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Abstract Herein, green platinum nanoparticles (PtNPs) were synthesized using an aqueous extract

of Atriplex halimus leaves as a reductant. Atriplex platinum nanoparticles (At-PtNPs) were stable

for up to three months. At-PtNPs were characterized by several techniques including UV–Visible

spectroscopy, Fourier Transform Infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Energy

Dispersive X-ray spectroscopy (EDX), EDX elemental mapping, High-resolution Transmission

electron microscope (HRTEM), Selected Area Electron Diffraction (SAED), and X-ray

Photoelectron Spectroscopy (XPS) and Zeta measurements. At-PtNPs were black-colored and mainly

spherical with a plasmon peak at 295 nm with ultra-small particle size (1–3 nm) and high surface

charge (�25.4 mV). At-PtNPs were verified as a superb catalyst as they were able to catalytically

degrade MB dye. At-PtNPs exhibited a high antibacterial efficiency against gram-negative bacteria.

At-PtNPs were proved as a highly efficient antioxidant agent. Thus, the attained results offer a

promising route of the green synthesis of PtNPs using the aqueous extract of Atriplex halimus.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In today’s world, inorganic nanoparticles are a critical corner-
stone that represents significant scientific and technological

achievements (Abdelfatah, 2021; Mallikarjuna, 2017;
Bathula, 2020; Eltaweil, 2020). Noble metal nanoparticles,
including gold, silver, palladium, and platinum, have been

proved to be applied in lots of different applications in mate-
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Fig. 1 Schematic representation for the green synthesis of PtNPs by A. halimus aqueous extract.
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rial science, chemistry, and medicine (Jameel, 2020; S�ahin,
2018; Mallikarjuna, 2019). Among these nanoparticles, plat-

inum nanoparticles (PtNPs) have sparked special interest
owing to their unique structural, optical, catalytic properties,
high surface area, and good resistance to corrosion making

them a potential candidate for catalysis and biomedical appli-
cations (Dong, 2021; Fan, 2021). PtNPs were reckoned to be
efficient and can serve as drug carriers (Barua and

Mitragotri, 2014; Al-Radadi, 2019). Also, PtNPs have a diver-
sity of medicinal uses, including anti-cancer, anti-diabetic,
antibacterial, and antifungal applications (Naseer, 2020).

Recently, green chemistry is urgently needed to synthesize

environmentally sustainable products (Duan et al., 2015).
Green synthesis of NPs has gained a lot of interest as the
demand for non-toxic, safe, environmentally sustainable, and

green procedures grow (Muthu and Priya, 2017; El-Borady
et al., 2021). Plants are favored over other biological synthetic
methods because they obviate the need for long times of bac-

terial and fungal culturing and preservation. Furthermore,
extracellular plant extracts were proved to be more selective
and powerful in regulating nanoparticle size, shape, and dis-

persity (Muthu and Priya, 2017). Therefore, employing plant
extracts in the synthesis of nanoparticles advocates the princi-
ples of green chemistry including less hazardous chemical syn-
Fig. 2 UV–Vis spectrum and images (inset) of At-PtNPs
theses, safer solvents and auxiliaries, design for energy

efficiency, and use of renewable feedstocks.
Plant sections such as roots, leaves, stems, and fruits

have also been used to make NPs since their extract con-

tains phytochemicals like flavonoids, tannins, and phenolic
compounds that serve as both a reducing and stabilizing
agent simultaneously (Rajeshkumar, 2016; Maisa’a and

Awwad, 2021). Plants are employed in PtNPs synthesis
because they are simpler, smoother, eco-friendly, durable,
and cost-effective, and they produce more stable synthesized

particles than other, more orthodox approaches (Aygun,
2020). Nymphaea alba; Tragia involucrate, and Crocus sativus
are just some examples of plant extracts that were recently
utilized in PtNPs synthesis.

A substantial environmental concern comes from the textile
industry’s release of harmful dyes, especially into aquatic areas
(El-Monaem, 2021; Eltaweil, 2021; Chandrasekaran et al.,

2020; Arul et al., 2020; Arul, 2021; Eltaweil, 2021). Methylene
blue (MB), which is a common harmful dye, inhibits sunlight
from reaching a water body so it has a long-term negative

impact on the aquatic ecosystem (Eltaweil, 2020; Eltaweil,
2020). Therefore, this deleterious dye was chosen to test the
catalytic degradation potency of the phytosynthesized

At-PtNPs in this work.
(a) Immediately after synthesis and (b) After 3 months.



Scheme 1 A plausible mechanism for the reduction of Pt4+ by polyphenols in A.halimus aqueous extract.
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Generally, bacterial pathogens are suspected of causing a
wide range of life-threatening illnesses in people and animals

(Selvi, 2020; Omer, 2021). Bacterial strains whether gram-
negative or gram-positive bacteria such as Escherichia coli
and Staphylococcus aureus that are commonly existing in the
environment, food, and the intestines of people and animals

(Iyer, 2018), can result in severe dermal infections, problems
with urinary and respiratory tract systems, and intravenous
catheters especially in immune-compromised patients

(Carezzano, 2017). Various antibiotics were employed in the
treatment of these pathogenic bacteria yet continuous applica-
tion or consumption of these antibiotics resulted in the devel-

opment of drug-resistant bacteria (Allen, 2010). Thus, novel
materials such as PtNPs have to be synthesized and employed
in such an onerous task. Additionally, the antifungal activities

of biogenic synthesized PtNPs against various fungal species
were previously reported (Wang and Lippard, 2005).

