro precursor feeding involves incor-
porating intermediate metabolites in the bioactive molecule synthesis at 
the beginning or during the plant cell cultivation process. This inclusion 
acts as extra substrates, effectively enhancing the yield of metabolites 
within plant tissues, cells, and organs undergoing cultivation (Isah et al., 
2018; Rasche et al., 2016). The term “precursor” pertains to substances 
originating externally or internally that can be changed into secondary 
compounds by in vitro cell cultivation via biosynthesis pathways. 
Generally, the levels of these compounds are comparatively lower in 
plant cell cultures when compared to differentiated plant tissues. This 
discrepancy elucidates the correlation between cellular development 
and increased production of pharmaceutical-based natural products in 
various micropropagation methods involving plant tissues and organs 
(Constabel and Kurz, 1999). The use of transgenic cell lines and the 
incorporation of these compounds into the culture medium show 

Fig. 1. In vitro culture of medicinal and industrial crops. 1) Efficient shoot proliferation and callus induction in Gynura pseudochina in vitro culture (Anjalani et al. 
(2024), 2) callus and organogenesis of Stevia rebaudiana by Jadid et al., (2024a). 3) Callus culture and organogenesis in Pogostemon cablin by Jadid et al. (2024c)
after being cultured in an optimized medium supplemented with plant growth regulators (PGR) and elicitor methyl jasmonate, resulting in enhanced growth, 
increased metabolic gene expression, and changes in phytochemical composition.
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promise as strategies to expedite the synthesis of molecules in plant cell 
cultures (Namdeo et al., 2007).

It is essential to ascertain the production rates and the kinetics of 
biosynthetic precursor utilization while attempting to increase phar-
maceutical output by choosing a precursor molecule. Identifying the 
best conditions for these processes is also imperative (Isah et al., 2018). 
Critical considerations in choosing and introducing a precursor mole-
cule into the system encompass the timing of its introduction, the con-
centration at which it is added, and its seamless integration into the 
intended biosynthetic pathway (Jackson & Attalla, 2010). Furthermore, 
it is crucial to consider the potential impact of feedback inhibition when 
determining the precise quantity to modify the culture medium for plant 
tissues, cells, and organs.

Shikimic acid, phenylpropanoid, and mevalonic acid pathways 
represent extensive biosynthesis routes frequently investigated in plant 
cell culture research to enhance the production of phytochemicals using 
the precursor feeding method. The shikimic acid pathway is particularly 
significant for synthesizing a range of essential aromatic compounds, 
including vitamins, amino acids, and other phytochemicals (Cheynier 
et al., 2013). It is pivotal in primary and secondary plant metabolisms 
(Macheroux et al., 1999). The initiation of this pathway involves the 
condensation of two compounds of phosphoenolpyruvate (PEP) and one 
molecule of erythrose-4-phosphate (E4P), both are derived from 
glycolysis and the pentose phosphate pathways. Following this, the 
pathway advances through a sequence of enzymatic reactions, yielding a 
crucial intermediate molecule known as shikimic acid. The ultimate step 

Fig. 2. Common precursors (red circles) are used in precursor feeding method. (A) Phenylalanine and tyrosine are potential amino acids that could be used in 
flavonoid-derived compounds (B) Acetyl-CoA and mevalonic acid are organic acid precursors in the biosynthesis of isoprenoids (C) The shikimate serves as precursors 
in the shikimate-derived compounds. (D) Tryptophan and tryptamine serve as precursors in the biosynthesis of strictosidine-derived compounds.
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in the pathway culminates in the production of chorismate (Dewick, 
2002). It acts as a branching point in the pathway and provides the 
precursor for various important biochemicals (see Fig. 2) (Mesnage 
et al., 2021). Numerous studies employing precursor feeding methods 
utilize intermediate compounds from this pathway as supplementary 
precursors. For instance, shikimic acid is added to enhance the pro-
duction of 3-O-glucosyl-resveratrol and 4-(3,5-dihydroxyphenyl)- 
phenol from V. vinifera (Riedel et al., 2012), shikimate is introduced to 
increase the production of sanguinarine from P. somniferum (Verma 
et al., 2014a), and it is used to produce vincamine from V. minor (Verma 
et al., 2014b) (Fig. 2).

The phenylpropanoid metabolic pathway produces diverse phyto-
chemicals, relying on the products generated in the shikimate pathway 
(Vogt, 2010). Phenylalanine acts as the starting point for phenyl-
propanoid biosynthesis. The core of the phenylpropanoid pathway in-
volves specific enzymatic steps, including (i) phenylalanine deamination 
resulting in trans-cinnamic acid, (ii) hydroxylation of trans-cinnamic 
acid to 4-coumarate, and (iii) conversion of 4-coumarate to 4-cou-
maroyl-CoA (Biała and Jasiński, 2018). Coumaroyl-CoA is a crucial in-
termediate in the phenylpropanoid pathway, serving as a precursor for 
various compounds, including stilbene, monolignol, isoflavonoid, and 
coumarins biosynthesis (Buchanan et al., 2015). In the context of the 
precursor feeding method, many studies employ phenylalanine as an 
additional substrate in the initial stages of this pathway. For example, it 
is used in the production of wedelolactone from S. calendulacea (Kundu 
et al., 2018), daidzein from P. corylifolia (Shinde et al., 2009), quercetin 
from I. tinctoria (Miceli et al., 2023), and silymarin from S. marianum 
(Firouzi et al., 2013) (Fig. 2).

In living organisms, the mevalonate pathway is predominantly pre-
sent in eukaryotes and primarily occurs within the cytoplasm. Initially, 
two molecules of acetyl CoA are enzymatically transformed to create 3- 
hydroxy-3-methyl-glutaryl-CoA. This compound is then transformed 
into mevalonic acid (MVA), and subsequently, isopentenyl diphosphate 
(IPP) is produced. A portion of IPP undergoes isomerization resulting in 
the formation of dimethylallyl diphosphate (DMAPP) (Xiao and Zhong, 
2016). Ultimately, the remaining IPP and DMAPP are utilized by poly-
isoprene pyrophosphate synthase to generate precursors for triterpenes, 
sesquiterpenes, and steroids. In the context of the precursor feeding 
method, numerous studies employ mevalonic acid, an intermediate 
compound from this pathway, to enhance the production of various 
phytochemicals. For example, mevalonic acid is used in the production 
of whitanolide A from W. somnifera (Sivanandhan et al., 2014), curcu-
bitacin E from C. colocynthis (Dasari et al., 2020), artemisinin from 
A. annua (Baldi and Dixit, 2008), and bacoside A from B. monnieri 
(Hegazi et al., 2017) (Fig. 2).

