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Abstract The design and development of supercritical carbon dioxide (sc-CO2) based processes for

production of pharmaceutical micro/nanoparticles is one of the interesting research topics of pharma-

ceutical industries owing to its attractive advantages. The solubility of drugs in sc-CO2 at different

temperatures and pressures is an essential parameter which should be determined for this purpose.

Chloroquine as a traditional antirheumatic and antimalarial agent is approved as an effective drug

for the treatment of Covid-19. Pishnamazi et al. (2021) measured the solubility of this drug in sc-

CO2 at the pressure range of 120–400 bar and temperature range of 308–338 K, and correlated the

obtained data using some empirical models. In this work, a comprehensive computational approach

was developed to more accurately study the supercritical solubility of Chloroquine. The thermody-

namic models include two equations-of-state based models (Peng-Robinson and Soave-Redlich-

Kowang) and two activity coefficient-based models (modified Wilson’s and UNIQUAC)), as well

as, a multi-layer perceptron neural network (MLPNN)) were used for this purpose. Also, molecular

modeling was performed to study the electronic structure of Chloroquine and identify the potential

centers of intermolecular interactions during the dissolution process. According to the obtained

results, all of the theoretical models can predict Chloroquine solubility in sc-CO2 with acceptable
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Nomenclature

AARD% Average absolute relative deviation

aðTÞ Energy parameter of the cubic EoS (Nm4 mol�2)
b Volume parameter for equations of state (m3

mol�1)
f2
L The fugacity of the solid solute in the supercritical

phase
f2
s The fugacity of the solute in the solid phase
Hf Molar heat of fusion(kJ.mol�1)

gE Excess Gibbs free energy
kij Binary interaction parameters in the mixing rules
lij Binary interaction parameters in the mixing rules

MSR Mean square regression
MSE Mean square residual
N Number of data points, dimensionless
Psub Sublimation pressure (Pa)

Q Number of independent variables
R2 Correlation coefficient
Radj Adjusted correlation coefficient

S Equilibrium solubility
SSE Error sum of squares
SST Total sum of squares

SSR Regression sum of squares
Tc Critical temperature
vs Solid molar volume

vdW2 Van der Waals mixing rule with two adjustable
parameters

y Mole fraction solubility

Z Number of adjustable parameters

r Volume parameter of the UNIQUAC model
q surface area of the UNIQUAC model

Greek symbols
a(Tr, x) Temperature-dependent function in the attractive

parameter of the EoS
u Fugacity coefficient
x Acentric factor

a Regressed parameters of the Wilson’s and UN-
IQUAC models

b Regressed parameters of the Wilson’s and UN-
IQUAC models

k0 Regressed parameters of Wilson’s model
K Adjustable parameters
c‘2 The activity coefficient of the solid solute at infi-

nite dilution

Superscripts
cal Calculated
exp Experimental

i, j Component
1 Supercritical carbon dioxide
2 Solid solute

2 N.S. Ardestani et al.
accuracy. Among these models, the MLPNN model possesses the highest precision with the lowest

average absolute relative deviation (AARD%) of 1.76 % and the highest Radj value of 0.999.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent decades, development of supercritical carbon dioxide (sc-

CO2) based processes in the pharmaceutical industry has attracted

much attention for development of advanced pharmaceutical manufac-

turing. Classification of sc-CO2 as a safe solvent by FDA (Kankala

et al., 2017); significant decrement of required toxic solvents, produc-

tion of high quality products without residual solvent, processing at

low temperatures, and also adjustable solvation power as a function

of pressure and temperature have led to widespread utilization of sc-

CO2 in various pharmaceutical processes. Among the various pro-

posed applications, micronization/nanonization of pharmaceutical

particles (e.g., solid oral dosage formulations) with desired particle

attributes is one of the most important ones. The equilibrium solubility

of the pharmaceutical substances in sc-CO2 is one of the main opera-

tional parameters which should be specified for design and optimiza-

tion of these processes. Accordingly, obtaining the solubility of

various drug molecules in sc-CO2 to find the suitable candidates to

be processed through a sc-CO2 based technique has become an inter-

esting research topic (Ardestani et al., 2020; Morales-Dı́az et al.,

2021). However, experimental measurement of substances solubility

in sc-CO2 over a wide range of temperatures and pressures is very time

consuming and requires complex and expensive apparatuses. So, ther-

modynamic modelling and theoretical prediction of this parameter at

different operational conditions is indispensable. For this purpose,
several theoretical methods including, density-based models (empirical

models), equation of state (EoS) (cubic and non-cubic) based models

and expanded liquid models were presented and validated. Further-

more, smart methods (e.g. artificial neural network (ANN)) (Rezaei

et al., 2022) and machine Learning Models (Najmi et al., 2022) were

also used to correlate the solubility of solids in sc-CO2 with acceptable

accuracy.

Empirical models were proposed for correlation of solubility data

and shown to be facile methods (Faress et al., 2022). However, these

models are directly interrelated with the experimental solubility data

and their adjustable parameters should be determined according to

experimental values (Ali Sajadian et al., 2022).

In the equation of state-based theories, supercritical carbon dioxide

is considered as a condensed phase (solvent phase) and calculations is

basically carried out according to the fugacity coefficient of the solute,

i.e., the drug substances (Ali Sajadian et al., 2022). Equation of states

are classified as, (i) cubic EoS in which the pressure can be written as a

cubic function of molar volume (e.g. Peng-Robinson (PR) (Peng and

Robinson, 1976) and Soave- Redlich-Kowang (SRK) (Soave, 1972),

and (ii) non cubic EoS which are based on statistical associating fluid

theory (SAFT) (e.g. Perturbed-Chain Polar Statistical Associating

Fluid Theory (PCP-SAFT) (Gross, 2005).

Unlike these models, in expanded liquid theories such as

UNIQUAC method (Nasri et al., 2012) and modified Wilson’s models

(Nasri, 2018), sc-CO2 is regarded as an expanded liquid, due to prox-

http://creativecommons.org/licenses/by-nc-nd/4.0/


Theoretical and experimental study on Chloroquine drug solubility 3
imity of its density to the liquids density (Higashi et al., 2001). Accord-

ingly, this modelling is performed according to activity coefficient of

the solute. Both of equation of state and expanded liquid-based models

need critical properties, molar volume and the sublimation pressure of

the solute. Generally, these properties are not known for complex

solute molecules and their experimental measurement is not always

possible. So, various group contribution (GC) methods have been sug-

gested for their estimation and therefore, the accuracy of the applied

correlation significantly depends to the used GC method.

The artificial neural network (ANN) is a plain powerful tool to

model and optimize the various processes. So, its application as a prac-

tical modelling tool in various computational engineering projects has

received much attention, because of its ability for solving the complex

problems. Indeed, no requirement to a mathematical model, capability

in representing the complicated relation between the input and output

parameters, and also learning from the experiences and interpolating

the results, even for the case of incomplete inputs, are the main out-

standing features of the ANN models compared to the standard com-

puting methods (Lashkarbolooki et al., 2011; Vaferi et al., 2013).

