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A B S T R A C T

The magnetic FeNi-biochar (FeNi-BC) is prepared for butyl xanthate (BX) and Cr(Ⅵ) wastewater purification, 
which occurs via the adsorption and activation peroxodisulfate (PDS) degradation. The physical and chemical 
properties of FeNi-BC are analyzed by characterization technology, which is loaded on an FeNi alloy. According 
to Langmuir model calculation, the BX and Cr(Ⅵ) adsorption capacities of FeNi-BC are 366.21 and 29.56 mg/g, 
respectively. Adsorption mechanism analysis demonstrates that the functional groups on the surface of FeNi-BC 
contribute to BX and Cr(Ⅵ) removal. FeNi-BC can also be used for activating peroxysulphate (PDS) to remove 
BX and Cr(Ⅵ) with 100% and 97% removal, respectively. According to degradation mechanism analysis, the 
generated reactive oxygen species, such as SO4

•– and 1O2 can transform BX into inorganic molecules. Cr(Ⅵ) is 
reduced to Cr(Ⅲ) by Fe(III)/Fe(II) and Ni(III)/Ni(II) cycles based on electron donors. The formation of FeNi 
on FeNi-BC changes the electronic structure, improving electron transfer ability and achieving excellent PDS 
activation performance for FeNi-BC. 
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1. Introduction

As a country with numerous mining operations, China annually 
discharges approximately 200 million tons of mining wastewater 
[1]. Butyl xanthate (BX), a common flotation reagent, is malodorous 
and moderately toxic [2]. The direct discharge of mining wastewater 
containing BX would deteriorate water quality, posing a severe threat 
to the ecosystem and human health [3]. Ultimately, it impairs liver and 
kidney functions as well as the hematopoietic systems of both humans 
and animals [4]. Owing to the poor, complex, and fine ore resources 
in China, BX consumption has been increasing annually, leading to 
increasingly severe environmental pollution [5]. Cr(VI) is a toxic and 
dangerous heavy metal, which also exists in mining wastewater [6,7]. 
If mining wastewater containing BX or Cr(VI) is directly discharged into 
rivers and lakes without pretreatment, it can cause extreme harm to the 
ecological environment [8,9]. Hence, effectively solving this pollution 
issue is critical.

Recently, advanced oxidation processes (AOPs) and adsorption 
have been widely utilized for the efficient elimination of organic 
contaminants and heavy metals [10]. Reactive oxygen species generated 
from activating oxidants completely mineralize contaminants [11]. The 
persulfate-based advanced oxidation process is one of the AOPs [12]. 
The persulfate-based advanced oxidation process is the activation of 
peroxymonosulfate (PMS) or peroxydisulphate (PDS) through a physical 
or chemical activation method under external conditions by energy 
and electron transfer pathways [13]. This process generates SO4•– and 
HO• radicals by breaking the O-O chemical bond of PMS or PDS [14]. 
The SO4•– and HO• radicals can attack the pollutants and degrade them 
[15]. Besides, it can also achieve degradation by singlet oxygen (1O2) 

or non-radical pathways [16]. Compared with PMS, the molecular 
structure of PDS is symmetrical, with strong chemical stability in the 
reaction system [17]. Additionally, S2O8

2– has greater redox potential 
than HSO5

–. Therefore, PDS is widely used in wastewater treatment 
[18]. However, the PDS-based advanced oxidation process requires a 
catalyst for generating reactive oxygen species (ROSs) owing to the 
weak oxidizing ability of PDS [19]. The catalyst should have excellent 
adsorption performance to enable the removal of pollutants. Therefore, 
it is necessary to prepare a catalyst that can effectively activate PDS for 
BX and Cr(VI) removal.

Biochar (BC) is a product of biomass pyrolysis. BC possesses an 
abundantly porous carbon structure and large specific surface area. 
Besides, BC has rich oxygen-containing functional groups and carbon 
defect sites [20]. Owing to its excellent adsorption capacity and 
redox activity for storing and transferring electrons, BC has garnered 
extensive attention in the environmental field [21]. Besides, the carbon 
defect structure and surface functional groups (such as C=O, -COOH, 
etc.) of BC can provide the activated active sites needed for activating 
PDS [22,23]. This reaction can break the O-O bond in PDS to produce 
ROSs that can attack and degrade the pollutants [24]. The surface 
functional groups of BC can adsorb and then reduce Cr(VI). However, 
the activation PDS performance and adsorption performance of BC are 
poor, which can be improved by the modified method.