Methods for estimating the efficacy of nanoparticles such as
antioxidants are becoming more common. In addition, the use

of the stable free radical 1,1-diphenyl-2-picrylhydrazyl
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Fig. 3 XRD pattern of At-PtNPs.
(DPPH) is one such process that is currently common for
the assessment of nanoparticles as antioxidants (Chen, 2021).

Herein, the aqueous extract of A. halimus leaves was uti-
lized for the first time in PtNPs synthesis and stabilization as
a green and efficient route for the synthesis of PtNPs with
excellent catalytic and biological activities as well as very high

stability. Therefore, the aim of the current work is twofold,
firstly to investigate the potentiality of A. halimus leaves aque-
ous extract in the synthesis of highly stable PtNPs and sec-

ondly to test the applicability of At-PtNPs in medical
applications including antibacterial and antioxidant test and
also in the catalytic degradation of MB.

2. Materials and methods

2.1. Chemicals and reagents

All reagents used in this study were of analytical grade and

used without purification including hexachloroplatinic acid
Fig. 4 FT-IR spectra of A. halimus (a) and At-PtNPs (b).
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(H2PtCl6�6H2O), sodium hydroxide (NaOH), sodium borohy-
dride (NaBH4), and methylene blue (MB) were purchased
from Merck, USA.

2.2. Collection of plant specimens and preparation of extracts

Representative samples of A. halimus leaves were collected

from their natural habitats on the Mediterranean coastal land
of Egypt and the Nile Delta. Leaves were rinsed with deionized
water (D.W.) numerous times to remove any impurities and

debris. Then leaves were shredded and allowed to dry in the
open air followed by overnight drying at 60 �C till reaching
constant weight. Afterward, dry leaves were ground in a stain-

less steel mixer to have a fine powder. Five grams from the
resultant powder were mixed with 100 mL of D.W, then the
mixture was heated at 80 �C and stirred at 500 rpm using a
magnetic stirrer for approximately 20 min. Eventually, the

hot solution was filtered and the filtrate was stored in a glass
beaker at 4.0 �C for further use.

2.3. Green synthesis of PtNPs

Briefly, 10 mL of A. halimus leaves extract was added to 1 mL
of platinum chloride solution (H2PtCl6�6H2O) with a molarity

of 0.0019 M. Afterwards, to achieve fast synthesis process, the
pH of the mixture solution was adjusted at 9.6 (based on pre-
liminary experiments) using NaOH (0.1 M) then the mixture
solution was subjected to stirring and heating at 95 �C for

almost one hour till a color change was observed from dark
yellow to black. The purification step was carried out by cen-
trifugation of A. halimus-PtNPs (At-PtNPs) colloidal solution

then collecting the precipitated pellets and washing them using
repeatedly with D.W. Then the formed At-PtNPs solution was
preserved at 4.0 �C.

2.4. Characterization techniques

The UV–Visible spectroscopy measurements (200–800 nm)

using a double-beam spectrophotometer (T70/T80 series
UV/Vis Spectrophotometer, PG instruments Ltd, UK) to
ensure the green reduction of the Pt4+ into PtNPs. HRTEM
measurements were done on a JOEL, JEM-2100F, Japan,

accelerating voltage of 200 kV FT-IR spectra were conducted
using a JASCO spectrometer to assess the possible involve-
ment of functional groups in A. halimus extract that were

responsible for the reduction and stabilization process. Zeta
potential and hydrodynamic size of fabricated At-PtNPs was
examined in a zeta potential analyzer (Zetasizer Nano ZS Mal-

vern) to determine the surface charge of At-PtNPs. The XRD
measurements of powdered At-PtNPs were done on an X-ray
diffractometer (X’PERT PRO. Netherland) operated at a

voltage of (45KV) and current of (40 mA) with CuKa1
radiation (k ¼ 1.54056Ao) in the 2h range from 20� to 80� to
make sure of the crystalline nature of At-PtNPs. The crystallite
size was calculated from the width of the XRD peaks using the

Scherrer formula as given by:

Dð Þ ¼ 0:9k
b cos h

Where D is average crystallite size, b indicates the line
broadening the value of the full width at half maximum
(FWHM) of a peak, k is the wavelength of irradiated X-rays,
and h is the maximum peak position value. Energy-dispersive
X-ray spectroscopy (EDX), performed using JEOL model

JSM-IT100 to investigate the elemental composition of At-
PtNPs. XPS was collected on K-ALPHA (Thermo Fisher Sci-
entific, USA) with monochromatic X-ray Al K-alpha radiation

�10 to 1350 eV spot size 400 micro m at pressure 10-9 mbar
with full-spectrum and narrow-spectrum 50 eV to confirm
the reduction of Pt4+ into Pt0.