Chloroquine (C18H26ClN3), with the chemical structure shown in

Fig. 1, is a traditional antirheumatic and antimalarial agent with anti-

virus and anti-inflammatory effects. It has also been confirmed that

Chloroquine can be prescribed as an efficient drug for the therapy of

Covid-19 patients by inhibiting the replication of the corona virus

and preventing it from entering into the cells (Liu et al., 2020). How-

ever, some adverse digestive problems such as dysgeusia, dyspepsia,

nausea and stomach pain, as well as other side effects like headache,

ocular disorder and serious heart rhythm abnormalities have been

reported for this medicine (Ponticelli and Moroni, 2017). As has been

proven for most of the drugs (Amani et al., 2021; Türk, 2016; Abuzar

et al., 2018), reducing the Chloroquine particles size to micro/nano

scale can significantly enhance its dissolution rate and bioavailability

and reduce drug dosage, leading to mitigation of these complications

for patients. Therefore, enhancing the solubility of Chloroquine by

nanonization technique is a very attractive task.

Pishnamazi et al. (Pishnamazi et al., 2021) determined the solubility

of Chloroquine in sc-CO2 at the various pressures of 120–400 bar and

temperatures of 308–338 K. It was obtained in the range of 1.64� 10�5

to 8.92 � 10�4 in terms of mole fraction. Also, they correlated the

obtained solubility data via some empirical models (Kumar & John-

ston (KJ), Mendez-Santiago-Teja (MST), Chrastil, Bartle et al., and

Garlapati & Madras models).

In the present work, the ability and accuracy of other well-known

theoretical models to correlate these experimental data were investi-

gated. For this purpose, two cubic EoSs (PR and SRK), two expanded

liquid models (UNIQUAC and modified Wilson’s models), and the

ANN model were applied. Furthermore, Chloroquine solubility in

sc-CO2 was also studied by molecular-level computations to under-

stand the interactions between the solute and solvent. Indeed, the

molecular modeling was performed to study the electronic structure

of Chloroquine and identify the potential centers of intermolecular

interactions during the dissolution and crystal formation processes.

Then, the predictability and accuracy of these methods for prediction

of Chloroquine solubility in sc-CO2 was evaluated through calculating

some statistical parameters such as average absolute relative deviation
Fig. 1 Chemical structure of Chloroquine.
(AARD%), adjusted correlation coefficient (Radj) and F value. The

obtained results can be used to correlate the Chloroquine solubility

at different conditions and minimizing the cost and time of the exper-

imental solubility measurement.

2. Experimental

The data used in this work are the solubility of Chloroquine in
supercritical solvent (CO2) which was measured using the

gravimetric method in a PVT cell. The experimental setup used
in this work is schematically indicated in Fig. 2. The system of
measurement is made of two separate sections including the

compression of solvent and the PVT cell for measuring the sol-
ubility values. The detailed description of the measurements
are reported elsewhere (Pishnamazi et al., 2021).

3. Thermodynamic modeling

In thermodynamic relations used for theoretical solubility pre-

diction, sc-CO2 (solvent) and the solid solute (drug) were con-
sidered as components 1 and 2, respectively. The required
physical and critical properties of the Chloroquine is not

known and should be estimated by the appropriate group con-
tribution modeling approaches. Its sublimation pressure

(Psub
2 Tð Þ), molar volume (vs2) and acentric factor (x) are com-

puted via Ambrose-Walton corresponding states method
(Bruce et al., 2001), Immirzi method (Immirzi and Perini,

1977), and Constantinou-Gani method (Constantinou and
Gani, 1994), respectively. Other Chloroquine properties such
as boiling point (Tb), melting point (Tm), critical temperature
(Tc) and critical pressure (Pc) were calculated by Marrero

and Gani contribution method (Marrero and Gani, 2001).
All of these properties were reported in Table 1. In all of the
considered models, R (8.314 J mol�1 K�1), T (K), Tr (T/

Tc), and P (MPa) denote as the ideal gas constant, tempera-
ture, reduced temperature, and pressure, respectively. Also,
solubility of the Chloroquine (solute) in sc-CO2 (solvent) was

considered as its equilibrium mole fraction (y2).

3.1. Cubic equation of state (EoS) based models (SRK-EoS &
PR-EoS)

The relations of these EoSs were shown in Table 2. These are the
most commonly thermodynamicmodels applied to correlate the
solubility of different materials in sc-CO2 (Saadati Ardestani

et al., 2020; Coimbra et al., 2006; Chim et al., 2012). In two-
phase (solid solute – solvent) equilibrium condition, the fugacity
coefficient of the solute in both phases should be equal. Accord-

ingly, the equilibrium solubility (y2) in sc-CO2 was obtained as
the following (Saadati Ardestani et al., 2020):

y2 ¼
Psub

2 ðTÞ
P

usat;s
2 ðTÞ

u2ðT;P; yÞ
exp½m

s
2ðP� Psub

2 ðTÞÞ
RT

� ð1Þ

Because of the very small sublimation pressure obtained for
Chloroquine (Table 1), its saturation fugacity coefficient

(usat;s
2 ðTÞ) can be assumed to be one. Furthermore,

/2ðT;P; yÞ is the fugacity coefficient of the solute in sc-CO2,
which in this study was computed through SRK-EoS (Soave,
1972), and PR-EoS (Peng and Robinson, 1976), via the follow-

ing relationship (Saadati Ardestani et al., 2020):

https://scholar.google.com/citations?user=zpXSGaIAAAAJ%26hl=en%26oi=sra


Fig. 2 Experimental setup used for measuring Chloroquine solubility in supercritical CO2 (Pishnamazi et al., 2021). Reprinted from

(Pishnamazi et al., 2020) with permission from Elsevier.

Table 1 Molecular weight and estimated physic-chemical properties of Chloroquine.

Component MW

(kg kmol�1)

Tb

(K)

Tm

(K)

Tc

(K)

Pc

(bar)

x vs
(cm3 mol�1)

T (K)

308 318 328 338

Psub � 104 (Pa)

Chloroquine 319.87 676 370 917 16.5 0.47 209.3 3.8 11.5 32.4 84.6

Table 2 The relations of the PR-EoS and SRK-EoS.

Model Equation of state a(T) b

Peng Robinson

(PR) (Peng and Robinson, 1976)
P ¼ RT

m�b � aðTÞ
m ðmþbÞþb ðm�bÞ a Tð Þ ¼ 0�45724R2 T2

C

Pc
� a Tr;x
� �

aðTr;xÞ ¼ ½1þ kð1� T0:5
r Þ�2

k ¼ 0:37464þ 1:54226x� 0:26992x2

b ¼ 0:07780 R Tc

Pc

Soave–Redlich–Kwong (SRK) (Soave, 1972) P ¼ RT
m�b � aðTÞ

m ðmþbÞ aðTÞ ¼ 0:42747R2T2
c

Pc
� aðTr;xÞ

aðTr;xÞ ¼ ½1þmð1� T0:5
r Þ�2

m ¼ 0:480þ 1:574x� 0:176x2

b ¼ 0:08664RTc

Pc
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RT lnui ¼ �RT lnZþ
Z 1

V

@P

@ni

� �
T;V;nj–ni

� RT

V
� dV

" #
ð2Þ

where Z, V and ni are the compressibility factor, the molar vol-
ume of sc-CO2 and the moles number of species i, respectively.

