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Abstract As a green agricultural resource and a new alternative protein, edible insects have the

potential to become an excellent source of biopolymer. In this study, a new ternary blend compos-

ites were formed based on the mixture of edible grasshopper protein and soybean protein isolates by

adding pullulan (PUL). The combined effect of incorporation of antimicrobial agent methyl hes-

peridin (2.5 %, 5 %, 7.5 % and 10 %) was investigated. The addition of PUL can greatly improve

the tensile strength of protein blend composites but has no positive impact on elongation at break.

5 % methyl hesperidin can further increase tensile strength to 7.36 MPa with no deterioration on

elongation at break. The SEM and XRD results showed good compatibility between PUL and pro-

tein blend. The WVP and WCA results showed that the hydrophobicity of composites increased

slightly. Moreover, thermal analysis presented that the thermal stabilities of composites were

impaired. The increasing of methyl hesperidin content enhanced antibacterial activity against

E. coli and S. aureus of ternary blend film, proving its application value as active packaging.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Biopolymer are widely used in food, medicine and materials due to

their biocompatibility and biodegradability. As an application scenario

of biopolymer, edible film has become a major research direction in the

field of food packaging since it was commercial in the 1960s because it

helps to mitigate the increasingly serious plastic pollution problem. As

one of the important raw materials of edible film, protein is mainly

extracted from plants and animals. The most widely used and commer-

cial animal-derived proteins are gelatin, which mainly extracted from

pig skin (46 %), bovine hides (29.4 %), pig and cattle bones
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(23.1 %) (Luo et al., 2022). This does not apply to Halal and Kosher

consumers with religious taboos (Muslim and Jewish communities,

making up about 23 % of global population) (Huang, et al., 2019).

In addition, frequent outbreaks of livestock diseases (such as bovine

spongiform encephalopathy, foot-and-mouth disease and swine

influenzas) have raised concerns about the safety of consumption of

such products (Lv, et al., 2019). These restrictions on use sparked a

strong interest in finding alternatives.

As the largest animal group on earth, insects are known to have up

to 5.5 million species, which is the largest untapped biological resource

in nature. The use of insect-derived proteins as biopolymer materials

mainly derived from insect secretions which can be traced back to

3000 BCE in China, where silk was used as textile materials for cloth-

ing (Reddy et al., 2021). Entomophagy, the practice of eating insects,

has developed into a cuisine culture in many regions. Nowadays more

than 2000 species of edible insects are consumed by more than 2.5 bil-

lion people because of their rich nutritional content and good taste.

Protein is the most abundant nutrient component of edible insects,

up to 750 g/kg on a dry matter basis, higher than beans (23.5 % of pro-

tein), lentils (26.7 %) or soybean (41.1 %) (Haber et al., 2019,

Zielińska et al., 2015). Compared with traditional animal derived pro-

tein, edible insects are a more environmental-friendly and sustainable

agricultural resource. In addition to its high nutrient protein and min-

erals and easy to digest properties, breeding insects is a green and cir-

cular economy, which has higher feed conversion efficiency and

requires less land and water and emitted fewer greenhouse gases

(Govorushko et al. 2019). Moreover, lower artificial breeding technol-

ogy and costs make it easy to promote employment among the poor.

The global market for edible insects is forecast to exceed $6 billion

by 2030 (Anankware et al., 2021). At present, edible insects are mainly

used as nutrient food and feed supplements. The latest researches

revolve around these two topics. However, as a widely available and

low-cost protein, the huge potential of edible insect proteins as feasible

sources of biopolymer seems to be overlooked and relevant research

was rare. Barbi et al. (2019) and Nuvoli et al. (2021) both tentatively

produced the edible film with protein extracted from black soldier fly

(Hermetia illucens) prepupae using solvent casting method.

Grasshopper, as a troublesome pest in global agriculture, have a long

history of being used as food in many regions. Apart from the advan-

tages of high protein content, short life cycles and fast growth rates

(Clarkson et al., 2018), recent study reported that farming agricultural

pests can be beneficial for protecting crops. In previous studies we

explored the optimal film-forming conditions of grasshopper (Locusta

migratoria) protein and studied the effects of soybean protein isolate

and xylose as cross-linking agents on the performance of the composite

protein film (Zhang et al., 2022a, Zhang et al., 2022b). It is expected to

introduce a polysaccharide as a third phase to further improve the

physicochemical properties of the edible film as antimicrobial

packaging.