2.5. Catalytic degradation of MB

100 lL of freshly prepared aqueous NaBH4 solution (0.058 M)

were added to 10 mL of MB (20–100 ppm). Subsequently,
100 lL of At-PtNPs with a concentration of 50 lg/mL were
added to the mixture at 25� C with continuous stirring. The
reaction was monitored by recording the time-dependent

UV–Vis absorption spectra of these mixtures at 664 nm. Con-
trol experiments were conducted using the same experimental
conditions yet without At-PtNPs and/or NaBH4. The degrada-

tion efficacy was measured by the following equation:

Removal% ¼ A0 � A

A0

� 100 ð1Þ

Where (A0) represents the initial absorbance of MB at time
0, while (A) refers to the absorbance of MB at time t.

2.6. Antimicrobial test

Inoculum preparation: The stock culture of reference strain (in
glycerol broth) was subcultured onto tryptic soy agar plates.
The tested samples are Escherichia coli (ATCC 8739),

Klebsiella pneumonia (ATCC 1388), Bacillus subtilis (ATCC
6633), and Staphyllococcus aureus (MRSA)(ATCC 25923).
Turbidity of the suspended colonies was compared with the

0.5 McFarland turbidity standard equivalent to 2x108

CFU/mL.
Preparation of seeded agar: Muller Hinton agar is weighed

and dissolved in distilled water then sterilized by autoclaving
after being divided into 25 mL portions into 6 separate flasks.
Flasks were shaken and poured onto sterile petri dishes and
left to solidify.

Placing of tested materials (At-PtNPs): At-PtNPs were
placed directly in wells after sterilization by filtration; the
plates were put in the refrigerator overnight to allow diffusion

of At-PtNPs material.
Incubation: Plates were incubated at 35 ± 2 �C for 24 h.
Reading results: All measurements were made with the

unaided eye while viewing the back of the Petri dish a few
inches above a non-reflecting background and illuminated with
reflected light.

2.7. Antioxidant activity of PtNPs (DPPH assay)

The free radical scavenging activity was examined via DPPH
(2, 2-diphenyl-1-picrylhydrazyl) assay to determine the antiox-

idant efficiency of At-PtNPs samples. The assay was conducted
in triplicates. In the process, 1 mL of each PtNPs sample was
mixed with 1 mL of DPPH (0.2 mM) along with control

DPPH which does not contain any nanoparticles. This mixture
was blended for 3 min in dark conditions at ambient tempera-



Fig. 5 (a-e) HRTEM images of At-PtNPs (f) SAED image of At-PtNPs (g) Size distribution of At-PtNPs.
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ture. Then, after 20 min the concentration of radical is exam-
ined by the reduction in absorbance percentage of the mixture

at 517 nm wavelength. The control was set up as over. Change
in absorbance was estimated at 517 nm. Vitamin C (ascorbic
acid) was used as a reference (positive control). The activity

was measured by the following equation (El-Borady, 2020).

Radicalscavengingactivity

¼ Controlabsorbance� sampleabsorbanceð Þ � 100

controlabsorbance
ð2Þ
Where control absorbance is the absorbance in the absence
of antioxidants and sample absorbance is the absorbance in

the presence of antioxidants (At-PtNPs or Vitamin C) at
517 nm.

2.8. Statistical analysis

All experiments were conducted in triplicate (n = 3), while the
gained data were presented as a mean value corrected by the

standard deviation (±SD).



Fig. 5 (continued)

6 A.S. Eltaweil et al.
3. Results and discussion

3.1. Characterization of At-PtNPs

A.halimus aqueous extract was previously confirmed to con-

tain a diversity of phytoconstituents, including flavonoids, gly-
cosides, and alkaloids (Benhammou et al., 2009; Walker,
2014). As a result, Fig. 1 was used to represent a simplified

mechanism for the phytosynthesis of At-PtNPs using A.hal-
imus aqueous extract. Consequently, there was no need for
any chemicals. These phytoconstituents are postulated to play

a dual role as a reducing and stabilizing agent at the same time
since they were proven to be capable of donating electrons or
hydrogen atoms to platinum ions to get these ions reduced
(Brewer, 2011). Firstly, A.halimus extract reduced platinum

ions into a metallic or zero-valent form of platinum (PtNPs).
Secondly, they contributed to the stability of the resultant
At-PtNPs as they remained stable for more than three months

as displayed in Fig. 2a and b. Thus, confirming the great poten-
tiality of A.halimus aqueous extract in the phytosynthesis of
several metallic and non-metallic nanoparticles in the near

future and denoting its cost-effectiveness. Especially,
A.halimus strains that are affected by environmental pressures
including droughts and high levels of salinity as it was proven

that the concentration of the phytoconstituents increases in
most living plant species when the severity of these environ-
mental pressures increases (Oh et al., 2009).