Modification methods improving BC’s activation performance 
towards PDS have become a focus of research [25]. High-temperature 
carbonization is beneficial for producing more surface defects, 
promoting electron transfer, and generating more ROSs [26]. However, 
the high-temperature condition requires high energy consumption, 
which is not favorable for actual application [27]. The metal ions 
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(such as Fe, Co, Ni, etc.) inherently have the property of activating 
PDS [28,29]. However, this process has the problem of low utilization 
of metal ions during activation PDS process [30]. Moreover, metal 
ions are prone to causing secondary pollution. To solve this limitation, 
researchers have tried to modify BC using metal compounds. Loading or 
doping metal ions onto BC can effectively overcome this problem [31]. 
Meanwhile, the addition of metal ions can modify the structure of BC 
and increase active sites to activate PDS [32,33]. Metal modification 
enables BC to possess magnetism, facilitating the separation of BC after 
use. Besides, the addition of iron-compounds can cause the reduction 
of Cr(VI), realizing Cr(VI) removal. This modification process also 
improves the BX and Cr(VI) adsorption performance of BC by increasing 
specific surface area and surface functional groups [32].

The multi-metal-modified BCs are conspicuously superior to the 
single-metal. Since several metals exist in synergy, it encompasses 
electron transfer and circulation among metals, contributing to the 
activation of PDS. Therefore, the multi-metals can synergistically 
enhance the activation performance of PDS. In this study, orange peels 
were used to prepare magnetic FeNi-BC, using Fe(NO3)3, ZnCl2, and 
Ni(NO3)3 as modification agents for BX and Cr(VI) removal. ZnCl2 was 
used as the chemical agent to improve BC’s pore structure. FeNi alloy is 
generated on BC by the decomposition of Fe(NO3)3 and Ni(NO3)3, which 
is used to activate PDS.

2. Materials and Methods

2.1. Material

The orange peels were obtained from the local market. Zinc chloride 
was purchased from Tianjin Hongyan Reagent Co., Ltd. Ferric nitrate, 
nickel nitrate, and citric acid were purchased from Tianjin Comeo 
Chemical Reagents Co, Ltd. The K2Cr2O7 was ordered from Aladdin 
Chemistry Reagent Co. Ltd.

2.2. Preparation FeNi-BC

The orange peel (12 g) was mixed with 18 g of ZnCl2, 6 g of Fe(NO3)3, 
and 4 g of Ni(NO3)2 in 150 mL of distilled water. Then, the mixture was 

dried in the electric oven at 80°C for 12 h. The dried sample (10 g) was 
placed in the resistance furnace and heated at 900°C for 60 mins in an 
N2 atmosphere with an N2 flow rate of 150 mL/min [34]. After heating, 
the residue in the resistance furnace was FeNi-BC. The characterization 
of the sample has been detailed in the supplementary material.

2.3. Adsorption and activation PDS degradation experiment

The method of the adsorption experiment and activation PDS 
degradation experiment has been detailed in the supplementary 
material.

3. Results and Discussion

3.1. Characterization of FeNi-BC

Figure 1(a) shows the X-ray Diffraction (XRD) analysis of FeNi-BC. 
FeNi-BC has several characteristic peaks of FeNi with high crystallinity, 
indicating that FeNi is generated on FeNi-BC by Ni(NO3)3 and Fe(NO3)3 
decomposition (JCPDS PDF#47-1405). FeNi can effectively activate the 
PDS to produce the SO4

–·. The SO4
–· can also react with hydroxyl ions in 

solution to form HO·, which can oxidize most organic matter and even 
some inorganic matter, achieving pollutant removal. The existence of 
the FeNi alloy enables FeNi-BC to exhibit magnetism, contributing to 
BX and Cr(VI) removal under the condition of an applied magnetic field 
[35]. 

Figure 1(b-c) depict the nitrogen adsorption curve and pore size 
distribution of FeNi-BC. As shown in Figure 1(b), when P/P0 is less 
than 0.1, the nitrogen adsorption capacity of FeNi-BC rapidly increases, 
indicating that FeNi-BC exists in the micropores. As the P/P0 ratio 
continuously increases, the nitrogen adsorption curve continues to 
increase, with the surface area of 962.40 m2/g. As Figure 1(c) displays, 
it can be concluded that FeNi-BC has a large nitrogen adsorption 
capacity when the pore size of FeNi-BC is around 1 nm. 