3.2. Expanded liquid models (UNIQUAC and modified Wilson’s
models)

Equality of the solute fugacity in the solid phase ðfS2 Þ with its

value in the sc-CO2 phase (liquid solvent) ðfL¼Sc�CO2

2 Þ is the

thermodynamic criteria used for describing the equilibrium
condition between the solute and sc-CO2. According to insol-

ubility of sc-CO2 in the solid solute, fS2 is equal to fugacity of

the pure soluteðf0S2 Þ. The term of ðfL2 Þ is described based on
the solute activity coefficientðc2Þ, as follows (Ali Sajadian

et al., 2022):

fL2 ¼ f0S2 ¼ c2y2f
0L
2 ð3Þ

where, f0L2 is the fugacity of the pure solute in sc-CO2 phase

(expanded liquid phase). Regardless the change of solute heat
capacity ðDcpÞ and regarding the infinite dilution condition due

to little dissolution of the solid solute in sc-CO2 (Nasri et al.,

2013), the proposed Prausnitz relation (Prausnitz et al., 1998)

between f0L2 and f0S2 can be summarized as the following (Ali

Sajadian et al., 2022):

y2 ¼
1

c12
exp

�DHf
2

R

1

T
� 1

Tm

� � !
ð4Þ
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Here, c12 DHf
2 and Tm are the activity coefficient of the solid

solute at the infinite dilution condition, heat of fusion and
melting point of the solute, respectively. In this study, the term

of c12 was specified via the modified Wilson’s model (Nasri,

2018) and UNIQUAC model.

3.2.1. Modified Wilson’s model

Correlating the solubility of different materials in sc-CO2

through the Wilson’s model has been previously performed

by several researchers such as, Nasri (2018), Nasri et al.
(2013); Pitchaiah et al. (2019), Pitchaiah et al. (2018);
Narayan et al. (2015), and Reddy and Madras (2013), Reddy

and Madras (2012). Wilson’s equation includes a combinato-
rial contribution part based on Flory’s theory, and another

part based on the Gibbs excess energyðGEÞ, as follows

(Nasri, 2018):

GE

RT
¼ �y1ln y1 þ y2K12ð Þ � y2ln y1K21 þ y2ð Þ ð5Þ

where, K12 and K21 are the dependent adjustable parameters to

the sc-CO2 molar volume ðt1Þ, the solid solute molar volume
ðt2Þ, and the interaction energy ðkÞ between them (Nasri,
2018):

K12 � t2
t1
exp � k12 � k11

RT

� �
ð6Þ

K21 � t1
t2
exp � k21 � k22

RT

� �
ð7Þ

Through differentiation of Eq. (5) and rearrangement of the
obtained function, the term of c2 can be determined by the fol-
lowing relation (Nasri, 2018):

lnc2 ¼ �ln y2 þ y1K21ð Þ � y1
K12

y1 þ y2K12

� K21

y2 þ y1K21

� �
ð8Þ

At the infinite dilution condition, this relation can be sum-

marized to the form of Eq. (9) (Assael et al., 1996), in which
K12 and K21 are written in reduced form, as follows (Nasri,
2018):

ln c12 ¼ 1� m2q exp � k012
Tr

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

K12

� ln
1

m2q
exp � k021

Tr

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K21

ð9Þ

where, q is the sc-CO2 density and, k012ð¼ k12
RTc

Þand
k012 ¼ k21

RTc

	 

are the dimensionless interaction energies. Nasri

(Nasri, 2018) defined a simple expression for definition the
term of t2 (Nasri, 2018):

t2 ¼ aqr þ b ð10Þ
Finally, a, b, k012 and k012 are the parameters of the Wilson’s

model specified through regression. The term of qr ð¼ q
qc
Þ is the

reduced density of the solvent (sc-CO2), in which qc is the crit-

ical sc-CO2 density (kg.m�3).

3.2.2. UNIQUAC model

Predicting the solubility of various components in sc-CO2 via
the UNIQUAC model has been previously reported by Nasri
et al. (2012), Nasri et al. (2013), Loubna et al. (2014), Zhao
et al. (2020), Chang and Morrell (1985), and Sodeifian et al.
(2020), Sodeifian et al. (2020). Considering the size and nature
of the molecules, as well as the intermolecular forces between
the solute and solvent molecules are the strengths of this

model. Furthermore, it can be exploited to solutions contain-
ing small or large molecules, such as polymers (Nasri et al.,
2013). In the UNIQUAC model, c12 includes a combinatorial

contribution part to describe the main entropic contribu-

tionðcc;12 Þ, and a residual part ðcR;12 Þ to indicate intermolecular

forces which are cause of the mixing enthalpy (Prausnitz et al.,
1998):

lnc12 ¼ lncc;12 þ lncR;12 ð11Þ
The term of cc;12 is a function of composition and structure

of the molecules, and its determination requires only the pure

component data, while the parameter of cR;12 depends to the

intermolecular forces (Prausnitz et al., 1998):

ln cc;12 ¼ 1� r2
r1
þ ln

r2
r1
� q2

z

2
ð1� r2q1

r1q2
þ ln

r2q1
r1q2

Þ ð12Þ

ln cR;12 ¼ q2
a012
Tr

þ q2 1� e�
a0
21
Tr

� �
ð13Þ

To account for the influence of T and P, the parameters are
expressed as (Prausnitz et al., 1998):

a012 ¼ a12 q
b12
r & a021 ¼ a21 q

b21
r ð14Þ

where a12; a21; b12 and b21 are the parameters of the model.

4. Multilayer perception neural network (MLPNN)

This model was developed based on the way of information
processing in the human brain. Learning happens in an inter-

connected network of the brain biological neurons, which can
suggest an alternative way to solve the complicated problems.
The ANN model is based on repetitive, known and predictable

patterns of the input data to be able to provide logical and cor-
rect answers in the output. Neural network with repetition and
storage of experimental data and their complete knowledge

and finally good and complete training by the experimental
data can turn network inputs into correct responses with low
error. For modeling using ANN, a dataset of measured data
is needed to build the model (Amani, 2021).

In an ANN, a neuron executes two functions: tan-sigmoid
transfer function (Tansig) and linear transfer function (pure-
lin). In the ANN algorithm, weighted inputs and bias values

are added together and uses Tansig function to quickly train
the network. Then, a suitable and specific scalar output is
obtained by purelin function at the output layer. The ANN

is composed of neurons arranged in three layers, one input
layer which receives the experimental information and param-
eters, one output layer, which produces the calculated values of
the dependent variable, and at least one hidden layer between

the previous two layers. All of these layers posse a group of
computing neurons, in which the number of neurons in the
input and output layers are specified by the system’s character-

istics, while their number in the hidden layer is an adjustable
parameter, which should be optimized (Bakhbakhi, 2012).
Accordingly, the main parts of the ANN modelling include

(i) determination the input values, (ii) selection the appropriate
algorithm for accurate model training, (iii) specification the
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number of neurons in the hidden layer, and (iv) evaluating and
validating the ANN model.