Moreover, the plausible mechanism for the reduction of

Pt4+ by polyphenols in A.halimus aqueous extract is elucidated
in Scheme 1.
Table 1 Comparison between the physical properties of At-PtNPs

Plant Size (nm) Shape

Maytenus royleanus 5 Spherical

Taraxacum laevigatum 2–7 Spherical

Garcinia mangostana L. �2 Spherical

Prosopis farcta 10–40 Spherical

Atriplex halimus 1–3 Spherical
3.2. UV–Visible spectroscopy

The excitation produced by a source of light at a certain wave-
length has a distinct peak at that wavelength known as surface
plasmonic resonance which is determined by UV–visible spec-

troscopy (Zada, 2018). Most of the metallic nanoparticles have
unique surface plasmon resonance (SPR) bands (Noruzi et al.,
2012). Moreover, the NPs shape and size usually define the
form and location of the SPR peak. In the current study, a

black-colored colloidal solution (Inset Fig. 2a) and an SPR
peak that appeared at 295 nm as shown in Fig. 2a which is
characteristic to PtNPs confirmed the successful phytosynthe-

sis of At-PtNPs using the aqueous extract of A. halimus. Fur-
thermore, At-PtNPs were stable for up to three months as
indicated by the unaffected black color (Inset Fig. 2b) and

UV–Vis surface plasmon resonance (Fig. 2b). Concomitantly
with the current study, other researchers reported similar
results for the characteristic peak of green synthesized PtNPs

(Al-Radadi, 2019; Thirumurugan, 2016).

3.3. XRD analysis

The face-centered cubic crystalline structure of At-PtNPs was

confirmed by the XRD pattern. Distinct diffraction peaks of
PtNPs at 38.1�, 44.6�, 64.7�, and 78.3� corresponding to
(111), (200), (220), and (311) planes were observed (Fig. 3).

Furthermore, the green synthesized At-PtNPs’ preferred
growth orientation was the (111) plane. The obtained results
matched the stated requirements for crystalline platinum;

JCPDS file no. 04–0802. The Scherrer formula was used to
determine the average crystallite size of At-PtNPs, which was
found to be about 1.5 nm, which was close to the size range
(1–2 nm) observed by HRTEM spectroscopy. The undefined

sharp peaks are attributed to the plant residues (Hosny,
2021). In addition, the smaller crystallite size reported in this
study suggesting the higher proficiency for the synthesized

At-PtNPs.

3.4. FT-IR analysis

FTIR spectrum of A. halimus showed several peaks at different
wavenumbers including O-H group at 3360 cm�1, C = C
group at 1625 cm�1, C–N group at 1397 cm�1, and C-O

stretching group at 1080 cm�1 (Fig. 4a). However, in the spec-
trum of At-PtNPs (Fig. 4b), some of these peaks appeared but
at a lower wavenumber including the C = C group at
1619 cm�1, C–N group at 1317 cm�1, and C-O group at

1019 cm�1. Also, the O-H group of A. halimus disappeared
confirming the active role of O-H functional group-
containing phytoconstituents in the reduction and stabilization
and other green synthesized PtNPs.

Zeta potential (mV) Ref.

�41 (Ullah, 2017)

�29 (Tahir, 2017)

�13 (Nishanthi et al., 2019)

�15.6 (Jameel et al., 2020)

�25.4 Current study



Fig. 6 (a) EDX of At-PtNPs (b-e) elemental mapping images of At-PtNPs.
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of At-PtNPs. In addition, a new C–H stretch appeared at
2920 cm�1 and 2850 cm�1. Consequently, it was concluded
that phytoconstituents of A. halimus extract including glyco-
sides, terpenoids, flavonoids, and alkaloids (Rahman, 2011)

were responsible for the reduction and capping of At-PtNPs.
The current results are concomitant with other previously pub-
lished works that were concerned with the green synthesis of
PtNPs (Thirumurugan, 2016; Yang, 2017). The obtained
results indicated that the dielectric constant of the medium
may have been changed because of the involvement of a vari-

ety of different phytochemicals from A. halimus extract such as
glycosides, flavonoids, phenolic acids, and alkaloids as capping



Fig. 7 XPS spectrum of At-PtNPs (a) survey (b) C1s (c) O1s (d) N1s (e) Pt4f.
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agents which are supposed to cause the deviation or the shift of
the peak positions in the At-PtNPs spectrum as previously
elaborated (Mahmoud, 2012; Pandey and Mishra, 2014).