Figure 1(d) shows the Raman spectra analysis of the FeNi-BC and 
original BC. The disordered (Csp3) and graphitic (Csp2) structures 
appear at around 1350 and 1600 cm–1, corresponding to the D and G 
bands, respectively. The ID/IG ratio of the FeNi-BC was 0.76, which is 

Figure 1. (a) XRD analysis of, (b-c) nitrogen adsorption curve and pore size distribution, and (d) Raman spectra analysis 
of the FeNi-BC.

(a) (b)
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larger than that of the original biochar (0.61). This result proves that 
FeNi-BC has a large disordered degree after modification, indicating 
the formation of a disordered structure in FeNi-BC [36]. This result also 
demonstrated that FeNi-BC forms a defect structure, which contributes 
to BX and Cr(Ⅵ) removal in the FeNi-BC/PDS system. 

Figure 2(a-c) show the scanning electron microscope (SEM) 
micrographs and energy dispersive spectroscopy (EDS) images of 
FeNi-BC. As Figure 2(a-b) shown, the FeNi-BC exhibits a developed 
pore structure, which is consistent with the nitrogen adsorption 
curve analysis. This result also indicated that FeNi-BC can provide a 
significant number of adsorption sites for BX and Cr(Ⅵ) removal. FeNi-
BC exhibited grayish white particles, which were analyzed using an 
EDS image. As shown in Figure 2(c), FeNi-BC has Ni and Fe elements. It 
was concluded that the grayish white particle was FeNi combined with 
XRD analysis.

3.2. Adsorption BX and Cr(Ⅵ)  

3.2.1. Comparison of BX and Cr(Ⅵ) adsorption amount of FeNi-BC and 
original biochar

The BX and Cr(Ⅵ) adsorption amount of the FeNi-BC and original 
biochar (BC) have been shown in Figure S1. As Figure S1 shows, the BX 
and Cr(Ⅵ) adsorption amount of FeNi-BC after modification increased 
compared to BC. The reason is that FeNi-BC exhibits a developed pore 
structure and rich defect structure, contributing to BX and Cr(Ⅵ) 
removal.

3.2.2. Influence of adsorption parameter

3.2.2.1. Influence of pH

The effect of initial pH on BX and Cr(Ⅵ) adsorption was analyzed 
(Figure 3). As Figure 3(a) shows, the BX adsorption amount generally 

decreased at pH=2-7. It can be explained that electrostatic repulsion 
occurs between BX and FeNi-BC as the pH increases due to the presence 
of large amounts of OH– in the aqueous solution. BX is a kind of anionic 
organic compound. Therefore, the OH– competes with C4H9OCSS–, which 
hinders the interaction between C4H9OCSS– and FeNi-BC, resulting 
in low BX adsorption capacity. The electrostatic repulsion between 
C4H9OCSS– and FeNi-BC was weak at a low pH value. Therefore, FeNi-
BC exhibited large BX adsorption capacity at pH 2. The zero potential 
charge of FeNi-BC was about pHpzc=4.2 (Figure S2). The surface of the 
FeNi-BC was positively charged at pH <4.2, which is favorable for BX 
adsorption [37]. The FeNi-BC potential was negatively charged at pH 
>4.2. Therefore, BX adsorption amount generally decreases at pH > 4.2. 

Cr(VI) exists in several forms at different pH values. At a pH value 
between 3-7, Cr(VI) can form the HCrO4

– or Cr2O7
2–. While Cr(VI) is 

in the form of the CrO4
2– at pH > 6.8. Figure 3(b) shows that FeNi-

BC exhibits large Cr(VI) adsorption capacity at low pH. The aqueous 
solution has a huge amount of hydrogen ions, which make FeNi-
BC have a positive charge. Thus, Cr(VI) (HCrO4

– or Cr2O7
2–) can be 

adsorbed on FeNi-BC owe to electrostatic adsorption. The potential 
of the FeNi-BC is negatively charged at pH>4.2. With an increase 
in pH value, hydrogen ion content generally decreases. Therefore, 
Cr(VI) adsorption amount generally decreases at pH =3-6 owing to 
electrostatic repulsion.