As a commonwater-soluble polysaccharide, pullulan (PUL) is devel-

oped through microbial fermentation with a similar structure to starch

(Tabasum et al., 2018). It can be regarded as an intermediate between

amylase and dextran structures due to existence of both a-(1 ? 4) and

a-(1? 6) linkages in a single compound (Singh, et al., 2015). Its excellent

barrier properties (highly impermeable to oil and oxygen), biocompati-

bility and biodegradability make it widely used in food packaging

(Khanzadi et al., 2015). Previous studies showed that PUL has good

compatibility with proteins from common sources (zein and mung bean

protein) and significantly improved mechanical and barrier properties

(Amjadi, et al., 2022, Haghighatpanah, et al., 2022).

Citrus species is one of the most important fruit varieties in the

world, 70 % of which is used to make juice. The production of juice

produces peel waste equal to about 50 % of the weight of the fruit,

which is an excellent source of phenolic compounds. One of the flavo-

noids in the waste, hesperidin, was reported to have good antibacterial

and antioxidant activity (Wang et al., 2021). Methyl hesperidin (MH)

is the methylated derivative of hesperidin with better water solubility

and bioavailability (Pinho-Ribeiro et al., 2015).
Therefore, a new GP/SPI/PUL ternary blend with MH was pre-

pared in this study. The effect of PUL as a new third phase on GP/

SPI protein blend was studied. Furthermore, MH was added in film

as antimicrobial agent to evaluate its antimicrobial activity. The

physicochemical properties of this new ternary antimicrobial film were

characterized.
2. Materials and method

2.1. Materials

Frozen adult grasshoppers (Locusta migratoria) were pur-
chased from a farm in Xi’an (Shannxi, China). SPI was
purchased from Cool Chemical Science and Technology
Co., ltd. (Beijing, China). D-xylose ((98 %, Mw � 150.13)

was purchased from Macklin Biochemical Co., ltd.
(Shanghai, China). PUL was purchased from Hefei
Bomei Biotechnology Co., ltd. (Hefei, China). MH was

purchased from Xi’an Yunyue Biotechnology Co., ltd.
(Xi’an, China).

2.2. Protein extraction

GP were extracted in the same way as described in our previ-
ous study (Zhang et al., 2022a, 2022b).

2.3. Film preparation

6 % GP/SPI/PUL blend were dissolved in deionized water
with 45 % (w/w) glycerol added. The ratio of GP/SPI blend

to PUL was set at 100/0 (control group), 80/20, 75/25 and
70/30. Before the final blend of three phases, protein blend
and PUL were dissolved in deionized water separately and stir-

red for 40 min. Protein solution was prepared according to
GP/SPI (7/3) with 10 % (w/w) xylose added at 80 ℃. After
three phases were completely mixed, MH (2.5 %, 5 %,

7.5 %, 10 %) was added and kept to stir for 40 min at
40 ℃. The solution was cast in PTFE molds (8 � 8 cm) and
dried at 50 �C for 24 h. All samples were labeled as control,

PUL20, PUL25, PUL30, MH2.5, MH5, MH7.5, MH10 in
above order, respectively.

2.4. Film characterization

2.4.1. Scanning electron microscope (SEM)

After soaking in liquid nitrogen, the fractured sections of sam-

ples were sprayed with gold and then put into an equipment
(Jeol, JSM-6700, Japan) to observe the morphology and struc-
ture, setting the accelerating voltage at 3 kV.

2.4.2. Fourier transform infrared spectroscopy (FTIR)

Attenuated total reflectance-Fourier transform infrared (ATR-
FTIR) spectrophotometer was used to scan film samples with

the range at 500～4000 cm�1 wavenumber. (Vetex 70v, Bruker,
Germany).

2.4.3. X-ray diffraction (XRD)

Ternary composites were analyzed by X-ray diffractometer
(Shimadzu, XRD-7000, Japan) from 5� to 40� at 4�/min with
Cu Ka source at 40 kV and 40 mA.
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2.4.4. Mechanical properties

Film samples (75 � 15 mm) were tested with load cell of 500 N

at a speed of 20 mm/min using Electronic Strength Tester
(C610M, Labthink, China) according to the ASTM-D882 with
modifications.

2.4.5. Differential scanning calorimeter (DSC)

DSC was tested by an instrument (DSC 200 F3 Maia�,
NETZSCH, Germany). with the temperature range set at

0 ℃ to 200 ℃ by 10 ℃/min. All samples were heated from
30℃ to 100℃ with 10℃/min, kept for 1 min at 100 �C to elim-
inate thermal history before test.