3.5. High resolution transmission electron microscopy

(HRTEM)

Providing essential information of nanoparticles such as shape
and size is usually achieved by using High Resolution Trans-
mission electron microscopy (HRTEM) (Hosny, 2021). It

was found that the average particle size of At-PtNPs approxi-
mately ranged between 1 and 3 nm as shown in Fig. 5 (a-e),
similar to other previous works (Jameel, 2020; Tahir, 2017),
which is a very small particle size that could result in outstand-
ing efficiency when these nanoparticles used in various applica-
tions. When the hydrodynamic size was measured via zetasizer

as previously done by (Cui, 2021), it was found to be 9.4 nm. It
has to be noticed that the hydrodynamic size is larger than the
HRTEM particle size as it includes the size of biomolecules

that are capping the nanoparticles (Dong, 2021; Ullah,
2017). The predominantly observed shape was spherical. The
crystalline structure of At-PtNPs was confirmed by utilizing

the Selected Area Electron Diffraction (SAED) technique
demonstrated in Fig. 5f. SAED results were concomitant with
the results obtained from XRD analysis indicating the (111),
(200), (220), and (311) planes of crystalline At-PtNPs. In



Fig. 8 Zeta potential of At-PtNPs.
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addition, crystalline At-PtNPs consisted of several crystalline
lattices with well-defined inter-planer spacing d = 0.21 nm

that is shown in (inset) Fig. 5e. Furthermore, a histogram size
distribution of At-PtNPs that is presented in Fig. 5g indicated
that approximately 40 % of these particles lie in the size range

of 1.5–2 nm. The obtained results were in line with other pre-
vious studies (Jameel et al., 2020; Nishanthi et al., 2019). Fur-
thermore, a comparison between the physical properties of At-

PtNPs and other green synthesized PtNPs is presented in
Table 1.

3.6. EDX analysis and mapping

Energy-dispersive X-ray spectroscopy (EDX) was used to con-
firm the phytoreduction of H2PtCl6�6H2O into At-PtNPs. This
was confirmed by strong signals of elemental platinum at

energy levels of 2.2, 8.2, 9.5, 10, 11.2, and 13 keV in At-
PtNPs as shown in Fig. 6a which are concomitant with the
results of other workers (Konishi, 2007). It has to be pointed

that the percentage of elemental platinum in At-PtNPs was
approximately 90 % indicating the outstanding efficiency of
A. halimus leaves extract in the phytosynthesis of At-PtNPs.

Carbon and oxygen were derived from A. halimus extract.
Also, carbon was derived from the carbon-coated copper grid.
In the current analysis, the atoms on the At-PtNPs were
excited by a specific wavelength electron beam. These, in turn,

emit X-rays at an energy level that is element-specific as previ-
ously indicated (Bharati and M., C. Byram, and V.R. Soma, ,
2018). As revealed in Fig. 6c, the yellow EDX mapping

revealed that the nanoparticles presented in Fig. 6b are com-
posed of platinum because the yellow color is centered over
At-PtNPs. Similar results were obtained by Yang et al.

(Yang, 2018). Furthermore, the red EDX mapping, as illus-
trated in Fig. 6d, indicated that the oxygen was equally dis-
tributed all over the map. Thus, confirming that the At-

PtNPs are of zero-valent state of platinum (Pt0), not platinum
oxide (PtO2) nanoparticles. Moreover, the white color in
Fig. 6e represented the carbon that was equally distributed

all over the map. Therefore, the obtained results designated
that the oxygen and carbon were resulting from the phytocon-
stituents of A. halimus extract. In other words, they were of

plant origin.

3.7. XPS analysis

In the current investigation, XPS analysis was used to deter-
mine the oxidation state of At-PtNPs as it was previously uti-
lized (Aygun, 2020; Zou, 2018). Pt, C, O, and N were found to
be the most prevalent elements in our findings as shown in the

survey in Fig. 7a. High resolution spectrum of C1s (Fig. 7b)
showed three main peaks with binding energies of 284.28,
286.08, and 287.98 eV resulting from hydrocarbon chains, a-
carbon, and single bond COOH groups present in the A. hal-
imus’s phytoconstituents as it was elaborated by Syed and
Ahmad (Syed and Ahmad, 2012). The peaks in Fig. 7c corre-

spond to chemically distinct O1s and with binding energies
at 531.38 eV and 532.48 eV that are attributed to the carbonyl
group and molecular water (Hussain, 2019). While Fig. 7d
demonstrated a peak at 399.78 eV which is related to N1s core

levels. The obtained high-resolution spectrum of Pt4f (Fig. 7e)
was characteristic for metallic Pt with Pt04f7/2 and Pt04f5/2 at
binding energies of 72.48 and 75.58 eV, respectively. The

obtained results were concomitant with other published ones
(Celebioglu, 2017; Benaissi, 2010). As a result, At-PtNPs were
concluded to be in the metallic Pt0 form (only the zero-valent

state is produced), rather than Pt2+ or Pt4+. The obtained



Fig. 9 Catalytic degradation of MB (a) 20 ppm (b) 40 ppm (c) 60 ppm (d) 100 ppm using100 lL of At-PtNPs (e) Catalytic degradation of

MB (60 ppm) using100 lL of A. halimus extract.
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result may be explained by the straightforward reduction of an

oxidized platinum species to its zero-valent form (the stable
state of Pt) by the action of phytoconstituents found in A. hal-
imus extract.
3.8. Zeta potential

The stability and surface charge of green synthesized At-PtNPs
were investigated using a zeta analyzer. This approach is com-



Table 2 A Comparison between the catalytic degradation efficiency of At-PtNPs and other nanoparticles that were reported in other

studies against MB.

Catalyst MB concentration (ppm) Degradation efficiency (%) Time (min) Ref.