2.2. Current reports on precursor feeding strategy in plant in vitro cultures

Many studies report the use of in vitro precursor feeding to promote 
plant secondary metabolite synthesis. The supplementation of pre-
cursors into the culture medium is commonly employed in callus and 
cell suspension culture. We have updated the information provided by 
Namdeo et al. (2007) in their previous review. We collected the data 
from 2007 to 2024, we found that out of 56 studies, 48 were conducted 
on medicinal plants (Table 1). Meanwhile, 4 of the studies focused on 
industrial plants such as Vitis vinifera, Isatis tinctoria, Papaver somniferum, 
and Argania spinosa (Riedel et al., 2012; Miceli et al., 2023; Verma et al., 
2014a; Hegazi et al., 2020). The remaining 4 studies used ornamental 
plants as research subjects, including Solenostemon scutellarioides, Dio-
naea muscipula, Drosera capensis, Aronia melanocarpa (Michx.) Elliott, 
Aronia arbutifolia (L.) Pers., and Dendrobium fimbriatum (Dewanjee et al., 
2014; Królicka et al., 2008; Szopa et al., 2020; Paul and Kumaria, 2020) 
(Suppl. 2).

The type of compounds produced in these 56 studies were diverse, 
including phenolic compounds (14), followed by alkaloids (13), flavo-
noids (9), terpenoids (8), amino acids (4), phenylpropanoids (3), 

steroids (3), esters (2), stilbenes (2), steroidal lactones (1), poly-
prenylated acylphloroglucinol (1), coumestan (1), lignan (1), iso-
flavones (1), naphthoquinone (1), furanocoumarins (1), anthraquinones 
(1), and vitamins (1). As for the type of media used, 47 studies employed 
suspension culture with liquid medium, and 9 studies used solid agar 
medium in the precursor feeding process, as seen in studies by Javid 
et al. (2021), Panwar and Guru (2015), Dewanjee et al. (2014), 
Mohammadparast et al. (2015), Chetri et al. (2016), Królicka et al. 
(2008), Otari et al. (2023), Mirmazloum et al. (2019), and Mahood et al. 
(2018).

The types of precursor compounds used were also varied, with seven 
different categories: amino acids (9), sterols (6), phenolic compounds 
(9), shikimic pathway compounds (5), intermediates in metabolic 
pathways (4), other nitrogenous compounds (4), and other organic 
compounds (2) (Suppl. 1). Meanwhile, some types of explants have been 
employed. Callus induced from different parts of the plant was used in 
32 studies, while 5 studies used the hairy root method, 18 studies used 
direct organ culture, and 1 study used protocorm-like bodies (Table 1). 
For the culture medium, 50 studies used Murashige and Skoog (MS) 
supplemented also with PGR, while 2 studies used WPM medium, 2 used 
Gamborg’s B5 medium, and 1 used Hoagland medium (Table 1). The 
general step by step technique used in in vitro precursor feeding is briefly 
described in Fig. 3.

Precursor feeding enhances the production of secondary metabolites 
in in vitro cultures by supplying essential building blocks directly into the 
plant’s biosynthetic pathways (Cheng et al., 2024). This increased 
availability of precursors boosts the metabolic flux toward desired 
compounds, upregulates key biosynthetic enzymes, and alleviates bot-
tlenecks in the pathways. As a result, there is a significant enhancement 
in the yield of targeted secondary metabolites (Lu et al., 2022 ). 
Furthermore, precursor feeding treatments can be combined with elic-
itor compounds. Both can have a positive effect on cell growth and the 
production of secondary metabolite compounds (Rakesh and Praveen, 
2022).

Different precursors have distinct mechanisms for entering the plant 
cells. Many of them are facilitated by transporters. The AAT (Amino Acid 
Transporter) plays a role in introducing amino acid precursor com-
pounds (Dong et al., 2024). The ABC (ATP-binding cassette) transporter 
is involved in introducing lipid-derived compounds and organic com-
pounds that are intermediates in secondary metabolite biosynthesis 
pathways (Kang et al., 2011). Other precursor molecules can enter the 
cell through passive diffusion. In addition to serving as building blocks 
in phytochemical biosynthesis, precursors may also influence the 
expression of growth genes and hormones (Inyai et al., 2021), resulting 
in increased biomass growth, which correlates with a higher production 
of secondary metabolite compounds. For elicitors, their interaction with 
cell receptors triggers a defence response by activating genes encoding 
secondary metabolite compounds (Namdeo, 2007; Rakesh and Praveen, 
2022). The combined use of precursor feeding, and elicitors can yield 
optimal results in the production of secondary metabolite compounds 
(Fig. 4).

3. Potential applications of plant secondary metabolites

Plant phytochemicals are typically classified into three main groups 
based on their biosynthetic pathways: terpenes, phenolics, and alkaloids 
(Bourgaud et al., 2001). These three clusters of phytochemicals have a 
very diverse range of applications, especially in the fields of pharma-
ceuticals, agriculture, the food industry, and others. Many reports 
explain the biological effects of phytochemical groups. This section 
provides a summary of the applications of plant phytochemicals.

Phenolic compounds, including flavonoids, are often recommended 
for inclusion in dietary supplements and nutraceuticals due to their 
perceived significance in the human diet. Apart from their role as anti-
oxidants, these compounds possess a diverse range of biological capa-
bilities (Pengfei et al., 2009). For instance, several research has shown 
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Table 1 
Studies of the usage of precursor feeding method to enhance phytochemicals productions.

No. Compound Class Plant Species Explant Culture Media Precursors Products References

1 Steroidal lactones Withania 
somnifera

root derived 
callus

30 ml of MS + 1 mg/l 
picloram, 0.5 mg/l KN, 200 
mg/l L-glutamine and 5 % 
sucrose

cholesterol, 
mevalonic acid, 
squalene

withanolide A, 
withanolide B, 
withaferin, withanone, 
deoxy 
withanstramonolide, 
withanoside I, 
withanoside V

(Sivanandhan 
et al., 2014)

2 Ecdysteroid Achyranthes 
aspera

seed derived 
callus

MS + 1 mg/l 2, 4-dichloro-
phenoxyacetic acid and 1 
mg/l α-naphthaleneacetic 
acid

cholesterol, 7- 
dehydrocholesterol,

20-hydroxyecdysone (John et al., 2018)

3 Polyprenylated 
acylphloroglucinol

Hypericum 
perforatum

shoot 20 ml MS + 0.1 mg/l BA, 30 
g/l sucrose, 0.1 g/l myo- 
inositol and 0.1 g/l ascorbic 
acid

l-isoleucine, l-threonine, l- 
valine

hyperforin, adhyperforin (Karppinen et al., 
2007)

4 Phytosteroid Digitalis 
purpurea L.

nodal, 
internodal, 
and leaf

MS + 7.5 μM BA, and MS +
15 μM IAA

progesterone, cholesterol, 
and squalene

cardiotonic glycosides, 
digitoxin, and digoxin

(Patil et al., 2013)

5 Flavonoids and 
phenolic acids.

Vitex agnus 
castus L.

shoots MS + BAP 1 mg/L; NAA 0.5 
mg/L; GA3 0.25 mg/L and 
BAP 2 mg/L;NAA 0.5 mg/L.

