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Abstract Ionic Liquids (ILs) as a novel class of liquid solvent simultaneously carry the positive

characteristics of both molten salts and organic liquids. Remarkable positive properties of ILs have

such as low vapor pressure and excellent permittivity have encouraged the motivation of researchers

to use them in various applications over the last decade. Surface tension is an important physico-

chemical property of ILs, which its experimental-based measurement has been done by various

researchers. Despite great precision, some major shortcomings such as high cost and health-

related problems caused the researchers to develop mathematical models based on artificial intelli-

gence (AI) approach to predict surface tension theoretically. In this research, the surface tension of

two novel ILs (bis [(trifluoromethyl) sulfonyl] imide and 1,3-nonylimidazolium bis [(trifluo-

romethyl) sulfonyl] imide) were predicted using three predictive models. The available dataset con-

tains 45 input features, which is relatively high in dimension. We decided to use AdaBoost with

different base models, including Gaussian Process Regression (GPR), support vector regression

(SVR), and decision tree (DT). Also, for feature selection and hyper-parameter tuning, a genetic

algorithm (GA) search is used. The final R2-score for boosted DT, boosted GPR, and boosted

SVR is 0.849, 0.981, and 0.944, respectively. Also, with the MAPE metric, boosted GPR has an
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error rate of 1.73E-02, boosted SVR has an error rate of 2.35E-02, and it is 3.36E-02 for boosted

DT. So, the ADABOOST-GPR model was considered as the primary model for the research.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The emergence of paramount attentions towards the application of

eco-friendly materials in different industries, ILs have found their high

place thanks to their brilliant advantages compared to conventional

toxic solvents (Járvás et al., 2018; Wang et al., 2014). ILs belongs to

a group of chemical salts formed by an asymmetric organic cation

and a symmetric inorganic anion. Their great potential of liquefaction

at the temperatures near/below room temperature, makes them ideal as

a potent solvent for polar organic molecules, inorganic salts and tran-

sition metal catalyzed reactions (Fehér et al., 2012; Shojaeian and

Asadizadeh, 2020).

In current decades, ILs have been introduced as promising options

for disparate industrial-based applications including chemical process,

reaction engineering, metals recovery and membrane-based separation

owing to their indisputable positive points such as excellent permittiv-

ity, acceptable solubility and thermal stability (Zia ul Mustafa et al.,

2019; Shang et al., 2017; Kianfar and Mafi, 2021; Lal et al., 2021;

Mahandra et al., 2021). True recognition of physicochemical proper-

ties of ILs like melting point, vapor pressure and surface tension is

an mandatory process in the development of an industrial system.

Surface tension of an IL is a momentous factor in chemical indus-

tries due to its noteworthy impacts on the calculation of heat and mass

transfers for the accurate design/development of disparate processes

like gas absorption and distillation (Hashemkhani et al., 2015;

Shojaeian, 2018). Despite the great importance of experimental inves-

tigations for measuring ILs’ surface tension, their remarkable draw-

backs such as health problems and high process cost have motivated

the scientists to try harder to apply different mathematical/predictive

procedures to compute different properties of ILs (Esmaeili and

Hashemipour, 2021; Mjalli et al., 2014; Mirkhani et al., 2013). Apart

from the practical advantages, development precise mathematical

models may facilitate the researches on the theoretical interconnection

of ILs structures and physical properties (Gardas and Coutinho, 2008).

Machine learning models to uncover useful information from

experimental data are one of the most significant advancements that

have touched numerous scientific domains nowadays. This fact has

had an impact on the majority of experimental sciences. Ensemble

models are an important class of machine learning techniques. The

generalizations of boosting, bagging, random subspace, and stacking

Ensemble models are many ensemble kinds based on ensemble models’

characteristics of requiring less processing work and providing more

accuracy in certain applications. (Zhou, 2019; Dietterich, 2000;

Kadavi et al., 2018; Goodfellow et al., 2016). In this work, we applied

boosting models, especially Adaboost, on top of SVR, GPR, and DT

base models.

A decision tree regressor (DT) is a simple, understandable, and

effective method to many estimate issues. The decision tree algorithm’s

main premise is to divide a huge issue into several smaller sub-

problems (Divide-and-conquer), which may result in an easier-to-

understand answer (Xu et al., 2005; Song and Ying, 2015).