2.4.6. Thermogravimetric analysis (TGA)

TGA was tested by an instrument (TG 209 F3 Tarsus�,
NETZSCH, Germany), with the temperature range set at

30 ℃ to 550 ℃ and heat/cooling rate at 30 mL/min in nitrogen
atmosphere.

2.4.7. Water vapor permeability (WVP)

WVP was tested by an instrument (PERMETMW3/060, Lab-
think, China) whose test environment was set to 25 ℃ and
50 % RH (relative humidity). The machine automatically cal-

culated the WVP value according to the following equation by
measuring mass change.

WVP ¼ Dm �Xð Þ= A � Dt � DPð Þ
4m: mass change X: film thickness (mm) A: effective film

area (m2).

2.4.8. Water contact angle (WCA)

WCA was tested using a contact angle measurement

instrument (OCA 20, Dataphysics, Germany) based on the
sessile-drop method. Five different sites were selected on a flat
sample surface and drop 2 mL of deionized water each time.

2.4.9. Viscosity

The viscosity of film solution was tested by viscometer
(DV-Ⅱ+ Pro, Brookfield, USA) at different rpm.

2.4.10. Antimicrobial activity

The bacteriostatic test of Gram-positive S. aureus (ATCC
6538) and Gram-negative E. coli (ATCC 25922) was carried

out using inhibition zone method. Sample PUL25 was selected
as control group named as MH0. The sterilized circular sample
(12 mm diameter) was placed on the beef extract peptone med-

ium coated with 200 mL bacterial suspension (�106 CFU/mL).
All samples were incubated at 37 ℃ and 70 % RH for 24 h and
taken out to measure the diameter of inhibition zone.

3. Results and discussion

3.1. SEM

Cross-sectional images of all samples are presented in Fig. 1. In

Fig. 1(a), control group showed no obvious phase separation
structure except creases and insoluble particles, indicating good
compatibility between the two proteins. When PUL added as
third phase, a typical morphology sea-island structure emerged,
which looked more like a binary blend system. PUL was uni-
formly distributed in protein blend as a dispersed phase. With
the increase of PUL content, it is observed that the size of dis-

persed phase also increased, and the aspect ratio of the dis-
persed phase became larger, from nearly round to rod. Saeb
et al. (2012) also found the droplet size increased to some extent

by increasing the weight content of minor phase. The addition
of MH acted as a compatibilizer at the interface, reducing the
interfacial tension and refining the dispersed phase (Moradi

et al., 2020, Shariatpanahi, et al., 2003), and the bonds between
dispersed phases were closer and the intervals were smaller. The
size of dispersed phase was influenced by many factors, includ-
ing viscosity, shear force and temperature. Sui et al. (2019)

pointed out that high shear force was effective to decrease dis-
persed phase size. Rastin et al. (2014) got the conclusion that
average viscosity or elasticity ratio of dispersed phase to matrix

phase determined the size of droplets.

3.2. FTIR

The infrared absorption spectra of ternary blend are shown in
Fig. 2(a) and (b). Amide bond is the characteristic structure of
protein as the connecting unit after dehydration and condensa-

tion of amino acids. The C‚O and CAN stretching vibration
at � 1627 cm�1, NAH bending at � 1558 cm�1, and NAH in-
plane bending with CAN stretching vibration at � 1200–145
0 cm�1 represented amide I, amide II and amide III, respec-

tively (Ramos et al., 2013). The vibration intensity of C‚O
bond in amide I represented number of disordered conforma-
tion and amide II reflected the changes in the hydrogen bonds

around the peptide chains (Li, et al., 2020, Omrani Fard, et al.,
2020). The intensity of amide I and amide II both decreased
indicated that hydroxyl groups in PUL and amino groups in

protein blend were consumed, confirming successful crosslink
between PUL and protein blend through Maillard reaction
(Khadidja et al., 2017). A new peak in the ternary blend

at � 1320 cm�1 after PUL was added, corresponding to –
OH bending vibration (Tong et al., 2008). This suggested that
PUL interacted with proteins to form hydrogen bonds, which
contribute to the formation of dense network (Yang et al.,

2020). The three-dimensional structure of polymer networks
is formed by crosslinking one-dimensional polymer chains,
which can form two types of crosslinks. Hydrogen and ionic

bonds are usually driven by thermal fluctuations to form
dynamic networks, while covalent bonds form permanent sta-
tic networks (Katashima, 2021). During the heating process,

conformational changes occurred first after protein denatura-
tion. Then the interchain disulfide bonds formed after SH
groups are exposed, and ultimate crosslink occurred interchain
isopeptide to form a three-dimensional spatial network