AuNPs – 100 12 (Bogireddy et al., 2015)

AuNPs 50 100 10 (Hosny, 2021)

AuNPs 320 100 9 (Ganapuram, 2015)

AgNPs 16 100 30 (Edison, 2016)

AgNPs 320 100 20 (Bonnia, 2016)

PdNPs 240 100 2 (Kora and Rastogi, 2016)

PdNPs 25 100 5 (Subhan, 2020)

PdNPs 3 70 75 (Anand, 2016)

PtNPs 10 100 15 (Jameel, 2020)

At-PtNPs 25–75 100 Immediate This study

At-PtNPs 100 100 5 This study
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monly utilized to measure nanoparticles dispersion stability

(Tahir, 2017). At-PtNPs had a zeta potential value of � 25.4
mV (Fig. 8), confirming the high stability of At-PtNPs. As
the zeta potential value becomes more negative, nanoparticles

become more stable (Shah, 2014). At-PtNPs have a negative
zeta potential, denoting that they are capped with negatively
charged phytoconstituents that cause repulsion (dispersion)

among them and increase their stability. The obtained results
in the current study were lower than (Ullah, 2017) who men-
tioned that the zeta potential of PtNPs was � 41 mV and

higher than that of (Dong, 2021) who reported a zeta value
of � 7.33 mV.

3.9. Applications of green synthesized At-PtNPs

3.9.1. Catalytic degradation of MB

In the current study, the catalytic degradation of different con-

centrations (20, 40, 60 and, 100 ppm) MB was conducted using
100 lL of At-PtNPs in the presence of 100 lL of 0.058 M
NaBH4. The obtained results indicated that the characteristic

blue color of the three concentrations (20, 40, and 60 ppm)
of MB instantly disappeared after the addition of At-PtNPs
to confirm the complete degradation of MB as shown in

Fig. 9 (a-c). However, in the case of the highest concentration
(100 ppm), it took approximately five min for complete MB
degradation and color removal as shown in Fig. 9d and inset

of Fig. 9d, respectively. When control experiments were carried

out either without NaBH4 or At-PtNPs there was no color
change observed. Moreover, when the catalytic effect of A. hal-
imus extract was tested, it was figured out that the removal effi-

ciency was only 4% as shown in Fig. 9e indicating the essential
role of At-PtNPs in the catalytic degradation of MB. It has to
be noticed that the obtained results in this study were reckoned

to be superior to those reported by Dobrucka (Dobrucka,
2019) who reached a catalytic efficiency of approximately
37.5 % for MB solution with a concentration of just 40 ppm
using PtNPs phytosynthesized by the extract of Fumariae

herba after 15 min. As well as, our results are far away better
than the results attained by Jameel et al. (Jameel, 2020) who
achieved complete degradation of MB with a concentration

of only 10 ppm in 15 min using sonochemical synthesized
PtNPs. Therefore, it was concluded that the green synthesized
At-PtNPs in the current study unequivocally have a better per-

formance than other phyto or chemically synthesized PtNPs,
which could be accredited to the phytoconstituents of A. hal-
imus extract that resulted in the formation of highly stable

and efficient PtNPs. Therefore, it is considered to be a highly
potent and prominent catalyst that could be harnessed in the
catalytic degradation of other toxic dyes from wastewater. In

addition, a detailed comparison between At-PtNPs and other
nanocatalysts including different variables such as the dye con-
centration, the degradation efficiency, and time is provided in

Table 2. From Table 2, it can be concluded that the synthe-
sized At-PtNPs are highly efficient for the catalytic degrada-
tion of MB.

Five cycles of At-PtNPs utilization in the removal of MB

with a concentration of 60 ppm were carried out to test their
reusability. The obtained results indicated that the removal
efficiency remained 100% after three cycles of regeneration

(Fig. 10a, b, c). However, the efficiency started to diminish
slightly to 93% in the fourth cycle (Fig. 10d) and eventually
it reached 91.1% (Fig. 10e) after five cycles of reuse confirming

the great potentiality of At-PtNPs as a catalyst as shown in
Fig. 10f.

A suggested mechanism that is concomitant with previous
ones using other types of nanoparticles including AgNPs and

AuNPs (Atta, 2020) for the catalytic degradation of MB into
leuco MB is illustrated in Fig. 11. The reduction process occurs
as both MB and BH4

- ions are adsorbed on the surface of At-

PtNPs and an electron relaying from the BH4
- ions to the MB

molecules resulting in the catalytic degradation of MB into
leuco (El-Subruiti et al., 2019; Sallam et al., 2018). It has to

be noticed that the degradation of dimethylamino groups in
MB molecule by strong catalysts such as At-PtNPs facilitates
the removal of MB. In addition, when Liu et al. (Liu, 2014)

investigated the final products of MB molecules after its cat-
alytic degradation using Ion Chromatography (IC), they
observed that MB molecules were totally degraded into inor-
ganic compounds such as NH4

+, S2-, SO4
2-, NO3

–, CO2, and

H2O.