L-phenylalanine neochlorogenic acid, p- 
coumaric acid, rutin, 
caffeic acid, cinaroside,

(Skrzypczak- 
Pietraszek et al., 
2018)

6 Terpenoid Citrullus 
colocynthis

leaves, shoot 
apex and 
nodal callus

MS + 2.0 mg/L BAP + 0.5 
mg/L NAA

squalene, mevalonic acid cucurbitacin E (Dasari et al., 2020)

7 Terpenoid Artemisia annua seed derived 
callus

50 ml MS + 3 % (w/v) 
sucrose + 0.1 mg/l NAA +
0.1 mg/l Kn.

mevalonic acid lactone Artemisinin (Baldi and Dixit, 
2008)

8 Coumestan Sphagneticola 
calendulacea

shoot 
derived HR

½ MS + 100 μM SA phenylalanine wedelolactone (Kundu et al., 
2018)

9 Lignan Larrea 
divaricata

leaves 
derived 
callus

MS + 9 μM 2,4-D + 5 μM BA l-phenylalanine, cinnamic 
acid, ferulic acid, and 
sinapic acid

nordihydroguaiaretic 
acid

(Palacio et al., 
2011)

10 Terpenoid Bacopa monnieri aerial parts MS (liquid) l-alanine and l- 
phenylalanine

saponin glycosides (Watcharatanon 
et al., 2019)

11 Ester Rhodiola rosea seeds MS + 25 g/L sucrose + 6.5 g/ 
L agar

cinnamyl alcohol, 
cinnamaldehyde

Cinnamyl alcohol 
glycosides

(Javid et al., 2021)

12 Stilbenes Morus alba L. root MS + 1 mg/L NAA L-tyrosine mulberroside A, 
oxyresveratrol, and 
resveratrol

(Inyai et al., 2021)

13 Phenol Vitis vinifera callus 25 ml of B5VIT basal 
medium

shikimic acid, 
phenylalanine

3-O-glucosyl-resveratrol 
and 4-(3,5- 
dihydroxyphenyl)- 
phenol

(Riedel et al., 2012)

14 Isoflavones Psoralea 
corylifolia

stem derived 
hairy root

50 mL MS phenylalanine daidzein, genistein (Shinde et al., 
2009)

15 Flavonoids Isatis tinctoria shoot MS + 1.0/1.0 mg/L BAP/ 
NAA

L-Phenylalanine and L- 
Tyrosine

apigetrine, quercetin, 
apigenin, quercitrin

(Miceli et al., 2023)

16 Amino acid Mucuna pruriens seed derived 
callus

50 mL MS + 3 % sucrose +
0.5 mg/L picloram

tyrosine, phenylalanine L-DOPA (Rakesh and 
Praveen, 2022)

17 Alkaloids Solanum 
lyratum

seed derived 
callus

30 ml MS + 0.75 mg/l 2,4-D 
+ 3 % sucrose

cholesterol, stigmasterol α-solanine, solanidine, 
and solasodine

(Lee et al., 2007)

18 Naphthoquinone Drosera 
burmannii Vahl 
and Drosera 
indica L. 

whole 
plantlets

30  mL MS sodium acetate plumbagin (Boonsnongcheep 
et al., 2019)

19 Alkaloids Rauwolfia 
serpentina

nodal 
segments 
and shoot

Hoagland solution tryptamine reserpine (Panwar and Guru, 
2015)

20 Caffeic acid ester Solenostemon 
scutellarioides

whole 
plantlets

MS L − phenylalanine, L 
− tyrosine

rosmarinic (Dewanjee et al., 
2014)

21 Flavonoids Silybum 
marianum

whole 
plantlets

50 mL MS + 3 g./L picloram 
+ 0.4 g/L kinetin

phenylalanine silymarin (Firouzi et al., 
2013)

22 Terpenoid Centella asiatica leaf and 
petiole 
derived HR

100 mL MS + 50 g/L sucrose squalene and pyruvic acid madecassoside, 
asiaticoside, madecassic 
acid, asiatic acid

(Baek et al., 2020)

23 Alkaloids Rauwolfia 
tetraphylla L.

leaf, stem, 
root derived 
callus

MS + 2, 4-D (2.0 mg/L) Tryptophan reserpine (Rohela et al., 
2021)

24 Alkaloids Papaver 
bracteatum

cell 
suspension

50 mL MS liquid L-tyrosine thebaine (Zare et al., 2014)

25 Phenolic Decalepis 
hamiltonii

leaf derived 
callus

MS + BA + Kn + NAA + 2.4 
D

ferulic acid vanillin, 2H4MB, vanillic 
acid

(Matam et al., 
2017)

(continued on next page)
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Table 1 (continued )

No. Compound Class Plant Species Explant Culture Media Precursors Products References

26 Anthocyanins Panax 
sikkimensis

root derived 
callus

MS + 3 % sucrose, 0.01 % 
myoinositol, 0.33 μM 
thiamine HCL, 2.5 μM 
pyridoxine hydrochloride, 
4.0 μM nicotinic acid, 5.4 μM 
NAA, and 1.2 μM Kinetin.

phenylalanine anthocyanins content (Biswas et al., 
2020)

27 Furanocoumarins Psoralea 
corylifolia L.

cotyledon 
derived 
callus

MS + 10 µM BA + 5 µM IBA umbelliferone, cinnamic 
acid, NADPH

psoralen (Mohammadparast 
et al., 2015)

28 Alkaloid Mitragyna 
speciosa

petiole and 
leaves 
derived 
callus

25 mL of liquid WPM Tryptophan, loganin mitragynine (Mohamad Zuldin 
et al., 2013)

29 Anthraquinones Cassia 
angustifolia Vahl

leaves, 
nodes, roots

MS + NAA + IBA + 3 % (w/ 
v) sucrose

α-keto glutaric acid and 
pyruvic acid

sennoside A and B (Chetri et al., 2016)

30 Terpenoid Bacopa monnieri leave 
derived 
callus

MS + 9 µM 2,4-D and 2.3 µM 
KIN

mevalonic acid Bacoside A (G. Hegazi et al., 
2017)

31 Phenylpropanoid 
glycoside

Rhodiola 
imbricata

leaf and root 
cells 
suspension

MS + 0.5 mg/L TDZ + 1 mg/ 
L NAA

tyrosol salidroside (Rattan et al., 
2022)