(Azeredo, et al., 2016, Gao et al., 2001). After the PUL was
added, it was connected with the protein through the Maillard
reaction to form a more powerful tridimensional network. The

three peaks at � 755 cm�1, 850 cm�1 and � 921 cm�1 belong
to a-(1,4) glycosidic bonds, a-glucopyranoside units and a-
(1,6) glycosidic bonds in PUL (Aceituno-Medina et al.,

2013), of which the former was only shown in PUL20, while
the latter two overlapped with the vibration peaks (CAC
vibrations) induced by glycerol. (Ciannamea et al., 2014).

The CAO stretching at � 1045 cm�1 was still from glycerol.
The two peaks at � 2850 and � 2925 cm�1 belonged to



Fig. 1 Cross-section SEM images for ternary blend films (a) control (b) PUL20 (c) PUL25 (d) PUL30 (e) MH2.5 (f) MH5 (g) MH7.5 (h)

MH10.
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CAH stretching (Cao et al., 2018). The OAH stretching

at � 3275 cm�1 from PUL overlapped with the NAH stretch-
ing from amide A in the same region and both affected by the
inter-molecular/intra-molecular hydrogen bonds (Wu, et al.,
2013). The peak at � 1107 cm�1 was intensified after PUL

added ascribing to CAO bond at the C4 position of a glucose
residue from PUL overlapping with CAO stretching at C2

from glycerol (Ciannamea et al., 2014, Xiao, et al., 2015).
3.3. XRD

According to previous studies (Haghighatpanah et al., 2020,
Karim et al., 2009), PUL has a distinct characteristic peak

at � 20�, corresponding to a d-spacing of 4.52�, representing
its amorphous structure. The control group also had charac-
teristic peaks at � 20� corresponding to the internal b-sheet
structures of protein blends (Xia et al., 2016), as shown in



Fig. 2 ATR-FTIR spectra and XRD patterns of ternary blend films.
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Fig. 2(c). The decreased intensity of peak in PUL20 and

PUL30 represented decreased crystallinity, indicating the
intramolecular connection and the original ordered crystal
structure were destroyed to some extent (Ahmed et al., 2020,

Vinodhini et al., 2017). The XRD pattern changed little before
and after MH addition, indicating that the interaction between
MH and substrate may occur in the amorphous region without

affecting the ordered crystal structure (Moghadam, et al.,
2020). Zhang et al., (2020) observed that excessive cinnamalde-
hyde reduced the crystallinity of polymer due to the agglomer-
ation and consuming space. Narasagoudr et al., (2020) found

that 0.6 % rutin added in film increased crystallinity. Com-
bined with above XRD results, it is suggested that the addition
amounts of phenolic compounds should be controlled within a

small scale in order not to reduce the crystallinity of materials.

3.4. Mechanical properties

The data of TS and EAB is presented in Fig. 3. When PUL is
one of the components of blend film, it is not easy to increase
TS substantially while keeping EAB basically stable or even

growing. Especially when mixed with other polysaccharides,
the TS of blend film usually increased, but EAB decreased sig-
nificantly and not more than 6 %. Wu et al. (2013) reported

the result that TS of chitosan/PUL blend increased from
48.8 MPa to 61.5 Mpa but EAB decreased from 19.2 % to
2.78 %. Prasad et al. (2008) reported the result that TS of

hydroxypropyl methylcellulose/PUL blend increased from
35.51 MPa to 41.42 MPa and EAB decreased from 15.75 %
to 5.55 %. Lian et al. (2020) suggested that the decrease of

EAB was related to the fact that the polysaccharide broke
the hydrogen bonds in the matrix and restricted its fluidity
of the molecular chain as they observed both decrease in TS
and EAB after PUL blended with chitosan. In this study, the

addition of PUL significantly improved the TS of GP/SPI
composite film while the 25 % PUL content increased most
from 3.4 MPa to 7.0 MPa. This result was related to the dense

three-dimensional network formed from the Maillard reaction
between PUL and protein matrix (Qian et al., 2022). The
arrangement and density of intermolecular and intramolecular

interactions within the crosslinked network were closely
related to the structure of polymer, thus determining the
mechanical properties of the film (Al-Hassan et al., 2012).