3.9.2. Antimicrobial study of At-PtNPs

The efficacy of green produced At-PtNPs at a concentration of
1 mg.L-1 as an antibacterial agent against gram-negative and



Fig. 10 Recycling of At-PtNPs against MB (60 ppm) (a) 1st cycle (b) 2nd cycle (c) 3rd cycle (d) 4th cycle (e) 5th cycle (f) degradation

percentage with recycling number.
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gram-positive bacteria was determined using the zone of inhi-
bition as shown in Fig. 12. The bacterial strains which were
used in the current study are Escherichia coli, and Klebsiella

pneumonia (gram-negative bacteria), and also gram-positive
bacteria such as Bacillus subtilis and Staphyllococcus aureus
(Mrsa). Our results showed that the inhibition zone was
17 mm for Klebsiella pneumonia and no growth was detected
at all in the case of Escherichia coli indicating that At-PtNPs

were highly efficient against Escherichia coli as it prevented
the growth of the bacteria. However, At-PtNPs did not show



Fig. 11 A proposed mechanism for the catalytic degradation of methylene blue (MB) into leuco MB onto At-PtNPs.

Fig. 12 Antibacterial effect of At-PtNPs against (a) Staphyllo-

cocus aureus (b) Bacillus subtilis (c) Escherichia coli (d) Klebsiella

pneumonia.
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any activity against gram-positive bacteria. As a result of the
current findings, At-PtNPs may have antibacterial characteris-
tics by changing the shape of the cell membrane and inhibiting
normal budding due to a loss of membrane integrity, as has

been demonstrated in earlier studies (Aygun, 2020; Pedone,
2017). At-PtNPs can result in increasing the formation of reac-
tive oxygen species (ROS), resulting in down-regulation of

DNA, oxidative stress, and finally apoptosis of bacterial cells
(Pedone, 2017). At-PtNPs exhibited considerable antibacterial
activity owing to their small size, uniform dispersion, and

spherical shape. Generally, nanoparticles with small particle
sizes often have a higher surface area and so are more effective
than those with larger particle sizes. The antibacterial activity
is usually related to the local activity of the material that elim-

inates or reduces bacteria’s growth, without general tissue tox-
icity (Hajipour, 2012). Various studies have shown that both
the physical and chemical properties including size, shape,

and surface-volume relation of nanoparticles are associated
with their antibacterial activities not only the surface charge,
as well as their method of synthesis (Allaker, 2010). Moreover,

it was previously revealed that negatively charged AgNPs can
attack the gram-negative bacteria by metal depletion as pro-
posed by many workers (Fayaz, 2010; Amro, 2000). As a con-

sequence, the acquired data revealed that the newly
synthesized At-PtNPs constitute a potential antibacterial that
has high efficacy against gram-negative bacteria with a high
concentration (2x108 CFU/mL). A comparison between the

antibacterial potency of At-PtNPs and other different
nanoparticles is provided in Table 3.

3.9.3. Antioxidant study

The production of by-products such as perilous and noxious
free radicals including reactive oxygen species (ROS) is gener-
ally related to common metabolic processes, which are deemed

to be quintessential for the survival and welfare of biotic enti-
ties including humans (Sen, 2010; Mittler, 2017). These free
radicals commonly result in oxidative stress and other physio-

logical problems (Hosny and Fawzy, 2021). DPPH has been
thought of as one of the most important and common free rad-
icals that can negatively affect human cells (Patil, 2019).

DPPH is identified as a stable free radical by virtue of the delo-
calization of the free electron over the molecule as a whole, so
that it is presumed to be not easily degradable, like the prepon-
derance of other free radicals (Kedare and Singh, 2011;
Thaipong, 2006). DPPH has long been used to test the free

radical scavenging capacity of antioxidants as it is an
uncharged free radical that can accept hydrogen or free elec-
trons and lead to the production of a stable diamagnetic mole-

cule (Nakkala et al., 2016; Mensor, 2001). A substantial and
efficient role against harmful free radicals including DPPH is
usually played by antioxidants such as nanomaterials including

metallic nanoparticles, metal oxides, graphene, and other
nanostructures (Bhakya, 2016; Shah, 2017). On mixing the
DPPH solution with a substance that can donate a hydrogen
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atom, in other words, it is working as an antioxidant, it causes
the formation of the reduced form confirmed by the loss of the
characteristic violet color (Sharma and Bhat, 2009) such as

gold, palladium, silver, platinum, and other metallic nanopar-
ticles which commonly play an essential role in eliminating
DPPH (Zayed, 2020; Lee, 2014; Singh and Dhaliwal, 2019).