The connection template of each neuron to other neuron in

the next layer is known as the network ‘‘architecture”. Among
the various suggested architectures, multilayer perception neu-
ral network (MLPNN) structure with the back-propagation

(BP) algorithm, as the training method, is the most popular
ones.

The inputs to the neuron i in hidden or output layer ðYi Þ
include the sum of its weighted input multiply of its weight
ðxiÞ in its input parameter ðxiÞ and its biasðhiÞ, which can be
shown mathematically with the following relation (Ghoreishi
and Heidari, 2013):

Yi ¼
Xn
i¼1

xixi þ hi ð15Þ

Adjustments of weights and biases are based on reducing
the difference between the values of obtained data and the
experimental ones. The BP algorithm consists of three steps:

(i) assessment of the weights and biases and calculation of
the output values, (ii) computation and back propagation of
the relevant error, and (iii) variation the weights. Among the
proposed BP algorithms, Levenberg-Marquardt algorithm

(LMP) accompanied with the gradient descent technique was
used in this work to minimize the sum square error (SSE)
and mean square error (MSE). This algorithm quickly learns

and uses Tansig and purelin functions at the hidden and output
layers, respectively.

5. Assessment the precision of the thermodynamic and ANN

models

The performance and precision of the mentioned methods was

statistically evaluated via computing the difference between the

experimental data ðyi;expÞ and the calculated oneðyi;calÞ, known
as AARD% (Saadati Ardestani et al., 2020):

AARD% ¼ 1

N

Xn
i¼1

yi;cal � yi;exp
yi;exp

�����
������ 100% ð16Þ

Here, N is the number of data points for each set.
The Radj value is calculated by the following relationship

(Saadati Ardestani et al., 2020):

Radj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SSE

SST|fflfflfflffl{zfflfflfflffl}R2

� Qð1� R2Þ
N�Q� 1

������
������

vuuut ð17Þ

where, SSE is the error sum of squares and SST is the total sum

of squares. The capability of the theoretical models in fitting
the real data can be determined by F-value parameter
(Saadati Ardestani et al., 2020):

F� value ¼ SSR=Q

SSE=ðN�Q� 1Þ ¼
MSR

MSE
ð18Þ

Here, SSR, MSR and MSE denote the regression sum of
squares, the mean square regression, and the mean square
residual, respectively.
6. Molecular modeling

6.1. Study of the electronic structure of Chloroquine, its crystal
fragment and its complexes with CO2

Dissolution process as well as the formation of a crystal lattice,

including the formation of nanoparticles, largely depends on
the electronic structure of the Chloroquine. To study the elec-
tronic structure of Chloroquine and identification the potential

centers of intermolecular interactions during the dissolution
and crystal formation processes, AlteQ orbital-free quantum
chemical method was used in this work. This method has
already shown a qualitative description of the 3D electron den-

sity maps of organic and inorganic compounds, determined
using high resolution low temperature X-ray diffraction anal-
ysis (Potemkin and Grishina, 2008; Grishina and Potemkin,

2019; Potemkin and Grishina, 2018). AlteQ was developed
for large molecular systems, it allows the evaluation of 3D elec-
tron density maps, and this method solves a wide range of

problems.

6.2. The approach for the prediction of the zones of
intermolecular contacts (contact zones) using AlteQ

One of the problems is the prediction of the directions of inter-
molecular contacts according to the electronic structure of a
molecule (molecular system). The electronic structure of

Chloroquine molecule, Chloroquine crystal fragment and
Chloroquine-CO2 complexes was investigated using the
approach which was previously proposed by Vladimir Potem-

kin et al. (Potemkin and Grishina, 2021). It is based on the
Valence shell electron pair repulsion (VSEPR) theory
(Gillespie, 1963; Gillespie and Nyholm, 1957), which assumes

that electron pairs are arranged in such a way as to minimize
repulsive effects of each other. Therefore, in the terms of AlteQ
3D maps of electron density, it means the determination of
space points near an atom, characterized by the minimum con-

tribution of the electron density of covalently bound ligands of
the atom in the molecule (molecular system). The set of these
points forms the contact zone for potential intermolecular

interactions. These contact zones determine the directions of
intermolecular interactions with the environment of the mole-
cule (receptor, solvent or other Chloroquine molecules during

crystal formation), affecting the structure of the crystal or non-
covalently bound complexes with the receptor or solvent.

6.3. The approach for the evaluation of the overlap zones of the
molecule (ligand) with the environment using AlteQ

Another task of the AlteQ method is to determine the overlap
zones of a molecule (ligand) with the environment, for exam-

ple, a receptor, a solvent, or with the rest of the crystal frag-
ment. This approach is based on the analysis of AlteQ 3D
maps of electron density of receptor-ligand, solvent–solute

complexes or a molecule surrounded by neighbors in the crys-
tal fragment. The approach determines the set of m points of
intermolecular space with electron density value of the mole-

cule (ligand) q molð Þm > 0:001a:u: and electron density value of

the neighbors (receptor, solvent or the rest of the crystal frag-

ment) q neigborsð Þm > 0:001a:u: at the m points (Rimac et al.,
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2020; Palko et al., 2021). Thus, these zones are simultaneously
characterized by a significant value of the electron density of
both the molecule and its environment; therefore, these zones

are overlap zones of the molecule with the neighbors.

6.4. Modeling of the Chloroquine crystal fragment

For determination the structure of the Chloroquine crystal
fragment, experimental data on the structure of the unit cell
were found in the Cambridge Crystallographic Data Centre

(CCDC) (Groom et al., 2016), with the database code of
CCDC 1121749. Then, the fragment of the Chloroquine crys-
tal was built by the Mercury software by packing elementary

cells along a, b, and c axes in the amount of 2*2*2. An analysis
of overlap zones was made for a molecule surrounded on all
sides by neighboring molecules. The position of hydrogens
was clarified using QM/MM technique based on orbital-free

quantum chemical method AlteQ and MM3 force field.

6.5. Modeling of Chloroquine-CO2 complexes using MOPS
algorithm

The simulation of the complexes was carried out using the
MOPS algorithm also based on the QM/MM technique

(Shchelokov et al., Langmuir 2019). This algorithm is based
on the assumption that all changes in the structure occur along
the directions of atomic vibrations. Therefore, in the general
case, the structure of the complex depends little on the initial

arrangement of molecules in the complex relative to each
other. Modeling was carried out with an explicit and a contin-
ual account of the solvent (CO2), while the mole fraction of

Chloroquine and the temperature of the process varied accord-
ing to the values given in Table 3. At the same time, the phased
construction of Chloroquine-xCO2 complexes with values

x = 1–6 was carried out.