32 Phenylpropanoids Spilanthes 
acmella Murr.

leaf derived 
callus

MS + 15 µM BA + 5 µM 2,4-D casein hydrolysate, L- 
phenylalanine

scopoletin (Abyari et al., 
2016)

33 Amino acid Hybanthus 
enneaspermus 
(L.)

leaf derived 
HR

MS + 300 mg/L of 
cefotaxime

L-tyrosine L-DOPA (Sathish et al., 
2023)

34 Phenolic Dionaea 
muscipula, 
Drosera capensis

whole 
planlets

modified ½ MS + 2 % sucrose l-phenylalanine, trans- 
cinnamic acid

naphthoquinones, 
quercetin, myricetin

(Królicka et al., 
2008)

35 Alkaloid Papaver 
somniferum

shoot 
derived 
callus

MS (aq) + 1 ppm 2,4-D shikimate sanguinarine (Verma et al., 
2014a)

36 Vitamins Argania spinosa leaf derived 
callus

100 ml MS + 4.5 µM 2,4-D +
5 µM NAA

tyrosine α-tocopherol (Hegazi et al., 
2020)

37 Flavonoids Silybum 
marianum

root derived 
callus

50 ml MS + 4.55 μM 2,4D +
4.44 μM BA

L-phenylalanine Silymarin (Hassanen et al., 
2021)

38 Stilbenoid Morus alba L. leaf derived 
callus

30 ml MS + 0.1 mg/lTDZ +
1 mg/l NAA

L-phenylalanine, L- 
tyrosine

mulberroside A (Pongkitwitoon 
et al., 2020)

39 Terpenoid Picrorhiza 
kurroa

shoots MS + 3 mg/L indole-3- 
butyric acid + 1 mg/L 
kinetin

cinnamic acid (CA) and 
catalpol (CAT)

picroside-I (P-I) (Kumar et al., 
2016)

40 Flavonoid Cassia 
occidentalis L.

cotyledon 
derived 
callus

MS + 2.4D + Kin + NAA Phenylalanine, 
Methionine

Rotenoids (Vats and Kamal, 
2014)

41 Phenolic 
compounds

Aronia 
melanocarpa 
(Michx.) Elliott, 
Aronia 
arbutifolia (L.) 
Pers.

shoot 90 mL MS phenylalanine, cinnamic 
acid, benzoic acid, caffeic 
acid

neochlorogenic, 
chlorogenic, 
cryptochlorogenic, 
isochlorogenic, 
rosmarinic acids, and 
syringic

(Szopa et al., 2020)

42 Terpenoid Bacopa 
floribunda

shoots and 
roots

MS + 2.0 mg/l BAP + 2.0 
mg/l KIN and MS + 0.5 mg/l 
IAA + 0.5 mg/l IBA + 1.0 
mg/l NAA

squalene bacoside A3, bacopaside 
X, bacopaside II, and 
bacosaponin C

(Otari et al., 2023)

43 Phenolic 
compounds

Arnebia 
euchroma

bud derived 
callus

MSA + 1 mg/L kinetin and 
0.3 mg/L IAA

L-phenylalanine naphthoquinones (Sykłowska- 
Baranek et al., 
2012)

44 Alkaloid Catharanthus 
roseus

leaf derived 
callus

MS + 1 mg/l kin L-tryptophane; L- 
glutamine; L-asparagine; 
L-cystine and L-arginine

vinblastine and 
vincristine

(Taha et al., 2009)

45 Amino acid Mucuna pruriens leaf derived 
callus

20 ml MS + BAP 0.88 μM +
NAA 11.41 μM

L-tyrosine L-Dopa (Raghavendra 
et al., 2011)

46 Phenolic, alkaloid, 
flavonoid, and 
tannins

Dendrobium 
fimbriatum

protocorm- 
like bodies

MS + 3 % sucrose + 0.7 % 
agar + BAP + Picloram

caffeic acid, ferulic acid 
and p-coumaric acid

phenolic, alkaloid, 
flavonoid compounds

(Paul and Kumaria, 
2020)

47 Alkaloids Rauwolfia 
tetraphylla L.

leaf, stem, 
and root 
derived 
callus

MS + 2, 4-D2.0 mg/L tryptophan reserpine (Rohela et al., 
2021)

48 Phenylpropanoid Rhodiola rosea 
L.

leaf derived 
callus

MS + 4.5 g/l agar + 30 g/l 
sucrose + 1 mg/l NAA + 0.5 
mg/l BAP

tyramine, 4-hydroxyphe-
nylpyruvate and tyrosol

salidroside (Mirmazloum 
et al., 2019)

49 Flavonoid Moringa oleifera leaf and stem 
derived 
callus

MS + 1.0 mg/L BAP + 1.5 
mg/L IBA

Phenylalanine Niazirin, 
Benzylcarbamate, 
Vincosamide

(Mahood et al., 
2018)

(continued on next page)
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that phenolic compounds have ability as anticancer (Tavsan and Kayali, 
2019; Rosa et al., 2018), microcirculation-improving (Mastantuono 
et al., 2018), antihypertensive (Hou et al., 2012), hypo-lipidemic agents 
(Bae et al., 2014), and anti-inflammatory agents (Jang et al., 2020). 
They have also demonstrated potential as natural colorants (Rose et al., 
2018) and active ingredients in the cosmetic industry (Chiocchio et al., 
2021; Lianza et al., 2020; Shin et al., 2013).

Phenolic acids, which naturally occur in fruits and vegetables, 
encompass a diverse array of bioactivities, including antihyperglycemic 
(Sanchez et al., 2017), neuroprotective (Zaitone et al., 2019), antihy-
pertensive (Agunloye et al., 2019), antidepressant (Barauna et al., 
2018), anti-inflammatory (Zaitone et al., 2019), anticancer, and 

antidiarrheal (Frauches et al., 2016). In the veterinary area, tannins are 
employed as anthelmintic and antibacterial agents (del Carmen 
Acevedo-Ramirez et al., 2019; Redondo et al., 2014). Additionally, their 
tanning properties make phenolic acids useful in the hide industry 
(Mutiar et al., 2019). Nonetheless, caution is warranted when using 
tannins, as alongside their health-promoting attributes, certain detri-
mental effects have been observed (Labieniec and Gabryelak, 2003). 
Even though tannin-rich substances are frequently used in bovine feed, 
little is known about how hydrolyzable tannins affect the ruminant in-
testinal bacteria. It is well-recognized that several metabolites generated 
from hydrolyzable tannins, such as pyrogallol, have negative effects on 
the host animal’s intestinal microorganism (Lotfi, 2020).