Support vector regressor (SVR) and Gaussian process regressor

(GPR) are two other base learners. The first is based on the concept

of locating a hyperplane that optimally separates inputs into different

zones. The second is a nonparametric, Bayesian regression method

that is making waves in the area of machine learning. The ability to

cope with small datasets and offer uncertainty metrics on predictions

are only two of the benefits of Gaussian process regression (An

et al., 1964; Wang et al., 2020; Wilson et al., 2011; Shi and Choi,

2011; Kecman, 2005; Moosaei et al., 2021).
2. Data Set

In this study, a massive dataset of 1042 data rows from 69

ionic liquids was used. At constant pressure, surface tension
and temperature are measured at intervals of [18.5, 70.3]
(mN/m) and [268.29, 532.4] (K) The inputs were temperature
and chemical structure, and the output was surface tension

(Mousavi et al., 2021).
3. Methodology

3.1. Base Models

Decision tree Regressor (Regression Tree) is one of weak pre-
dictors employed in this study and boosted using Adaboost.
Decision Tree gives a class of questions through a set of prop-

erties like ‘is greater’ or ‘is equal’ with the provided True or
False responses, another query will be met to respond. This
operation is repeated until no more inquiries are obtained.

The information is continually split into dual ingredients,
which allows the Decision Tree to be created. A randomness
metric like entropy has applied to assess the divisions for all
attributes (Mathuria, 2013; Sakar and Mammone, 1993).

Derived from statistical learning theory, SVR is a sophisti-
cated learning algorithm. For Vapnik, this method was pio-
neered (Vapnik, 1999). SVR has been trained to recognize

the dependency relationship between a collection of goals
t ¼ t1; t2; � � � ; tnf g specified on R and inputs

x ¼ x1; x2; � � � ; xnf g that xi 2 Rd, where n is count of instances
in the dataset. Linear regression is applicable to solve this

problem because the problem has been transformed into mul-
tidimensional feature. The following equation may be used to
illustrate this concept (Dargahi-Zarandi et al., 2020):

f xð Þ ¼ w:/ xð Þ þ b

In this example, the mapping function / xð Þ can turn an
input vector into something else. b and w represent the bias
and weight axes (Amar et al., 2020).

To calculate w and b, the so-called ‘‘regularized risk func-

tion” is used to incorporate the model’s complexity and related
experimental error into a regression-purpose optimization
problem. In other words, there is a problem in the system

(Keane et al., 2008):

minimize 1
2
kwk2 þ C� Pn

k¼1

n�k þ nþk
� �

s:t:ftk � ðw:/ðxkÞ þ bÞ � eþ nþk ðw:/ðxkÞ þ bÞ � tk

� eþ n�k n
�
k ; n

þ
k � 0; i 2 1; 2; � � � ; nf g
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Where
Pn

k¼1ðn�k þ nþk Þ stands for empirical error and kwk2
reflects function flatness. The inclusion of a penalty constant,
C, regulates model complexity and related empirical inaccu-

racy to some extent. Also, e is error tolerance; and nþk andn
�
k

are positive values that reflect upper and lower excess
deviations.

Lagrange multipliers convert the above-mentioned con-

strained optimization issue within a double carrier. The result-
ing Lagrangian has eliminated. The resolution phases have
already been detailed (Keane et al., 2008). The resultant
response is:

f xð Þ ¼ Pn
k¼1 ak � a�k

� �
K xk; xlð Þ þ b

Kðxk; xlÞ denotes the kernel function and ak and a�k shows

the Lagrange multipliers, then 0 � ak and a�k � C.

The other employed base model is Gaussian process regres-
sion (GPR). GPR does not require declaration of a fitting
function (Quinonero-Candela and Rasmussen, 2005; Jiang

et al., 2021).
y is demonstrated as fðxÞ for a set of n-dimensional

instances D ¼ xi; yið Þji ¼ 1; 2; � � � ; nf g, xi 2 Rd as input matrix
yi 2 R as output.

y ¼ fðxÞ
Fig. 1 Expected vs predicte

Table 1 Outputs.

Models MSE R
2

MAPE

AdaBoost-DT 11.38 0.849 3.36E-02

AdaBoost-GPR 3.05 0.981 1.73E-02

AdaBoost-SVR 4.24 0.944 2.35E-02
GP can be defined through f(x), as an implied function
defined as a collection of random variables:

fðxÞ � GPðmðxÞ;KÞ
In the above equation, K demonstrates any covariance

showed by kernels and their corresponding input amounts,
then m(x) is the mean operator (Wu et al., 2020).