7. Results and discussion

In the current work, the solubility of Chloroquine in sc-CO2

was anticipated by different theoretical models (PR-EoS,
SRK-EoS, Wilson’s model, UNIQUAC model, and the

ANN), as well as the molecular modeling. The precision and
Table 3 Experimental values of Chloroquine solubility in sc-CO2, r

P (bar)a T (K)a

308 K 318 K

q (kg/m3)b y2
c q (kg/m3)b y2

c

120 768.4 8.26 � 10�5 659.73 4.26 � 10�

160 828.10 1.33 � 10�4 761.07 1.13 � 10�

200 866.48 1.53 � 10�4 813.52 1.76 � 10�

240 895.54 2.11 � 10�4 850.10 2.26 � 10�

280 919.23 2.50 � 10�4 878.62 3.05 � 10�

320 939.39 2.95 � 10�4 902.22 3.78 � 10�

360 957.02 3.28 � 10�4 922.46 4.12 � 10�

400 972.74 3.74 � 10�4 940.24 4.55 � 10�

a Standard uncertainty, u, are u (T) = 0.1 K and u (P) = 0.35 bar.
b Density of sc-CO2, obtained from the NIST web-book (https://webbo
c The equilibrium mole fraction of Chloroquine in sc-CO2, reported by
accuracy of the theoretical models to correlate the solubility
of Chloroquine were evaluated by comparison between the
obtained data and the experimental ones, reported by Pishna-

mazi et al. (Pishnamazi et al., 2021). The reported experimental
solubility data at various pressures (120 to 400 bar) and tem-
peratures (308 to 338 K), along with the calculated sc-CO2

density was shown in Table 3.

7.1. Artificial neural network (ANN) model

To validate, test and train the ANN, the experimental solubil-
ity data of 41 pharmaceutical compounds (Pishnamazi et al.,
2021; Ali Sajadian et al., 2022; Pishnamazi et al., 2020; Chim

et al., 2012; Suleiman et al., 2005; Ch and Madras, 2010;
Hezave et al., 2012; Zhan et al., 2014; Yamini et al., 2012;
Yang et al., 2017; Pishnamazi et al., 2021; Zabihi et al.,
2020; Esfandiari and Sajadian, 2022; Ciou et al., 2017; Wang

et al., 2021; Zabihi et al., 2021; Xiang et al., 2019;
Pishnamazi et al., 2020; Zabihi et al., 2021; Shojaee et al.,
2013; Yamini and Moradi, 2011; Ardjmand et al., 2014;

Asiabi et al., 2013; Khamda et al., 2013; Zeinolabedini
Hezave et al., 2012; Karimi Sabet et al., 2012; Hosseini
et al., 2010; Zeinolabedini Hezave and Esmaeilzadeh, 2012;

Hojjati et al., 2007) were collected, shown in Table 4. 70 %,
15 %, and 15 % of these data were used for the ANN training,
validation and testing of the ANN, respectively.

The schematic of the used MLPNN structure to predict the

Chloroquine solubility in sc-CO2 is shown in Fig. 3. In the cur-
rent work, the input matrix (1200 � 3) was arranged with 7
parameters of pressure, temperature, molecular weight, melt-

ing point and density, and the output matrix (1200 � 1) was
arranged with one variable includes the Chloroquine solubility
in terms of its mole fraction.

To find the optimum number of neurons for training the
network, different number of neurons were tested (23 neu-
rons). Then, various transfer functions were tried for training

the network with the optimum number of neurons in the hid-
den layer (Amani, 2021). The outputs illustrated that the
(LMP) algorithm would propose the best results to train the
ANN with 23 neurons in the hidden layer. According to

Fig. 4, the best validation performance was obtained at epoch
147, which was corresponds to a MSE value of 1.2855e-05.
eported by Pishnamazi et al. (2021).

328 K 338 K

q (kg/m3)b y2
c q (kg/m3)b y2

c

5 506.85 4.04 � 10�5 384.17 1.64 � 10�5

4 682.39 7.35 � 10�5 593.75 5.96 � 10�5

4 755.52 1.95 � 10�4 692.68 2.22 � 10�4

4 801.92 2.33 � 10�4 751.17 2.59 � 10�4

4 836.35 3.45 � 10�4 792.59 3.87 � 10�4

4 863.97 4.40 � 10�4 824.82 5.02 � 10�4

4 887.18 5.21 � 10�4 851.34 6.04 � 10�4

4 907.27 6.76 � 10�4 873.95 8.92 � 10�4

ok.nist.gov/chemistry).

Pishnamazi et al. elsewhere (Pishnamazi et al., 2021).

http://webbook.nist.gov/chemistry


Table 4 Experimental data used in this work to train, test, and validate the ANN.

Component Formula Mw

(g/mol)

T range

(K)

P range

(bar)

Data

points

Tm (K) Solubility range Ref.

2-phenyl-4H-1,3-benzoxazin-4-

one

C14H9NO2 223.233 308–328 100–275 23 397 0.8 � 10-4-4.5 � 10-4 (Suleiman et al., 2005)

Azodicarbonamide C2H4N4O2 116.08 308–328 100–300 26 497 0.9 � 10-5-2.6 � 10-5 (Suleiman et al., 2005)

Propyphenazone C14H18N2O 230.31 308–328 90–190 18 376 0.38 � 10-4-18.82 � 10-4 (Ch and Madras, 2010)

Sulindac C20H17FO3S 356.41 308–338 160–400 28 456 1.05 � 10-4-8.69 � 10-3 (Van der Waals, 1873)

Thymidine C10H14N2O5 242.23 308–328 100–275 20 460 1.2 � 10-6-8 � 10-6 (Suleiman et al., 2005)

5-Fluorouracil C4H3FN2O2 130.077 313–323 100–200 12 555–556 1.3 � 10-6-5.25 � 10-6 (Zhan et al., 2014)

Docetaxel C43H53NO14 285.303 318–348 120–360 45 462 0.37 � 10-4-7.02 � 10-4 (Yamini et al., 2012)

Capecitabine C15H22FN3O6 359.35 308–348 152–354 40 362 0.32 � 10-5-15.88 � 10-5 (Yamini et al., 2012)

Lenalidomide C13H13N3O3 259.25 308–338 120–300 28 560.65 0.02 � 10-4-1.08 � 10-4 (Ali Sajadian et al., 2022)

Silymarin C25H22O10 482.4 308–338 80–220 32 440 0.27 � 10-5-8.01 � 10-5 (Yang et al., 2017)

Chloroquine C18H26ClN3 319.87 308–338 120–400 28 370 1.64 � 10-5-8.92 � 10-4 (Pishnamazi et al., 2021)

Decitabine C8H12N4O4 228.21 308–338 120–400 28 466–469 2.84 � 10�5 � 1.07 � 10�3 (Pishnamazi et al., 2021)

Fenoprofen C15H14O3 242.27 308–338 120–400 28 441–444 2.01 � 10�5- 4.2 � 10�3 (Zabihi et al., 2020)

Glibenclamide C23H28ClN3O5S 494 308–338 100–310 24 446 3 � 10�6- 79.2 � 10�6 (Esfandiari and Sajadian, 2022)

Warfarin C19H16O4 308.3 308–328 100–180 15 434 1.48 � 10�6- 4.32 � 10�6 (Ciou et al., 2017)

Gliclazide C15H21N3O3S 323.41 308–328 100–185 18 445.9 0.126 � 10�6- 5.01 � 10�6 (Wang et al., 2021)

Captopril C9H15NO3S 217.28 308–328 100–185 18 382.5 0.359 � 10�5- 9.32 � 10�5 (Wang et al., 2021)

Salsalate C14H10O5 258.23 308–338 120–400 28 420 3.77 � 10�5- 3.88 � 10�3 (Zabihi et al., 2021)