3.2.2.2. Influence of adsorption time

The adsorption rate is an important indicator that reflects the 
adsorption performance of adsorbent. While adsorption capacity is 
directly related to the contact time between the adsorbent and pollutant. 
As shown in Figure 4(a), with increasing in adsorption time, the BX and 
Cr(VI) adsorption amount are general increase. BX adsorption on FeNi-
BC is taken as an example to analyze the adsorption process. As Figure 
4(a) shown, BX adsorption on FeNi-BC is in a rapid growth period from 

Figure 2. (a-b) SEM images and (c) EDS images of FeNi-BC. The green circle delineates the specific range of the energy spectrum under consideration. The result is in the figure 2c.

Figure 3. The influence of the initial pH on (a) BX and (b) Cr(Ⅵ) adsorption (BX and Cr(VI)concentration: 200 mg/L, FeNi-BC dosage:0.1g).

(a)

(a) (b) (c)
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0 to 100 mins. The reason is that FeNi-BC has many adsorption sites, 
and the adsorption solution contains a high BX concentration, resulting 
in a fast adsorption rate. The BX adsorption on FeNi-BC is in a slow 
growth period from 160 to 400 mins. The reason is that most of the 
adsorption sites are occupied. Besides, BX concentration in the solution 
is low compared to the initial adsorption stage. After adsorption for 400 
mins, BX adsorption on FeNi-BC reaches equilibrium.

3.2.2.3. Influence of initial concentration

The pollution concentration in wastewater is also an important 
indicator for estimating pollution removal in the actual application 
process. As Figures 4(b-c) show, the BX and Cr(VI) adsorption amount 
gradually increased with the increase in initial concentration. It can 
be explained that the BX and Cr(VI) amount adsorbed per unit mass 
increased as initial BX and Cr(VI) concentration increased. It achieved 
a high driving force, which increased the collision probability between 
the sorbent and adsorbent [38]. Cr(VI) adsorption was taken as an 
example to analyze the influence of initial concentration on the 
adsorption process. When Cr(VI) concentration increases from 300 to 
400 mg/L, the increase of Cr(VI) adsorption amount is slow owe to lack 
of adsorption sits. This result also indicates that the adsorption binding 
sites gradually reach saturation.

3.2.2.4. Influence of impurity ions

The actual wastewater usually contains a considerable amount of 
coexisting ions. These coexisting ions can influence the adsorption 
performance of FeNi-BC for BX and Cr(VI). The influence of SO4

2–, 
Cl–, Cd2+, and Pb2+ on BX and Cr(VI) adsorption was investigated. As 
shown in Figure S3, the coexisting ions hardly hinder BX and Cr(VI) 
adsorption with little decrease in removal. The strong interaction of 
hard oxygen atoms of FeNi-BC with the hard Cr(VI) cations shows high 
selectivity. The soft Pb(II) and Cd(II) cations have low interfering effect, 
based on the Hard-Soft interaction theory [39]. It is also hypothesized 
that coexisting ions might impede the combination of FeNi-BC with 
C4H9OCSS– and HCrO4

–/Cr2O7
2–, decreasing the probability of effective 

collisions between FeNi-BC and C4H9OCSS–/HCrO4
–/Cr2O7

2–. Besides, 
the coexisting ions can bind with the adsorption sites of FeNi-BC 
occupying those originally belonging to BX and Cr(VI). Thus, BX and 
Cr(VI) removal is only slightly decreased.

3.2.3. Adsorption kinetics study

Adsorption kinetics mainly investigate the rate of adsorption of 
the pollutant. The study of adsorption kinetics can explore the factors 
influencing the adsorption rate and the possible mechanisms in the 
process [40]. 

BX and Cr(VI) adsorption processes are analyzed using Pseudo-first/
second order and Intraparticle diffusion models [41]. Table 1 presents 
fitting results of the three kinds of the adsorption kinetic models. As 
Table 1 shows, the correlation coefficient R2 of the pseudo-second order 
models was greater than that of the pseudo-first order and intraparticle 
diffusion models. Consequently, the BX and Cr(VI) adsorption processes 

complied with the pseudo-second-order kinetic models. The qe,cal 
values of the BX and Cr(VI) are close to experimental values, which 
also indicates that the adsorption kinetics process of the BX and Cr(VI) 
can be analyzed by the pseudo-second order model. BX and Cr(VI) 
adsorption data fitting the pseudo-second-order equation have been 
shown in Figure 5(a-b).