3.2. Adaboost

By bringing together numerous base estimators, it is feasible to
develop an ensemble learner that outperforms an individual

learner in generality and accuracy. Freund et al. (Freund and
Schapire, 1997) proposed an ensemble strategy to develop
the performance of individual learners through updating the

weight of instances, then developed as the AdaBoost
algorithm.

This strategy, as the name indicates, adaptively improves
individual models, allowing them to tackle complex tasks. To

deal with difficult problems, there are two approaches: simple
models and advanced models. Further, simple models offer
great generalization capabilities because of the simple struc-

ture. Despite their simplicity in real-world challenges, they
are unable of tackling complicated problems owing to the sub-
stantial bias inherent in their structure.

Complicated models are more subject to be over fitted, and
their application is more difficult in practice due to the prob-
lems in implementing them (Buitinck et al., 2013). These prob-

lems can be addressed using the AdaBoost strategy. Weak
learner model is utilized as a foundation model in this strategy,
and then other models are gradually combined to produce an
d (Boosted DT Model).



Fig. 2 Expected vs predicted (Boosted GPR Model).

Fig. 3 Expected vs predicted (Boosted SVR Model).
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strong system that can deal with complicated scenarios consis-
tently and consistently (Lemaı̂tre et al., 2017).

4. Results

The above mentioned models were implemented and tuned to
their hyper-parameters using genetic algorithm (GA). GA also
applied for selection of features in order to gain better accu-
racy and generality. Then three metrics used to evaluate final
models.

Without a doubt, R2 is popular scale to evaluate the esti-
mated outcome proficiency. That shows the efficiency of the
projected discoverie’s patterns which is correlated to the
observed data’s tendencies (Gouda et al., 2019).



Fig. 4 Tendency of predicted surface tension – train data.

Fig. 5 Tendency of predicted surface tension – test data.
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Fig. 6 Trends of Temperature (1,3-pentylimidazolium bis[(trifluoromethyl)sulfonyl]imide).
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Fig. 7 Trends of Temperature (1,3-nonylimidazolium bis[(trifluoromethyl)sulfonyl]imide).
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R2 ¼ 1�
P

yi � xið Þ2
P

xi � x
�
i

� �2

MAPE as a common metrics, because of the independence.

MAPE ¼ 1

n

Xn

i¼1

j xi � yi
xi

j

yi and xi are predicted and expected values.
Table 1 shows the final findings of the models. Figs. 1, 2,

and 3 compare predicted and estimated values to illustrate
the performance of AdaBoost-DT, AdaBoost-GPR and
AdaBoost-SVR predictive models. Blue points in these graphs

represent expected values in a training data set, while red
points represent test data points. Comparison of outcomes cor-
roborates that AdaBoost-GPR mathematical model demon-
strates superior precision and generality owing to having

higher R2 and lower MAPE.
Investigation of the convergence between expected and pre-

dicted values is a useful way to evaluate the accuracy of model

outcomes. Figs. 4 and 5 aims to comparatively illustrate the
trend plot of the estimated surface tension via AdaBoost-
GPR mathematical model in both modes (train and test data).

As illustrated in the Figures, the presence of great convergence
among the expected and estimated amounts of surface tension
proves the validity of AdaBoost-GPR mathematical model for

the mathematical estimation of the ILs’ surface tension.
The influence of temperature as a significant operational

parameter on the surface tension of 1,3-pentylimidazolium
bis [(trifluoromethyl)sulfonyl] imide and 1,3-

nonylimidazolium bis [(trifluoromethyl) sulfonyl] imide ILs
are presented in Figs. 6 and 7. As expected, increment in tem-
perature significantly reduces the intermolecular forces. There-

fore, increase in temperature significantly facilitates the
molecular movement of liquid, which results in declining the
surface tension.

5. Conclusion

Investigations about the interfacial parameters of ILs (i.e., surface ten-

sion) are significantly increasing. Surface tension is a significant

parameter of any liquid–gas interface, which its experimental measure-

ment has been recently done by various researchers. Despite

undoubted potential of experimental investigations in the measure-

ment of surface tension, their effortful, expensive and prohibitive nat-

ure have motivated the scientists to precisely predict the ILs’ properties

via a dependable technique based on artificial intelligence. In this

Study, we choose to use AdaBoost with various simple models includ-

ing SVR, GPR, and DT. A genetic algorithm (GA) search is also used

for feature selection and hyper-parameter tuning. The final R2-scores

for boosted DT, GPR, and SVR are 0.849, 0.981, and 0.944, respec-

tively. Accordingly, the ADABOOST-GPR is selected as the primary

model for the study. MSE and MAPE error rates for this model are

also 3.05 and 1.73E-02 that are better than two other models.
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Application of the Eötvos and Guggenheim empirical rules for

predicting the density and surface tension of ionic liquids

analogues. Thermochim Acta 575, 40–44.