Busulfan C6H14O6S2 246.304 308–338 120–400 28 387–390 3.27 � 10�5- 8.65 � 10�4 (Pishnamazi et al., 2020)

Gambogic Acid C38H44O8 628.7 308–328 100–300 15 361.5 0.163 � 10�5- 2.262 � 10�5 (Xiang et al., 2019)

Tamoxifen C26H29NO 371.51 308–338 120–400 28 370–371 1.88 � 10�5- 8.29 � 10�4 (Pishnamazi et al., 2020)

Temozolomide C6H6N6O2 194.1 308–338 120–400 28 485 4.3 � 10�4- 5.28 � 10�3 (Zabihi et al., 2021)

Piroxicam C15H13N3O4S 331.35 308–338 160–400 28 473 1.17 � 10�5- 5.12 � 10�4 (Shojaee et al., 2013)

Ketoconazole C26H28Cl2N4O4 531 308–348 122–355 45 423 0.05 � 10�5- 17.45 � 10�5 (Yamini and Moradi, 2011)

Clotrimazole C22H17ClN2 344 308–348 122–355 45 418 0.02 � 10�5- 10.66 � 10�5 (Yamini and Moradi, 2011)

Ibuprofen C13H18O2 206.28 308–318 80–130 31 349 0.015 � 10�3 to

3.261 � 10�3
(Ardjmand et al., 2014)

Desoxycorticosterone acetate C23H32O4 372.497 308–348 122–355 45 430 0.09 � 10�5 to

13.93 � 10�5
(Asiabi et al., 2013)

Clobetasole propionate C25H32ClFO5 466.97 308–348 122–355 45 466.97 0.01 � 10�5 to 0.35 � 10�5 (Asiabi et al., 2013)

Cefixime trihydrate C16H15N5O7S2�3H2O 507.5 308–328 183–355 18 491–498 1.6 � 10�7–3.02 � 10�7 (Khamda et al., 2013)

Oxymetholone C21H32O3 332.5 308–328 183–355 18 445–453 1.6 � 10�5–1.49 � 10�4 (Khamda et al., 2013)

Mefenamic acid C15H15NO2 241.29 308–338 160–400 28 503–504 8.31 � 10�5–5.98 � 10�3 (Zeinolabedini Hezave et al., 2012)

Acetaminophen C8H9NO2 151.16 313–343 100–250 12 443 0.66 � 10�6–9.66 � 10�6 (Karimi Sabet et al., 2012)

Clozapine C18H19ClN4 326.83 318–348 121.6–354 36 456 3.6 � 10�6 � 4.2 � 10�5 (Hosseini et al., 2010)

Lamotrigine C9H7Cl2N5 256.938 318–348 121.6–354 36 491 1 � 10�6 � 6 � 10�5 (Hosseini et al., 2010)

Diclofenac Acid C14H11Cl2NO2 296.14 308–338 120–400 32 471–473 2.34 � 10�5–1.98 � 10�3 (Zeinolabedini Hezave and Esmaeilzadeh,

2012)

Dexamethasone C22H29FO5 392.5 308–328 151–357 15 533–537 1.25 � 10�6–2.81 � 10�6 (Chim et al., 2012)

Rosuvastatin C22H28FN3O6S 481.5 308–348 121.6–354.6 45 435 0.03 � 10�4–2.44 � 10�4 (Hojjati et al., 2007)

Simvastatin C25H38O5 418.5 308–348 121.6–354.6 45 408–411 0.02 � 10�4–5.35 � 10�4 (Hojjati et al., 2007)

Atorvastatin C33H33FN2O4 540.6 308–348 121.6–354.6 45 432.2–

463.7

0.01 � 10�4–14.46 � 10�4 (Hojjati et al., 2007)

Fluvastatin C24H26FNO4 411.4 308–348 121.6–354.6 45 467–470 0.05 � 10�4–6.01 � 10�4 (Hojjati et al., 2007)

Lovastatin C24H36O5 404.5 308–348 121.6–354.6 45 447.5 0.11 � 10�4–1.14 � 10�4 (Hojjati et al., 2007)
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Fig. 3 The schematics of the used MLPNN structure for prediction of Chloroquine solubility in sc-CO2.

Fig. 4 Variations of the MSE with epoch during the different

steps of the ANN.
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Due to the dependence of the ANN performance on the ini-

tial weights that are randomly selected in the training step, the
best network is characterized with the number of the iterations
on this step. The final/adjusted weights matrix and the associ-

ated biases from the optimum condition are determined and
the neural network (ANN) is run. So, by using a large amount
of experimental data in the network, the network is well

trained and has provided acceptable and appropriate results.
Fig. 5 shows the scatter diagrams compare the experimental

data (target) with the ANN computed results in each step
including training, validation and testing. As can be seen, the

predicted solubility values are well consistent with the experi-
mental data for all steps. The correlation coefficients (R2)
were found to be 0.99955, 0.99951, 0.99911 and 0.99955 for
training, validation, testing and all data, respectively, which
are totally satisfactory and acceptable. The optimal opera-
tional conditions in terms of pressure, temperature and density

to obtain the maximum Chloroquine solubility in sc-CO2 were
determined with the ANN model coupled with the genetic
algorithm (GA). According to the obtained results, maximum

solubility of Chloroquine in terms of its equilibrium mole frac-
tion (y = 8.00 � 10�4) was obtained at 338 K and 400 bar,
which is in agreement with the experimental reported one

(y = 8.92 � 10�4) (Pishnamazi et al., 2021).

7.2. Thermodynamic modeling

7.2.1. Cubic equation of states (SRK-EoS and PR-EoS)

These two cubic equation of states were frequently applied to
correlate the solubility of different drugs in sc-CO2. Also, the

van der Waals (vdW) mixing rule with two binary interaction
parameters (lij and kij) is the most well-known mixing rule pro-
posed for definition the terms of a(T) and b of these EoSs

(Table 2), as follows (Kennedy, 2011):

am ¼
X
j

yiyj
ffiffiffiffiffiffiffiffi
aiaj

p ð1� kijÞ ð19Þ

bm ¼
X
j

yiyj
ðbi þ bjÞ

2
ð1� lijÞ ð20Þ

The simulated annealing (SA) algorithm (Sodeifian et al.,
2020) was used to determine the optimum values of the lij
and kij parameters, through minimizing the AARD% value.

These parameters are linear descending functions of tempera-
ture whose slope and intercept are determined by the linear
regression analysis. Obtained lij and kij functions for the PR-

EoS and SRK-EoS are in the form of Eq. (21) and Eq. (22),
respectively. Also, these linear functions with the negative
slope were indicated in Fig. 6:



Fig. 5 Comparison between the experimental values and the output data of the ANN model during the different steps of the ANN.

Fig. 6 Linear function of lij and kij versus the temperature (a) PR-EoS, and (b) SRK-EoS.
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lij ¼ �0:0187T þ 5:5418 & kij

¼ �0:0044T þ 1:2015 ð21Þ

lij ¼ �0:0048T þ 0:6055 & kij

¼ �0:0054T þ 0:8462 ð22Þ
The optimized lij and kij parameters of the Chloroquine /sc-

CO2 system, along with the statistical parameters (AARD%,
Radj and F-value) of the SRK-EoS and PR-EoS were reported
in Table 5.
Furthermore, the correlated and experimental solubility

values at different temperatures (308, 318, 328 and 338 K) were
shown in Fig. 7. As can be seen, both of the models can pro-
vide acceptable results at all the considered temperatures.