Table 1 (continued )

No. Compound Class Plant Species Explant Culture Media Precursors Products References

50 Coumarins, 
glucosinolates, 
phenols, flavonoids

Nasturtium 
officinale

microshoots MS (solid) + 3 % (w/v) 
sucrose + 1 mg/L BA + 1 
mg/L NAA

L-phenylalanine, L- 
tryptophan

coumaric, ferulic acids, 
rutoside, and 
glucosinolates

(Klimek- 
Szczykutowicz 
et al., 2021)

51 Organosulfur Allium sativum 
L.

crown 
derived 
callus

MS (liquid) + 0.3 mg/L 2.4 D 
and 0.5 mg/L kin

glutathione allicin, ajoene, alliin, 
dithiin groups, and allyl 
sulfide groups

(Setiowati et al., 
2022)

52 Indole terpenoid 
alkaloids (TIAs)

Catharanthus 
roseus L.

leaves 
derived 
callus

½ B5 medium (Gamborg’s 
B5) + sucrose 2 % (w/v)

L-phenylalanine, L- 
tyrosine

vincristine, vinblastine (Vu et al., 2022)

53 Alkaloid Mitragyna 
speciosa

petioles and 
leaves 
derived 
callus

WPM + 4 mg/L 2,4-D tryptophan and loganin mitragynine (Mohamad Zuldin 
et al., 2013)

54 Amino acids Mucuna prurita leaf derived 
callus

20 ml MS (liquid) + IAA 
(11.41 μM) and BAP (0.88 
μM)

L-tyrosine L-Dopa (Raghavendra 
et al., 2018)

55 Indole alkaloids Vinca minor leaf derived 
HR

¼ Gamborg’s B5 (liquid) shikimate, tryptophan, 
tryptamine, loganin, and 
secologanin

vincamine (Verma et al., 
2014b)

56 Alkaloid Corylus avellana 
L.

cotyledons 
derived 
callus

MS (liquid) + 3 % sucrose/ 
lactose/fructose

phenylalanine and 
vanadyl sulfate

Paclitaxel (Rahpeyma et al., 
2015)

Fig. 3. General step by step technique used in in vitro precursor feeding and elicitor addition for enhancing plant secondary metabolites. 1–2) Plant parts commonly 
used as explants in culture include leaves, apical and axillary meristem shoots, cotyledons, hypocotyls, and meristematic roots. 3–4) Culture can be performed 
through indirect organogenesis by inducing callus growth, or directly by growing specific organs such as hairy roots, adventitious roots, and protoplasts. 5) The 
culture type can be done using suspension methods or growth on solid agar medium. 6–7) Precursor feeding compounds and elicitor molecules can be added to the 
culture medium. 8) Changes in phytochemical composition can be analyzed using spectrometry techniques and desired compounds can be isolated to obtain 
pure compounds.
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Terpenes are employed as medicines, food supplements, flavors, 
scents, biopesticides, and other things thanks to their broad spectrum of 
bioactivities in the cosmetic, food, cosmetic, pharmaceutical, agricul-
ture, and perfumery (Chiocchio et al., 2021). Within the pharmaceutical 
industry, terpenes play a crucial role as therapeutic factors with a wide 
array of bioactivities. These include chemo-preventive, antifungal, anti- 
inflammatory, antimicrobial, antihyperglycemic, antiviral, analgesic, 
and antiparasitic activities (Anthoni et al., 2006; Hammer et al., 2003; 
Jesch and Carr, 2017). Terpenes are also utilized as excipients in the 
pharmaceutical industry to optimize the intake of active ingredients 
across the skin (Fox et al., 2011).

This family of chemicals is crucial for food, aromatherapy, and fra-
grances due to the unique scent of many monoterpenes, which are 
mostly found in aromatic plant essential oils. Monoterpenes derived 
from essential oils, including carvacrol, thymene, and thymol 
(commonly found in plants of the Lamiaceae family), possess not only 
aromatic properties but also a diverse array of biological activities. For 
example, they have the potential to treat diseases of the nervous, car-
diovascular, and respiratory systems as well as act as antimicrobial and 
antioxidant agents (Salehi et al., 2018).

Furthermore, diterpenes of the labdane type are valuable in the in-
dustry of perfumes and serve as fixative agents in premium fragrances. 
Essentially, a fixative agent is a low-volatility substance that prolongs 
the longevity of a fragrance in perfumes, provides a lasting aroma, and 
enables harmonious blending with other components. Resin gathered 
from C. ladanifer (a member of the Cistaceae family) is a significant 
origin of labdanum-type diterpenes utilized as a fixing agent in per-
fumery (Raimundo et al., 2018).

Saponins, belonging to the subclass of terpenoids, hold immense 

significance in the food industry. Processed foods like desserts, ice 
creams, baked goods, sauces, and beverages often incorporate disper-
sions such as emulsions and foams. These dispersions play a vital role in 
defining, stabilizing, and managing the consistency and flow-related 
characteristics of these products. Saponins, because of their amphi-
philic characteristics, have demonstrated the capability to maintain the 
stabilization of emulsions in food. Importantly, they exhibit lower 
sensitivity to factors such as ionic concentration, pH, and elevated 
temperatures (approximately 90 ◦C) in comparison to the emulsifiers 
presently utilized (McClements & Gumus, 2016).

Additionally, saponins demonstrated several biological actions 
crucial for human healthcare at modest doses (del Hierro et al., 2018; 
Rehan et al., 2020; Singh et al., 2017). The cholesterol-lowering, anti-
cancer, and antiviral characteristics are the most pertinent among them 
(Jesch and Carr, 2017; Marrelli et al., 2016; Vinarova et al., 2015; Zhao 
et al., 2008). Boswellic and betulinic acids are two examples of the 
medicinal potential of triterpenic saponins. Betulinic acid exhibits a 
broad spectrum of biological functions, notably displaying potent anti-
viral effects (Alakurtti et al., 2006; Singh and Sharma, 2015). Another 
compound derived from the resin of incense trees (Banksia serrata 
Roxb.), boswellic acid, is utilized as an anti-inflammatory drug (Anthoni 
et al., 2006). Furthermore, clinical tests utilizing the gum resin from 
B. serrata have shown a decrease in signs among patients coping with 
rheumatoid arthritis and osteoarthritis (Poeckel et al., 2005, 2006).