In the current study, the scavenging % of DPPH increased
dramatically from 13.77% to approximately 72% when the
concentration of At-PtNPs increased from 12.5 to 50 mg/mL

as shown in Fig. 13 which is reckoned to be a promising and
a high percentage compared to most of the scavenging percent-
ages mentioned by other studies (Selvi, 2020; Ramachandiran
et al., 2021) that could be attributed to the biomolecules of A.

halimus extract that led to the formation of highly stable and
efficient PtNPs. In addition, the IC50 was figured out to be
36 mg/mL confirming the high antioxidant efficiency of At-

PtNPs. Concerning the efficacy of A. halimus extract, it
improved from 9.83% to 48.35% when the concentration of
this extract increased in the same manner as At-PtNPs. Vita-

min C, which was used as a positive control, achieved
14.45%, 31.8%, and 47.75% of DPPH scavenging at the con-
centrations of 12.5, 25, and 50 mg/mL (Fig. 13), in a respective
manner, which is lower than At-PtNPs. Therefore, the

obtained results confirmed the high antioxidant capacity of
both A. halimus extract and At-PtNPs against DPPH and their
promising application in the scavenging of other free radicals

in further work. A comparison among At-PtNPs and other
metallic nanoparticles in the scavenging efficiency of DPPH
is presented in Table 4.
4. Conclusion

The current work is the first to demonstrate a rapid, one-step,
cost-effective, and environmentally friendly production of

platinum nanoparticles (At-PtNPs) utilizing the aqueous
extract of A. halimus leaves. The phytosynthesis of At-PtNPs
using the investigated species’ aqueous extract was deemed

to be successful and efficient, as they were found stable for
more than three months and evidenced by the formation of
dark brown and spherical At-PtNPs with a zeta potential of
– 25.4 mV, very fine microscopic diameter ranging between 1

and 3 nm, and a surface plasmon peak at 295 nm. At-PtNPs
were confirmed to be an excellent catalyst since they were able
to catalytically degrade MB at three different concentrations in

no time, and at 100 ppm it took only 5 min. Against gram-
negative bacteria, At-PtNPs had strong antibacterial effect as
they were able to stop Klebsiella pneumonia from growing with

an inhibition zone of 17 mm and prevent the growth of Escher-
ichia coli at all. Moreover, they have been confirmed to be a
highly effective antioxidant agent with an IC50 value of
36 mg/mL. So, the current findings show that using an aqueous

extract of A. halimus to synthesize PtNPs is a straightforward
and effective way for producing a powerful nanomaterial that
could be efficiently employed in a variety of different applica-

tions. Additionally, it can be concluded that At-PtNPs synthe-
sis in the current study upholds many of the principles of green
chemistry such as less hazardous chemical syntheses, safer sol-

vents and auxiliaries, design for energy efficiency, and use of
renewable feedstocks.



Table 3 Comparison between the antimicrobial efficiency of At-PtNPs synthesized in the current study and other nanomaterials

mentioned in other studies.

Sample Concentration (mg.mL�1) Bacterial strain Zone of inhibition (mm) Ref.

AgNPs

0.0075

Escherichia coli 18.5 (Hernández-Morales, 2019)

Staphylococcus aureus 14.9

AgNPs

–

Escherichia coli 14

(Naaz, 2021)

Staphylococcus aureus 13

Pseudomonas aeruginosa 16

AuNPs 10 Staphylococcus aureus 24

(Bindhu and Umadevi, 2014)Pseudomonas aeruginosa 27.5

AuNPs 100 Escherichia coli 17.6 (Bakur, 2019)

Staphylococcus aureus 17

AuNPs

–

Bacillus subtilis 9

(Poojary et al., 2016)

Staphylococcus aureus 12

Escherichia coli 7

Pseudomonas aeruginosa 5

AgNPs Bacillus subtilis 10

Staphylococcus aureus 14

Escherichia coli 8

Pseudomonas aeruginosa 6

PtNPs 0.5

Escherichia coli 2

(Aygun, 2020)Staphylococcus aureus 25

Pseudomonas aeruginosa 25

PtNPs –

Pseudomonas aeruginosa 15

(Tahir, 2017)Bacillus subtilis 18

PtNPs

–

Staphylococcus aureus 10

(Nishanthi et al., 2019)

Pseudomonas aeruginosa 11

Bacillus subtilis Resistant

Klebsiella pneumonia 12

At-PtNPs 1 Escherichia coli No growth

(sensitive)

This studyKlebsiella pneumonia 17

Bacillus subtilis Resistant

Staphylococcus aureus Resistant

Table 4 Comparison between the antioxidant efficiency of At-

PtNPs synthesized in the current study and other metal

nanoparticles prepared in other studies.

Antioxidant Concentration

mg/mL

Scavenging

activity

Ref.

PdNPs 25 82.27 (Anju et al., 2020)

PtNPs 25 78.14

PtNPs 1000 59.37 (Selvi, 2020)

PtNPs 100 70 (Ramachandiran

et al., 2021)

AgNPs 50 89.5 (Sivasankar, 2018)

AgNPs 4 80 (Sreelekha, 2021)

AgNPs 250 85.9 (Kharat and

Mendhulkar, 2016)

AgNPs 500 62 (Niraimathi, 2013)

AuNPs 300 57.70 (Hosny and Fawzy,

2021)

AuNPs 120 84.64 (Veena, 2019)

AuNPs 300 70 (Manivasagan,

2015)

AuNPs 125 50 (Bakur, 2019)

At-PtNPs 50 72 This study
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