The adsorption process usually consists of four steps: bulk diffusion 
process, film diffusion process, interarticular diffusion process, and 
solute sorption process [42]. To further investigate the BX and Cr(VI) 
adsorption process, the BX and Cr(VI) adsorption data are fitted using 
the intraparticle diffusion model. As shown in Figure S4, the entire 
adsorption process was divided into three parts. The 0-60-min period 
was a rapid adsorption process, characterized by the film diffusion 
stage. The BX and Cr(VI) mainly combined with active groups on the 
outer surface of FeNi-BC. The adsorption rate decreased from 100 to 
280 mins. At the moment, the BX and Cr(VI) entered the interior of 
the FeNi-BC and combined with the groups in the pores of the FeNi-
BC. The interarticular diffusion was dominant in this period. After 400 
mins, the adsorption rate and desorption rate were almost the same, 
indicating that BX and Cr(VI) adsorption on FeNi-BC reach adsorption 
equilibrium. Since the entire BX and Cr(VI) adsorption process was not 
a straight line passing through the origin (Figure S4). It can be guessed 
that both the film diffusion process and the interarticular diffusion 
process simultaneously exist during the BX and Cr(VI) adsorption 
process.

3.2.4. Adsorption isotherms study

BX and Cr(VI) adsorption on FeNi-BC are investigated by Langmuir, 
Freundlich, and Dubinin-Radushkevish (D-R) models [43]. The 
correlation between the adsorption isotherm model and BX/Cr(VI) 
adsorption data were analyzed to predict the adsorption capacity of 
FeNi-BC for BX and Cr(VI). Figure 5(c-d) show that the BX and Cr(VI) 
adsorption data fit the adsorption isotherm model. Under different 
initial concentrations, the adsorption amounts of BX and Cr(VI) both 

(a) (b) (c)

Figure 4. (a) Influence of adsorption time, (b-c) initial concentration (a=BX and Cr(VI) concentration: 100 mg/L, b-c= adsorption time: 640 
mins, FeNi-BC dosage: 0.1g, pH:5).

Table 1. Fitting result of adsorption data fitting adsorption kinetics models.

Kinetics models Models parameter Fitting result

BX Cr(VI)

Pseudo-first order qe.cal (mg/g) 80.37 14.71

K1 (1/min) 0.0225 0.0077

R2 0.9617 0.9486

qe.cal (mg/L) 91.16 18.83

Pseudo-second order K2 (g/mg min) 0.3956 7.55

R2 0.9989 0.9909

C 25.26 27.20

Intraparticle diffusion K32 (mg/g min1/2) 3.034 3.2707

R2 0.8410 0.9628

https://dx.doi.org/10.25259/AJC_55_2025
https://dx.doi.org/10.25259/AJC_55_2025
https://dx.doi.org/10.25259/AJC_55_2025
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increase as the initial concentration increases. The main reason is that 
the concentration difference between the surface of the FeNi-BC and the 
adsorption solution becomes large as the initial concentration increases. 
However, with an increase in the BX and Cr(VI) adsorption amount, 
the adsorption sites of the FeNi-BC becomes limited until adsorption 
saturation. The fitting result has been presented in  Table 2. As Table 2 
shows, the R2 values of the Langmuir and D-R model were larger than 
that of the Freundlich model for BX and Cr(VI) adsorption on FeNi-BC. 
This result proves that BX and Cr(VI) adsorption process can be well 

explained by the Langmuir model, confirming the monolayer adsorption 
of BX and Cr(VI) on FeNi-BC. According to Langmuir analysis, the 
adsorption amounts of BX and Cr(VI) were 366.21 and 29.56 mg/g, 
respectively. The E values of the BX and Cr(VI) calculated from the D-R 
model were 14.26 and 12.94 kJ/mol, respectively. Furthermore, the E 
value is about 8-16 kJ/mol in the ion exchange or chemical reactions 
[44,45].

3.2.5. BX and Cr(Ⅵ) adsorption mechanism

To investigate the adsorption mechanism of BX and Cr(VI), FT-
IR spectra of FeNi-BC before and after BX/Cr(VI) adsorption were 
analyzed. As Figure 6(a) shows, the -CH bending vibration appeared 
at 876 cm–1 [46]. However, the corresponding peak intensity of the 
-CH group changed after BX/Cr(VI) adsorption. This result proves that 
the π-π interaction contributes to BX/Cr(VI) adsorption. The stretching 
vibration of O-H at 3424 cm–1 is migrated to 3336 and 3340 cm–1 after 
BX/Cr(VI) adsorption, respectively. It can be explained by the formation 
of hydrogen bonding between NiFe-BC and BX/Cr(VI) in the adsorption 
process [47]. 