However, according to the average of the obtained AARD%
values (9.99 for PR-EoS and 10.7 for SRK-EoS) and Radj val-
ues (0.993 for PR-EoS and 0.945 for SRK-EoS), it can be con-

cluded that PR-EoS can more accurately correlate the
solubility of Chloroquine in sc-CO2. For better comparison,
the parity plots of the experimental solubility data versus the



Table 5 Correlation results for solubility of Chloroquine in sc-CO2, by PR and SRK combined with the vdW2 mixing rule.

Model Parameter T = 308 K T = 318 K T = 328 K T = 338 K

PR- vdW2 k12 �0.150 �0.194 �0.238 �0.282

l12 �0.218 �0.405 �0.592 �0.779

AARD % 6.628 4.404 13.771 15.187

F value 4745.7 7808.9 1963 416.2298

Radj 0.998 0.999 0.996 0.981

SRK- vdW2 k12 �0.817 �0.871 �0.925 �0.979

l12 �0.873 �0.921 �0.969 �1.017

AARD % 7.28 5.20 14.12 16.21

F value 16.9 107.0 50.3 13.7

Radj 0.92 0.99 0.97 0.90

Fig. 7 Comparison of experimental (points) and calculated (line) solubility of Chloroquine in sc-CO2,(left column) along with the related

parity plot (right column), based on (a) PR-EoS, and (b) SRK-EoS models.
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correlated ones at 308 K and 338 K were also demonstrated in
Fig. 7. Higher precision of the PR-EoS model for correlation
of the Chloroquine solubility is quite evident. Moreover,

according to the obtained determination coefficients (R2) of
these plots, it is completely obvious that the accuracy of the
correlation via both of the models reduces with increasing

the temperature.
7.2.2. Expanded liquid theory (Modified Wilson’s and

UNIQUAC models)

For correlation of the Chloroquine solubility in sc-CO2 based
on the expanded liquid theory, its activity coefficient was
determined via the modified Wilson’s and UNIQUAC models.

The capability of the modified Wilson’s and UNIQUAC mod-



Fig. 8 (a) Comparison of experimental (points) and calculated (line) solubility of Chloroquine in sc-CO2 based on the modified Wilson’s

model, (b) The related parity plot.
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els to correlate the Chloroquine solubility was illustrated in
Fig. 8 and Fig. 9, respectively.

Also, optimized regressed parameters of the modified Wil-
son’s model (a, b, k’12 and k’21) and UNIQUAC model (a12,
a21, b12 and b21,), along with the obtained statistical parame-

ters (AARD%, Radj, and F-value) of each model for the
Chloroquine /sc-CO2 binary system were reported in Table 6
and Table 7, respectively. The volume (r), and surface area
(q) parameters of the UNIQUAC model were obtained as

13.089 and 10.117 for Chloroquine, and 1.296 and 1.261 for
CO2, respectively. Additionally, the interaction parameters of
the Wilson’s model (K12 and K21Þ were calculated for each data

point of Chloroquine /sc-CO2 system. The values K12and K21

parameters were calculated that, significant difference between
these two parameters and higher value of K12parameter in

comparison with K21, have been previously reported for com-
plex solute molecules [13, 14, 82].

Low AARD% values (10.33 for Wilson and 12.3 for

UNIQUAC models) and high Radj values (0.97 for Wilson
and 0.96 for UNIQUAC models), confirm the satisfactory pre-
cision of these models to correlate the Chloroquine solubility
Fig. 9 (a) Comparison of experimental (points) and calculated (lin

model, (b) The related parity plot.
data. Good consistency between the calculated solubility val-
ues by the modified Wilson’s and the UNIQUAC models

and the reported experimental ones was also shown in the
related parity plots shown in Fig. 8 and Fig. 9, respectively.

7.3. Comparison between the mentioned theoretical models and
the empirical models used by Ponticelli and Moroni (2017)

As described in pervious sections, Pishnamazi et al. (2021)
determined the supercritical solubility of Chloroquine and cor-

related the obtained experimental data via some empirical
models (Kumar & Johnston (KJ), Mendez-Santiago-Teja
(MST), Chrastil, Bartle et al., and Garlapati &Madras mod-

els). In the continuation of this research, some thermodynamic
models (PR-EOS, SRK-EoS, UNIQUAC, modified Wilson’s
models), and the ANN model were used in this work to corre-

late the supercritical solubility data of Chloroquine, reported
by Ponticelli and Moroni (2017). Table 8 shows the compar-
ison of these models in terms of their AARD% values.

As can be seen, the precision of the ANN model to corre-
late the Chloroquine supercritical solubility data is signifi-
e) solubility of Chloroquine in sc-CO2 based on the UNIQUAC



Table 6 Correlation results for solubility of Chloroquine in sc-CO2 by modified Wilson’s model.

Model a b k’12 k’21 AARD % F value Radj

Modified Wilson �5.09 � 10-5 2.85 � 10-4 �1.38 18.49 10.33 254 0.97

Table 7 Correlation results for solubility of Chloroquine in sc-CO2 by UNIQUAC model.

Model a12 a21 b 12 b 21 AARD % F value Radj

UNIQUAC 41.88 13.93 �0.45 �9.20 12.30 91.02 0.96

Table 8 Comparison of different models used to correlate

Chloroquine solubility in scCO2.

Model AARD

%

Empirical models

(reported by Pishnamazi et al.

(Pishnamazi et al., 2021)

Kumar & Johnston

(K-J)

12.3

Mendez-Santiago-

Teja (MST)

12.0

Chrastil 13.3

Bartle et al 13.0

Garlapati &Madras 13.6

Cubic EoS- based models PR-EoS 9.98

SRK-EoS 10.70

Expanded liquid models UNIQUAC 12.30

Modified Wilson’s 10.33

Intelligent model Artificial neural

network (ANN)

1.76
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cantly more than the other ones. Also, despite the simplicity of
the empirical models, their accuracy to fit the experimental

Chloroquine solubility data is lower than the thermodynamic
and intelligent models used in this work.

7.4. Molecular modeling

7.4.1. Estimated contact zones of Chloroquine

An analysis of the contact zones of Chloroquine showed that
the most effective among them are the zones located near the
N atom of pyridine and the hydrogen atom of the NH frag-
ment. Therefore, it can be assumed that these atoms partici-

pate in the formation of a hydrogen bond during the
formation of intermolecular contacts. The next in terms of
the efficiency of contact formation, despite the low polarity,

are the hydrogen atoms of the quinoline ring and the hydrogen
atoms of the alkyl CH, CH2, and CH3 fragments. We may sug-
gest the formation of lipophilic contacts of the groups with

nonpolar atoms.
Indeed, consideration of the crystal fragment showed that

the formation of a crystal is carried out with the participation

of these fragments of the molecule. Fig. 10 shows the contact
zones determined using the principles of VSEPR theory and
3D maps of Chloroquine electron density, estimated by the
AlteQ orbital-free quantum chemical method.
7.4.2. Overlap zones and topological analysis of electron density
of Chloroquine crystal fragment

Fig. 11a demonstrates the overlap zones of a molecule with the
neighbors in a crystal fragment. Fig. 11b demonstrates the

same zones in the molecule taken from the crystal fragment.
Indeed, the N of the pyridine forms a hydrogen bond with

H of NH group, and the lipophilic nonpolar CH, CH2, CH3

fragments, as well as quinoline hydrogens, form intermolecular
van der Waals interactions with each other (Fig. 11).