Saponins are antibacterial substances that are effective against fungi 
and bacteria that attack plants (Hoagland et al., 1996; Moses et al., 
2014). The probable mechanism underlying these effects is the capa-
bility of saponins to interact with sterols found in bacterial membranes, 
resulting in membrane disruption (Augustin et al., 2011; Sreij et al., 

Fig. 4. Predicted mechanism of intake and the role of precursor feeding and elicitor compounds in plant cells. Various types of precursor additive compounds can 
enter the cell through different pathways, including Amino Acid Transporters (AATs) such as LHT (Lysine-Histidine Transporters), AAP (Amino Acid Permease), and 
POT (Proton-dependent Oligopeptide Transporters). Additionally, precursors can enter the cell via ABC Transporters, facilitated diffusion, and passive diffusion. 
Meanwhile, elicitors interact directly with receptors or target molecules. Both applications influence the regulation of growth genes and the expression of secondary 
metabolite genes. The synergy between these two applications can enhance the production of desired phytochemicals.
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2019). Along with their allelopathic effects on certain plant species, 
saponins also have insecticidal, and molluscicidal effects (Nielsen et al., 
2010; Huang et al., 2003). Saponins possess potential as natural bio-
pesticides for agricultural applications because of their inherent char-
acteristics and biological role in plant defense. For instance, Trdá et al. 
(2019) reported that a specific saponin called aescin not only exhibits 
antifungal properties against crop diseases but also can stimulate the 
immunity of B. napus and A. thaliana against fungus and bacteria, due to 
aescin contribution in salicylic acid-dependent resistance.

Alkaloids boast a longstanding history of utilization in medicinal 
applications and continue to play a crucial role in modern medicine 
(Newman and Cragg, 2020). An example of their significance is 
morphine derived from Papaver somniferum, which stands as among the 
most widely utilized pain relievers today. In their overview (Debnath 
et al., 2018), Debnath et al. listed the biological features of the major 
subclasses of alkaloids. Examples include the historically significant 
antimalarial drugs quinidine and quinine, which are produced from the 
bark of C. officinalis L. Another notable alkaloid is an adrenergic amine 
sourced from plants within the Ephedra genus (Ephedraceae family), 
ephedrine. Ephedrine finds application in various drug formulations, 
serving as respiratory dilators for individuals with asthma and allergy 
issues, as well to prevent low blood pressure during intrathecal anes-
thesia (Ma et al., 2007). Additionally, the Apocynaceae plant C. roseus 
(L.) is a significant source of anticancer drugs, specifically vinblastine 
and vincristine (Ronghe et al., 2001).

Other alkaloids have garnered attention for their potential bioac-
tivity. For instance, a tropane alkaloid named catuabine present in the 
bark of T. catigua A. Juss., demonstrated effects similar to an antide-
pressant in a rodent depression model (Campos et al., 2005). Another 
compound, berberine, found in the stem bark and roots of various Ber-
beridaceae, has displayed anti-diabetic effects in rodent models of in-
sulin resistance induction (Turner et al., 2008). Moreover, berberine 
showcases a range of bioactivities including antidepressant, anti- 
inflammatory, antioxidant, hepatoprotective, antihypertensive, and 
anti-cancer features (Amritpal et al., 2010).

Additionally, certain alkaloids are vital in spices and well-known 
drinks because they have psychoactive characteristics, such as the 
caffeine found in coffee, which plays a part in social and ceremonial 
events (Crozier et al., 2006). Coffea arabica L. and Camelia sinensis (L.) 
are the two most significant biological sources. Caffeine is classified as a 
methylxanthine alkaloid. It finds applications in various domains, 
including cosmetics, analgesics, anti-cold medications, and slimming 
products.

Numerous alkaloids also exhibit insecticidal and fungicidal proper-
ties, aligning with their protective function (Liu et al., 2012; Yang et al., 
2002). For instance, the phytopathogen Puccinia recondita is highly 
vulnerable to the potent fungicidal activity of the piperidine alkaloid 
pipernonaline. This alkaloid is purified from the hexane fraction of 
P. longum (Yogendra et al., 2017). P. grisea, E. graminis, B. cinerea, 
P. recondita, R. solani, and P. infestans, are among the phytopathogens 
that the Coptis japonica Makino extracts (berberine chloride, coptisine 
chloride, palmatine iodide, and isoquinoline alkaloids,) and its alkaloid 
content exhibit fungicidal activity against in an in vivo plant model (Ju- 
Hyun, 2005).

4. Prospects and limitations of in vitro precursor feeding 
methods for boosting the production of plant secondary 
metabolites

We have successfully compiled and analyzed the precursor feeding 
studies to elevate the biosynthesis of various types of PSMs via in vitro. 
These data unequivocally demonstrate the positive impact of incorpo-
rating diverse feeding precursors on the synthesis of secondary metab-
olite compounds. The strategic utilization of amino acids (organic 
chemicals) to the culture media, has been validated to be an effective 
method for augmenting the in vitro production of several therapeutic 

plant byproduct compounds. Notably, in Nasturtium officinale micro-
shoot cultures, amino acid supplementation, including L-Phenylalanine 
and L-Tryptophan, resulted in heightened production of coumaric acid, 
ferulic acid, rutoside, and glucosinolates (Klimek-Szczykutowicz et al., 
2021). Furthermore, the leaf callus of Hypericum perforatum, when 
cultivated in a growth medium enriched with 200 mM/L L-tyrosine, 
demonstrated a substantial enhancement in the production of L-Dopa, 
increasing by 36.36 folds (Raghavendra et al., 2018).

At times, the introduction of a precursor of biosynthetic to the 
growth media can be used to stimulate the formation of metabolites 
without impeding biomass accumulation. However, there are instances 
where the use of biosynthetic precursors alone might not lead to high 
yield of bioactive compounds in in vitro cultures. In such cases, 
employing a combination of biosynthetic precursors with enhancement 
techniques may offer a workaround. This approach is particularly useful 
when there is a scarcity of the precursor or constraints in its absorption 
by the cells from the culture medium, and integration into metabolic 
pathways (Isah et al., 2018).

To achieve the necessary productivity, it is essential to employ 
various augmentation strategies. One of the most frequently utilized 
methods is synergistic precursor and elicitor application. This strategy 
has efficiently proven in boosting the accumulation of PSMs. For 
instance, in callus cultures originating from leaves of Cassia augustifolia, 
combining elicitation with precursor addition yielded in a notable in-
crease in the production of sennoside A and B (Chetri et al., 2016). 
Similarly, the incorporation of both elicitation and precursor feeding 
into cell suspension cultivation of Mucuna pruriens resulted in a note-
worthy increase in the production of L-Dopa (Raghavendra et al., 2011). 
Notably, in this context, precursor feeding demonstrated greater success 
in boosting production compared to elicitation.