Figures 6(b-d) show C1s spectra analysis of NiFe-BC before and after 
BX/Cr(VI) adsorption. The C-O and C=O bond binding energies changed 
after BX adsorption. The C-O and C=O peak areas decreased by 2.08% 
and 2.11 % after BX adsorption, respectively. The peak area of the 
C-O group decreases from 26.07% to 24.06 % after Cr(VI) adsorption. 
However, the peak area of the C=O group increased by 1.24%. The 
reason is that the C-O group oxidized into the C=O group owing to 
the electron-donating group of the C-O band in the Cr(VI) adsorption 
process. Therefore, Cr(Ⅲ) is generated by the reduction reaction of the 
Cr(VI) [48]. 

Figure 5. BX and Cr(VI) adsorption data fitting the (a-b) Pseudo-second order, and (c-d) adsorption isotherm model (a-b=BX and Cr(VI) 
concentration:100 mg/L, b-c= adsorption time: 8 h, FeNi-BC dosage: 0.1 g, pH: 5).

Table 2. The calculated results of adsorption isotherm models.
Isotherm models Models parameter Fitting result

BX Cr(VI)

Freundlich R2 0.9044 0.8963

n/1 0.5679 0.4623

KF ((mg/g).(L/mg)1/n) 7.1988 1.5015

R2 0.9490 0.9656

qm (mg/g) 366.21 29.56

Langmuir KL (L/mg) 0.00352 0.00835

R2 0.9866 0.9954

D-R QD-R 285.65 25.46

β 0.0025 0.003

E(kJ/mol) 14.26 12.94

D-R: Dubinin-Radushkevich.

(a) (b)

(c) (d)
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Figure 6. (a-b) FT-IR spectra of FeNi-BC before and after BX/Cr(VI) adsorption, (c-d) C1s spectra analysis of NiFe-BC before and after BX/Cr(VI).

3.2.6. Reusability of the FeNi-BC

The recyclability of BX/Cr(VI) adsorption on FeNi-BC was 
investigated after regeneration for actual application (Figure S5). 
As shown in Figure S5, with an increase in the cycle time, the BX/
Cr(VI) adsorption amount generally decreased. The reason is that some 
adsorption sites of NiFe-BC were destroyed after regeneration. Besides, 
some BX/Cr(VI) binding with adsorption sites cannot be desorbed.

3.3. Activation PDS degradation BX and Cr(Ⅵ)

3.3.1. Effect of initial BX and Cr(Ⅵ) concentration 

The BX and Cr(Ⅵ) degradation performances at different initial 
concentrations were analyzed (Figures 7a-b). Besides, BX and Cr(Ⅵ) 
degradation data were fitted using the first-order kinetic model, and 
the relevant kinetic parameters have been shown in Figures S6(a-b). As 
Figures 7(a-b) show, both degradation removal and apparent reaction 
rate of the BX and Cr(Ⅵ) gradually decrease with an increase in BX 
and Cr(Ⅵ) initial concentration. For instance, when the BX initial 
concentration is 60 mg/L, the degradation removal of BX reaches 
100% after 120 mins. The BX is completely degraded with the apparent 
reaction rate of 0.0309 min–1. When the BX initial concentration is 
100 mg/L, the degradation removal is 78%. BX degradation removal 
decreased by 22% compared to BX initial concentration of 60 mg/L. 
PDS needs to be adsorbed on the surface of FeNi-BC for activation and 
subsequently generates ROSs during the degradation process. When the 
BX initial concentration was relatively high, an excessive amount of BX 
was adsorbed on FeNi-BC, occupying limited active sites of FeNi-BC. 
Competitive adsorption occured. Therefore, the generation process of 
the ROSs is suppressed. Besides, with increase in the BX concentration, 

the number of BX molecules in the unit reaction solution increases. 
The limited activators FeNi-BC and PDS could only provide a certain 
amount of ROSs, which are insufficient to completely degrade a large 
amount of BX, resulting in a reduction in the BX degradation removal.