Moosaei, H., Ketabchi, S., Razzaghi, M., Tanveer, M., 2021.

Generalized twin support vector machines. Neural Process. Lett.

53, 1545–1564.

Mousavi, S.-P., Atashrouz, S., Amar, M.N., Hadavimoghaddam, F.,

Mohammadi, M.-R., Hemmati-Sarapardeh, A., Mohaddespour,

A., 2021. Modeling surface tension of ionic liquids by chemical

structure-intelligence based models. J. Mol. Liq. 342, 116961.

Quinonero-Candela, J., Rasmussen, C.E., 2005. A unifying view of

sparse approximate Gaussian process regression, The. Journal of

Machine Learning Research 6, 1939–1959.

Sakar, A., Mammone, R.J., 1993. Growing and pruning neural tree

networks. IEEE Trans. Comput. 42, 291–299.
Shang, D., Liu, X., Bai, L., Zeng, S., Xu, Q., Gao, H., Zhang, X.,

2017. Ionic liquids in gas separation processing, Current Opinion in

Green and Sustainable. Chemistry 5, 74–81.

Shi, J.Q., Choi, T., 2011. Gaussian process regression analysis for

functional data. CRC Press.

Shojaeian, A., 2018. New experimental and modeling based on the N-

Wilson-NRF equation for surface tension of aqueous alkanolamine

binary mixtures. J. Mol. Liq. 254, 26–33.

Shojaeian, A., Asadizadeh, M., 2020. Prediction of surface tension of

the binary mixtures containing ionic liquid using heuristic

approaches; an input parameters investigation. J. Mol. Liq. 298,

111976.

Song, Y.-Y., Ying, L., 2015. Decision tree methods: applications for

classification and prediction. Shanghai archives of psychiatry 27,

130.

Vapnik, V., 1999. The nature of statistical learning theory. Springer

science & business media.

Wang, X., Chi, Y., Mu, T., 2014. A review on the transport properties

of ionic liquids. J. Mol. Liq. 193, 262–266.

Wang, L., Zheng, C., Zhou, W., Zhou, W.-X., 2020. A new principle

for tuning-free Huber regression. Statistica Sinica.

Wilson, A.G., Knowles, D.A., Ghahramani, Z., 2011. Gaussian

process regression networks, arXiv preprint arXiv:1110.4411.

Wu, C., Khan, Z., Ioannidis, S., Dy, J.G., 2020. Deep Kernel Learning

for Clustering. In: Proceedings of the 2020 SIAM International

Conference on Data Mining, pp. 640–648.

Xu, M., Watanachaturaporn, P., Varshney, P.K., Arora, M.K., 2005.

Decision tree regression for soft classification of remote sensing

data. Remote Sens. Environ. 97, 322–336.

Zhou, Z.-H., 2019. Ensemble methods: foundations and algorithms.

Chapman and Hall/CRC.

http://refhub.elsevier.com/S1878-5352(22)00544-5/h0100
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0100
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0100
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0105
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0105
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0105
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0105
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0110
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0110
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0110
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0115
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0115
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0115
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0120
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0120
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0120
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0125
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0125
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0125
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0125
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0130
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0130
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0130
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0135
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0135
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0135
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0135
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0140
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0140
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0140
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0145
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0145
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0150
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0150
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0150
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0155
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0155
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0160
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0160
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0160
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0165
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0165
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0165
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0170
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0170
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0170
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0175
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0175
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0180
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0180
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0185
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0185
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0195
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0195
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0195
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0200
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0200
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0200
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0205
http://refhub.elsevier.com/S1878-5352(22)00544-5/h0205

	Novel and accurate mathematical simulation of various models for accurate prediction of surface tension parameters through ionic liquids
	1 Introduction
	2 Data Set
	3 Methodology
	3.1 Base Models
	3.2 Adaboost

	4 Results
	5 Conclusion
	Acknowledgement
	References