Given that many of the biochemical processes involved are cross- 
linked in cells, in certain cases a precursor might demonstrate an 
impact on the creation of more than one pathway of certain biochemical. 
For instances, Glutathione addition in the culture media of Allium sat-
ivum L. promoted allyl sulfide group (allyl methyl disulfide; allyl propyl 
disulfide; 1-propenyl allyl disulfide; 2-propenyls-1-propenyl disulfide; 
allyl trisulfide; diallyl heptasulfide; allyl methyl trisulfide;) and allicin, 
alliin, dithiin, ajoene, groups (3-vinyl 1,2-dithiin; 2-vinyl 1,3-dithiin) 
(Setiowati et al., 2022). The synthesis of asiatic acid, madecassoside, 
asiaticoside, and madecassic acid was enhanced by adding squalene to 
the Centella asiatica calli culture media (Baek et al., 2020). In cell cul-
tures of Solanum lyratum, the production of insolasodine, solasonidine, 
and solanine was significantly boosted when exogenous sterols like 
cholesterol, stigmasterol, or mixed sterols were introduced (Lee et al., 
2007). However, there was no influence on the growth of biomass. 
Precursor feeding strategy in plant in-vitro culture hold promising 
prospects and provide a variety of possible uses and advantages. These 
techniques have a lot of promise for several companies and fields of 
study. The following are some significant prospects of the precursor 
feeding application:

4.1. Enhanced phytochemical production

Combined in vitro plant propagation and precursor feeding enables 
the targeted and regulated augmentation of secondary metabolite syn-
thesis. This is especially useful for getting larger yields of certain 
bioactive compounds, such as phenolics, flavonoids, and alkaloids that 
exhibit drug-related applications, nutraceutical, and industrial in-
dustries. Numerous studies previously indicated that adding precursors 
to the growth medium yields in a rise in the formation of secondary 
metabolite chemicals. The production of mulberroside A compounds 
with addition of L-Phenylalanine and L-Tyrosine, the increase in L-Dopa 
compounds with L-Tyrosine precursors, and the production of Silymarin 
compounds with L-Phenylalanine precursors are a few examples 
(Hassanen et al., 2021; Pongkitwitoon et al., 2020; Raghavendra et al., 
2018).
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4.2. Applications in pharmacology

Many secondary metabolites made by plants because of feeding on 
precursors have pharmacological characteristics. These metabolites can 
be further isolated and used as a source of chemicals for the synthesis of 
new medications or for the creation of innovative pharmaceuticals. A 
regulated method to maximize the generation of these beneficial 
chemicals is precursor feeding. Most of the secondary metabolite com-
pounds are intended for application as medicines. Examples of appli-
cations of precursor feeding to increase compound production are 
vincristine, vinblastine, Paclitaxel, reserpine, silymarin, and salidroside, 
which have implications for cancer therapy drugs (vincristine and 
vinblastine), chemotherapy agents, hypertension, hepatoprotective, 
nerve protection (Mirmazloum et al., 2019; Rahpeyma et al., 2015; 
Rohela et al., 2021; Vu et al., 2022).

4.3. Nutraceutical and functional food development

By feeding precursors, secondary metabolites can be used to optimize 
the nutritional and functional qualities of food items. Bioactive in-
gredients can be added to functional meals or dietary supplements to 
promote health and wellness while addressing a variety of medical is-
sues. An example of a compound that is useful in the food and beverage 
industry is 2-hydroxy-4-methoxybenzaldehyde (2H4MB) with the 
addition of ferulic acid as a precursor (Matam et al., 2017).

4.4. Crop improvement and stress tolerance

Utilizing precursor feeding for enhancing the synthesis of plant 
phytochemicals involved in stress response can aid plants development, 
increasing their tolerance to environmental stressors and pests. This has 
potential implications for improving crop resilience and productivity, 
especially to faceclimate change and changing environmental condi-
tions. Rotenoids and solanine are examples of secondary metabolite 
compounds that can be utilized as fungicides and pesticides. These 
compounds can be produced by adding feeding precursors such as 
phenylalanine and methionine and exogenous sterols (cholesterol, 
stigmasterol) respectively (Lee et al., 2007; Vu et al., 2022).

4.5. Flavour and fragrance industries

Specific phytochemicals are needed for the industries of flavour and 
fragrance. The creation of certain compounds contributing to the flavour 
and scent of various goods, such as perfumes, essential oils, drinks, and 
food products, can be optimized using precursor feeding. An example of 
the application of precursor feeding is the vanillin compounds, 2H4MB, 
and Vanillic acid production, coumarins with ferulic acid, L-phenylala-
nine, and L-tyrosine as the precursors (Klimek-Szczykutowicz et al., 
2021; Matam et al., 2017).

4.6. Bioremediation and environmental applications

The capacity to detoxify or break down contaminants exists in 
several secondary metabolites. These metabolites, which might be used 
in phytoremediation or bioremediation techniques to clean up polluted 
settings, can be stimulated by precursor feeding in plant cultures. For 
example, bacteria that can degrade Polychlorinated Biphenyls (PCBs) 
utilize coumarin and myricetin as carbon sources (Klimek-Szczykuto-
wicz et al., 2021; Singer et al., 2003). In these cases, myricetin 
demonstrated the highest efficacy in PCB degradation. Burkholderia 
cepacia LB400, for instance, was able to degrade 16 out of 19 tested 
congeners using myricetin, while coumarin led to the degradation of 13 
congeners by Corynebacterium sp. MB1, surpassing the efficacy of PCB 
degradation (Donnelly et al., 1994).

4.7. Customized metabolite profiles

The reaction mixture and concentration of the precursors can be 
changed to create specific metabolite profiles using precursor feeding 
techniques. The focused creation of metabolites following industrial, or 
research requirements is made possible by this level of customization. 
for example, according to Kiong et al., (Kiong et al., 2005), the addition 
of Farnesyl pyrophosphate (FPP), squalene, leucine, and Isopentenyl 
pyrophosphate (IPP) into Centella asiatica cell culture medium, can 
enhance triterpenoids productions.

Precursor feeding techniques in plant in-vitro culture provide a lot of 
benefits, but they also have certain drawbacks and difficulties that need 
to be considered before using them. The primary limitations of the 
precursor feeding strategy employed in plant in vitro culture are as 
follows:

The metabolic processes involved in the synthesis of phytochemicals 
are often complicated and may vary among different plant species, or-
gans, and even individual plants. Comparing plant metabolic networks 
to those of other living things, they are considerably complex. This is 
caused by several interconnected characteristics of plant life, including 
its sessileness, ectothermic, and autotrophic nature, as well as its 
extensive chemical repertory and high levels of subcellular compart-
mentation (Allen et al., 2009). Moreover, the required secondary me-
tabolites may not always be produced in high or consistent quantities 
because of precursor feeding (Palacio et al., 2011; Srivastava & Srivas-
tava, 2014). The production and quality of the phytochemicals are 
affected by a broad spectrum of elements, including the stage of plant 
development, culture conditions, and genetic diversity (Verma and 
Shukla, 2015). Therefore, studies of gene expressions involved in sec-
ondary metabolite biosynthesis are also important (Jadid et al., 2016). 
Due to this intricacy and diversity, precursor feeding may not always 
provide predictable results.