3.3.2. Effect of PDS dosage

PDS is a precursor for generation of the ROSs, and PDS dosage is 
a key influencing factor in the BX and Cr(Ⅵ) degradation system. The 
BX and Cr(Ⅵ) degradation removal within the range of PDS dosage 
from 1 g to 5g have been shown in Figure 7(c-d). Besides, BX and 
Cr(Ⅵ) degradation data are fitting using first-order kinetic model, and 
the related kinetic parameters are shown in Figure S6(c-d). As shown 
in Figure 7(c-d), BX and Cr(Ⅵ) degradation removal significantly 
increased from 68% to 100 % and 65% to 97% as PS dosage increased 
from 1g to 3g and 1g to 4g, respectively. Besides, the apparent reaction 
rate of the BX and Cr(Ⅵ), the degradation process also increases. 
The low PDS dosage exerts a certain inhibitory effect on the BX and 
Cr(Ⅵ) degradation process. Subsequently, the generated ROSs are not 
adequate for BX and Cr(Ⅵ) degradation in the FeNi-BC/PDS degradation 
system, resulting in a relatively low degradation removal. Under high 
PDS dosage, the contact probability of PDS and FeNi-BC per unit time 
increases, resulting in the generation of more ROSs. PDS, as an electron 
acceptor, collaborates with the FeNi-BC to facilitate the degradation 
of BX and Cr(Ⅵ). Therefore, BX and Cr(Ⅵ) degradation removal are 
improved. However, when the PDS dosage increased from 3g to 5g, and 
4g to 5g, the degradation removal of BX and Cr(Ⅵ) gradually decreased 
from 100 % to 73% and 97% to 89%, respectively. The excess PDS 
was demonstrated to induce ROSs quenching reactions [49]. Besides, 
excessive PDS dosage could inhibit BX and Cr(Ⅵ) adsorption on FeNi-

(c) (d)

(a) (b)
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BC, probably due to the competitive adsorption between BX/Cr(Ⅵ) and 
PDS [50].

3.3.3. Effect of impurity ion

The composition of actual wastewater is complex, containing 
large quantities of inorganic cations and anions. To investigate the 
applicability of the FeNi-BC/PDS degradation system in natural 
environmental conditions, common inorganic cations and anions that 
may exist in actual wastewater are introduced to investigate their 
interference with the FeNi-BC/PDS degradation system. The influence 
of SO4

2–, Cl–, Cd2+, and Pb2+ on BX and Cr(VI) degradation and removal 
was explored (Figure S7). The analysis results showed that the addition 
of SO4

2–, Cl–, Cd2+, and Pb2+ has no obvious influence on the final 
degradation removal of BX and Cr(VI). In conclusion, the inorganic ions 
introduced in the FeNi-BC/PDS system has little influence on the BX 
and Cr(VI) degradation process. 

3.3.4. Activation PDS degradation mechanism analysis

The SO4
•– and •OH were the two predominant ROSs in the activation 

of the PDS degradation system. PDS can be activated at the active sites 
to produce O⋅2–. Besides, singlet oxygen (1O2), a non-radical active 
species, is also regarded as an effective ROS for oxidizing pollution. 
1O2 has high selectivity, which is less influenced by the environment. 
Besides, it can oxidize the pollutants that resist other active species. 
The methanol (MeOH), tert-butanol (TBA), p-benzoquinone (BQ), 
and furfuryl alcohol (FFA) were added into the FeNi-BC/PDS system 
to determine which free radical or non-radical 1O2 played the major 
role in the BX degradation process using the free radical quenching 
method [51]. As shown in Figure S8, when no quenching agent was 
added, the FeNi-BC/PDS system exhibited an excellent BX degradation 
removal. The BX degradation process was inhibited when MeOH, TBA, 
and BQ were added to the FeNi-BC/PDS system. However, the FeNi-BC/
PDS degradation system still showed large BX degradation removal, 

indicating that it produces the SO4
•–, •OH, and O2

.–. FeNi-BC/PDS 
degradation system has low BX degradation removal after adding the 
FFA compared to the addition of MeOH, TBA and BQ. The result of the 
quenching experiment also confirms that 1O2 is indeed generated in the 
FeNi-BC/PDS degradation system, which plays an important role in the 
BX degradation process. Based on the above analysis, it can be inferred 
that PDS is catalyzed by FeNi-BC to generate 1O2, SO4

•–, •OH, and O2
 in 

the FeNi-BC/PDS degradation system Eqs. (1-6). Besides, the surface 
functional groups of the FeNi-BC can also activate PDS to generate 
ROSs. Finally, BX is transformed into non-toxic CO2 and H2O Eq. (7-9). 
The BX degradation process is described in the following equations. 