The topological analysis of the electron density of the crys-
tal fragment showed that for the Chloroquine molecule, the

formation of a significant number of weak lipophilic H. . .H
and C. . .H contacts with neighboring molecules with an elec-
tron density of q 3;�1ð Þ ¼ 0:0151� 0:0288 a:u: (e/Bohr3) and

q 3;�1ð Þ ¼ 0:0287� 0:0301 a.u. respectively in (3,-1) bond critical

points is observed. These intermolecular interactions are local-
ized near the alkyl fragments, namely, near the CH, CH2, CH3

groups (Fig. 11b). In addition, one of the CH3 groups is
located near the pyridine ring of the quinoline fragment
(Fig. 11b) with the electron density of q 3;�1ð Þ ¼ 0:0714 a:u .

Weak p-stacking interactions are absent. Chlorine is in contact
with the carbon atom of the pyridine ring, the value of the elec-

tron density at the critical point (3,-1) is low
q 3;�1ð Þ ¼ 0:0321a:u: There are 4 N. . .H contacts, but they do

not have a hydrogen-bonded character, because hydrogens
belong to CH3 groups, and moderate electron density values
of q 3;�1ð Þ ¼ 0:0365� 0:0899 a:u: are also observed in such

N. . .H (3,-1) bond critical points. Only 2 N. . .H contacts,
namely N(pyridine). . .HAN(amine) and NAH(amine). . .N
(pyridine) contacts are typical hydrogen bonds with
q 3;�1ð Þ ¼ 0:1554 a:u.

Thus, the compound dissolved in carbon dioxide crystal-
lizes with the formation of intermolecular contacts due to
the most pronounced contact zones which determine crystal

structure. First of all, the N(pyridine). . .H(NH fragment)
hydrogen bond is formed; in addition, less effective lipophilic
interactions of alkyl fragments are generated. Obviously, upon

dissolution, the destruction of the crystal will be due to more
vulnerable lipophilic interactions, and then by the destruction
of the hydrogen N(pyridine). . .H(NH fragment) bond.

7.4.3. Overlap zones and topological analysis of electron density
of Chloroquine-CO2 complexes

Overlap zones of Chloroquine-CO2 complexes also in a good

agreement with the predicted contact zones of the Chloro-
quine. It was found that, regardless of the mole fraction, the



Lypophilic zones
π-stacking

Hydrogen bond

Lypophilic zones

Fig. 10 Contact zones determined using principles of VSEPR theory and 3D maps of Chloroquine electron density estimated using

AlteQ orbital-free quantum chemical method.

Fig. 11 Overlap zones of Chloroquine (a) a single molecule in the crystal fragment, and (b) a single molecule extracted from the crystal.
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location of one CO2 molecule is necessarily carried out near
the H(NH) fragment, due to the formation of a O. . .H(NH)

hydrogen bond (Fig. 12 a,b). The electron density value at
the critical point doesn’t exceed q 3;�1ð Þ ¼ 0.0690 a.u (the dis-

tance is 2.421 Å). In addition, the CO2 carbon atom forms
intermolecular interactions with the hydrogen atom of the ben-
zene ring and the hydrogen atom of the CH2 group (Fig. 12 a,

b). The values of electron densities are not high, for example,
in the complex with 1:1 composition and 1.64�10-5 mol fraction,
the values q 3;�1ð Þ ¼ 0.0285 a.u. and 0.0321 a.u. (the distances

are 2.973 Å and 2.985 Å). The increase of the pressure and
the number of CO2 molecules increases the number of lypophi-
lic contacts of C(CO2) with hydrogens of CH,CH2,CH3 groups
(Fig. 12b). Then, the increase of number of explicit CO2 mole-

cules shows that the formation of p-stacking interactions of the
CO2 p -system and the quinoline ring with low electron density
values of q 3;�1ð Þ ¼ 0.0166–0.0234 a.u. is possible (Fig. 12b).

Thus, the values at critical points show a less efficient inter-
action of CO2 with Chloroquine, compared with interactions

in the crystal, so the crystallization of Chloroquine from solu-
tion is simplified and in this case, the formation of a
Chloroquine-CO2 cocrystal is unlikely, which leads to the pro-
duction of pure Chloroquine upon crystallization from a solu-

tion in CO2.



Fig. 12 Overlap zones of Chloroquine with CO2 in their complexes obtained using MOPS algorithm, compositions are, (a) 1:1 (mole

fraction is 1.64 10-5), and (b) 1:6 (mole fraction is 8.92 10-4).

Theoretical and experimental study on Chloroquine drug solubility 15
8. Conclusion

It has been approved that pharmaceutical particles in micro/nano scale

possess higher bioavailability and fewer side effects. Supercritical fluid

(especially supercritical carbon dioxide (sc-CO2) based processes are

the novel and update approaches for this purpose. For design an efficient

sc-CO2 based process, the solubility of pharmaceutical substance should

be measured at a wide range of temperatures and pressures. However,

experimental solubilitydetermination is costly, timeconsumingandcom-

plex process. Therefore, various theoretical methods have been devel-

oped for prediction the solubility of different components in sc-CO2.

Chloroquine is a traditional antimalarial and antivirus medicine

which is also prescribed for treatment the COVID-19 patients. Pishna-

mazi research team measured the Chloroquine solubility in sc-CO2 in

the range of 1.64 � 10�5 to 8.92 � 10�4 (in terms of mole fraction)

at different pressures (120–400 bar) and temperatures (308–338 K).

Also, they correlated the obtained solubility data via some commonly

used empirical models (Kumar & Johnston (KJ), Mendez-Santiago-

Teja (MST), Chrastil, Bartle et al., and Garlapati &Madras models).

In the present study, two equation of states based models (Peng-

Robinson (PR-EoS) and Soave-Redlich-Kowang (SRK-EoS)), two

activity coefficient based models (modified Wilson’s and UNIQUAC),

and artificial neural network (ANN) model were applied for prediction

the solubility of Chloroquine in sc-CO2. Then, the predictability and

accuracy of these methods was evaluated through calculating some sta-

tistical parameters such as average absolute relative deviation (AARD

%), adjusted correlation coefficient (Radj) and F-value. According to

the obtained results, all of these models show acceptable accuracy

for predicting the Chloroquine solubility in sc-CO2. Among them,

the ANN model is the most accurate with the lowest AARD% value

of 1.76 % and the highest Radj value of 0.999. The predicted solubility

values by the ANNmodel are in the highest consistency with the exper-

imental ones. Moreover, molecular modeling was performed to study

the electronic structure of Chloroquine and identify the potential cen-

ters of intermolecular interactions during the dissolution process.
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