Additionally, secondary metabolite biosynthesis pathways and the 
involved enzymes are poorly understood. The accurate implementation 
of precursor feeding techniques, and the optimization of results may be 
hampered by this lack of understanding. Metabolic pathway studies use 
a combination of several approaches such as: metabolic and bioinfor-
matics pathway databases (e.g., metaCyc, cathaCyc, and KEGG), 
metabolite identification (GC–MS, HPLC–MS, and NMR), RNA-seq, 
Metabolic Flux Analysis (MFA), and structural interaction study of 
several enzymes implying in secondary metabolite pathways can help in 
studying phytochemicals pathways (Caspi et al., 2020; Jadid et al., 
2024b; Marguerat and Bähler, 2010; Shih and Morgan, 2020; P. Zhang 
et al., 2005).

The production of a variety of phytochemicals by plant cells in 
response to precursor feeding might make it difficult to target the 
biosynthesis of a particular molecule. The targeted metabolite may not 
be a single reaction, resulting in a variety of chemicals in the culture. 
Several strategies such as optimizing co-culture condition, substrate 
channeling, CRISPR-Cas9 genome editing, and inhibiting undesired 
pathways with artificial microRNA, can be utilized for enhancing the 
specificity of precursor feeding (Endo et al., 2019; Hidalgo et al., 2017; 
Marchev et al., 2020; Y. Zhang and Fernie, 2021).

Using high precursor concentrations can be perilous for plant cells 
cultivated in vitro, potentially leading to cell death or reduced growth 
rates. Striking a delicate balance is crucial to optimize metabolite syn-
thesis while mitigating potential cell damage caused by high precursor 
concentrations. An illustration of this intricate balance is evident in the 
use of sodium acetate as a precursor for Azadirachtin production in the 
hairy root culture of Azadirachta indica. Studies suggest that the inclu-
sion of sodium acetate in the medium can potentially damage plant cells 
and trigger the release of oligogalacturonides from the plant cell 
(Srivastava and Srivastava, 2014). This signaling can subsequently 
trigger an upregulation in phytoalexin production, which are defensive- 
related secondary metabolites (Davis et al., 1986). In a different inves-
tigation by Palacio et al., (2011), focusing on nordihydroguaiaretic acid 
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(NDGA) production from Larrea divaricata, the supplementation of l- 
phenylalanine at varying concentrations (3, 1, and 0.5 mM) resulted in a 
notable increase in NDGA levels, reaching of up to 190.53 ± 19.50, 
285.23 ± 28.44, and 301.35 ± 1.19 μg/g DW, respectively. However, 
the introduction of 0.5 μM cinnamic acid promoted cell propagation but 
did not influence NDGA accumulation. On the other hand, when cin-
namic acid (at 1 and 1.5 μM), ferulic acid (at 0.1, 0.5, and 1 mM), and 
sinapic acid (at 0.1, 0.5, and 1 mM) was supplemented, the medium 
became excessively toxic, leading to suppression of phenylpropanoid 
and NDGA production because of the high toxicity levels.

The cost corelated with obtaining and incorporating purified pre-
cursors into the culture medium can be relatively high, especially for 
specialized or rare precursors. This cost factor can significantly impact 
the economic feasibility and scalability of precursor feeding methods, 
particularly for mass production. To optimize the production of specific 
compounds in the culture system, it is essential to establish procedures 
that maximize the use of a precursor, especially when it is the most cost- 
effective byproduct of other processes (Isah et al., 2018). In modern 
scale-up production studies, there is a notable shift towards focusing on 
cell suspension cultures rather than differentiated tissues such as hairy 
roots and somatic embryos, which are used less frequently (Ferrie, 2010; 
Ziv, 2010). This change is probably attributed to the benefits of cell 
suspension cultures in comparison to tissue and organ cultures, partic-
ularly in terms of simplicity, predictability, and ease of extracting me-
tabolites from the biomass or growth medium (Park and Paek, 2014). 
Furthermore, the biosynthesis of plant chemicals can be scaled up by 
employing a combination of various methods, including cell per-
meabilization, immobilization, and elicitation (Choi et al., 1995).

Beside of many advantageous of the in vitro precursor feeding for 
accelerating the quantity of PSMs, these techniques also genetic insta-
bility of the plant and production of the targeted compounds as well as 
cytotoxicity. Genetic instability in tissue cultures over extended periods 
often detrimental. Plant cells grown in vitro are often subject to soma-
clonal variation, leading to genetic mutations and altered metabolic 
profiles, reducing the reliability and consistency of metabolite produc-
tion (Kang et al., 2011). Additionally, precursor uptake and transport 
can be also inefficient due to mechanic barriers of the plant like cell 
walls or the absence of specific transporters. This will end up with an 
inefficient uptake of the precursors into the cells. Moreover, high con-
centrations of precursors can induce stress or cytotoxicity, leading to 
cellular damage or abnormal metabolic responses. Therefore, suitable 
concentration of the precursors, re-checking the metabolic profile and 
additional genetic fidelity confirmation using molecular markers such as 
random Amplified Polymorphic DNA (RAPD), inter-simple sequence 
repeat (ISSR) and start codon targeted (SCoT) should also be performed 
(Andriyani and Jadid, 2021).

5. Conclusion

In summary, precursor feeding stands as a promising in-vitro culture 
technique, offering a scalable and sustainable approach for producing 
secondary metabolites without relying on traditional agricultural pro-
cesses. It provides a flexible and effective strategy for controlling and 
enhancing the production of valuable phytochemicals. These applica-
tions present intriguing subjects for study and advancement in 
contemporary plant biotechnology, with far-reaching implications for 
various industries and research domains. To entirely harness the po-
tential of precursor feeding strategies and optimize the formation of 
phytochemicals in plant in-vitro cultures, a deep understanding of the 
involved constraints is required. Enhancing the efficacy and efficiency of 
secondary metabolite synthesis necessitates focused attention on these 
aspects. Integration between precursor feeding and cutting-edge 
biotechnological methods like synthetic biology and metabolic engi-
neering shows potential for substantially enhancing the precision and 
efficiency of phytochemical synthesis in plant cultures. However, it’s 
important to acknowledge the existing limitations that affect the 

production of PSMs through this method including potential genetic 
instability, cytotoxicity and altered metabolic profile. Therefore, addi-
tional molecular-based approaches including RAPD, ISSR and ScoT as 
well as metabolomic assessment should also performed to complement 
the results of the study. Finally, continued research and progress in 
biotechnology have the potential to surmount these challenges, offering 
opportunities to enhance the application of precursor feeding for opti-
mized phytochemical synthesis in plants.
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