Feo (FeNi-BC) +S2O8
2– +2H2O → Fe2+ + 2SO4

2– +2.OH+2H+ (1)
Feo (FeNi-BC) +H+ →H*+Fe2+ (2)
Feo (FeNi-BC) +Fe3+ →Fe2+ (3)
Nio (FeNi-BC) + 2H2O + H+ →H2 +2OH– +Ni2+ (4)
Nio (FeNi-BC) +2H2O +1/2O2→ Ni2+ + 4OH– (5)
S2O8

2– + Fe2+/ Ni2+→ S2O8
2– + SO4

.– + Fe3+/Ni3+ (6)
HCrO4

– + Fe2+/ Ni2+ + H+ →Cr3+ +H2O + Fe3+/Ni3+ (7)
Feo (FeNi-BC) +HCrO4

–+H+ → Fe2+ + Cr3+ +H2O (8)
1O2 / SO4

•–/.OH/ O2
.– +BX → intermediates+CO2+H2O (9)

FeNi-BC activation PDS reaction contributes to the generation 
of Fe(II) (Eq. 1). The Ni(II) is generated based on the Eq. (4), (5) 
[52]. Subsequently, FeNi-BC/PDS system has high Fe(II) and Ni(II) 
concentration. Moreover, the Fe(III) and Ni (III) concentration 
increases due to the reaction between Fe(II)/ Ni(II) and PDS (Eq. 6). In 
the FeNi-BC/PDS-Cr(VI) system, the content of Fe(II) is low compared 
to the FeNi-BC/PDS-BX system. The Ni(II) content also decreases in the 
FeNi-BC/PDS-Cr(VI) system compared to the FeNi-BC/PDS-BX system. 
These results indicated that Fe(II) and Ni(II) are involved in reduction 
reaction of the Cr(VI) [53]. The mechanism scheme for BX and Cr(VI) 
degradation in the FeNi-BC/PDS system has been shown in Figure 8.

Figure 7. The degradation performance of the different (a) BX and (b) Cr(VI), (c) concentration, different 
PDS dosage for BX and (d) Cr(VI) in the FeNi-BC/PDS degradation system. (a =PDS:3g, b=PDS 4g:L, c= BX 
concentration: 60 mg/L, d=Cr(Ⅵ) concentration: 30 mg/L, FeNi-BC dosage: 0.1g).

(a) (b)

(c) (d)
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3.3.5. Reusability of the FeNi-BC/PDS system

To comprehensively assess the practical application prospects 
of the FeNi-BC/PDS degradation system, it is of great significance 
to investigate the reusability of the FeNi-BC/PDS system. This work 
performs five cycles of the reusability degradation experiment, with 
the first experiment using freshly prepared FeNi-BC. The subsequent 
four cycles of experiments use the solid-liquid separated FeNi-BC after 
degradation. The results of the BX and Cr(VI) degradation experiments 
over multiple cycles have been shown in Figure S9. It was observed 
that the degradation removal of BX and Cr(VI) gradually decreased as 
the cycles increased. The reason might be that the activity of the FeNi-
BC/PDS system declines as cycles increase. Besides, the residual BX/
Cr(VI) and the generated intermediate products occupy the active sites, 
reducing the activity of the FeNi-BC. After five cycles, the degradation 
removal of the BX and Cr(VI) can still reach 81.95% and 78.26%, 
respectively. 

4. Conclusions

The FeNi-BC is prepared for BX and Cr(Ⅵ) removal by adsorption 
and activation PMS degradation. The BX and Cr(Ⅵ) adsorption process 
are influenced by the adsorption parameters. BX and Cr(Ⅵ) adsorption 
on FeNi-BC are chemisorption, based on Pseudo-second order model 
analysis. The surface functional groups and π-π interaction of the 
FeNi-BC contribute to BX and Cr(Ⅵ) removal. FeNi-BC activation PDS 
achieves efficient removal of the BX and Cr(Ⅵ) with removal of 100% 
and 97%, respectively. The generated ROSs such as SO4

•– and 1O2 play 
an important role in the BX degradation process. The Fe(III)/Fe(II) and 
Ni(III)/Ni(II) cycling contribute to reduction of the Cr(Ⅵ). The above 
work demonstrates that the FeNi-BC achieves BX and Cr(Ⅵ) removal, 
providing a novel route of waste-to-waste remediation.
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