The effect of 2.5 % MH on blend film is similar to plasticizer,
increasing EAB and decreasing TS. The plasticizer effect of the
addition of phenolic compounds into biopolymers were often
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reported in previous studies, such as mango peel extract com-
bined with pectin (Ribeiro et al., 2021). The best mechanical
properties were obtained with 5 % MH content: TS increased

to 7.36 MPa and EAB stabilized at 38 %. Phenolic compound
can crosslink with proteins through hydrogen bonds to form
stronger interaction relationships and dense networks (Han

et al., 2018). Prodpran et al. (2012) reported that phenolic
compound can crosslinked with amino groups in proteins after
being oxidized into quinone under alkaline conditions. Friesen

et al. (2015) further summarized three ways on phenolic–pro-
tein interactions: (1) orthoquinone reacts with another quinone
to form a dimer; (2) orthoquinone reacts with the amino side
group in peptide; (3) orthoquinone reacts with another ortho-

quinone to form a dimer and cross link two chains together.
Mathew et al. (2007) reported that polysaccharide-
polysaccharide crosslinking reactions could also occur between

phenolic compound and polysaccharides via free radical medi-
ated cross linking, esterification with the hydroxyl groups and
quinone-mediated reactions. Moreover, the finer dispersion

phase with the addition of MH brought larger interfacial area,
which allows the material to absorb more energy before frac-
ture (Moradi et al., 2020). Good compatibility also improved

the interfacial adhesion between phase components and
formed a denser phase structure to strengthen mechanical
properties of the film (Ren et al., 2009). The TS and EAB of
10 % MH samples were both lower than the PUL25, which

was caused by the agglomeration of MH particles leading to
stress concentration (McKay et al., 2021).

3.5. Thermal properties

The obvious endothermic peak appeared on theDSC curve after
mixed with PUL, corresponding to the melting point (Tm) of

ternary blend film, as shown in Fig. 4(a). The thermal stability
datawas listed in Table 1. Intermolecular forces,molecular sym-
metry, and conformational degree of free volume of a molecule

played amajor role in affecting the Tm (Hassannia-Kolaee et al.,
2016). Increasing the ratio of PUL in ternary blend film from
20 % to 30 % led Tm value to increase from 180 ℃ to 190 ℃.
Jia et al. (2020) observed same tendency and attributed it to

the interactions between amino and carboxyl groups of protein
and hydroxyl group of PUL. The result of decrease in Tm after
MH added was related to the plasticizer function of MH men-

tioned earlier. MH reduced the energy required for melting by
Fig. 3 Mechanical properti
increasing the mobility of molecular chains and limiting inter-
molecular interactions (Yang et al., 2020).Moreover,MHcould
interfere with the ordered arrangement of polymer chains and

increase spacing between them (Mohammadi et al., 2020).
Ahmed et al. (2016) also pointed out that small plasticizer mole-
cules affected the Tm by localizing at the crystalline and amor-

phous interfaces. The reduction of glass transition
temperature (Tg) caused byMHadditionwas also closely bound
up with this plasticizer effect.

As a neutral polysaccharide, PULhas better thermal stability
than charged polysaccharide (Zhu et al., 2014). The T10 (Tem-
perature of weight loss at 10 %) decreased significantly after
PUL was added, indicating faster decomposition speed than

control group. The T10 decreased further with the addition of
MH in ternary blend. Moreover, the T10 continue to decrease
with the increase in the amount ofMH.The initialmass loss here

is associated with evaporation of water vapor absorbed by the
film and loss of low molecular weight compounds (He et al.,
2019). The films with MH were more hygroscopic, thus degrad-

ing faster than control group. The most part of film degradation
occurred between 180℃ and 400℃. In this temperature interval,
glycerol and lower molecular weight protein were first lost, and

then themain chains of proteins andPULbegan to degrade (Qin
et al., 2019,Wu, et al., 2020). T50 (Temperature of weight loss at
50 %) can be approximated to the temperature of maximum
decomposition rate. The T50 of all samples were stabilized

between 300℃ and 310℃, in other words, the degradation tem-
perature ofmain polymer chain of all samples tended to be close,
indicating that the modification had no effect on main polymer

chain backbone. In the end,more than 23%of the residualmass
was left due to the high content of incombustible minerals and
impurities in films. (Roy, 2021).

3.6. WVP

The WVP of pure PUL sample was 1.05 � 10-11 (g/cm�s�Pa),
lower than the control group, as shown in Fig. 5(a). After
incorporation of PUL, the WVP of PUL25 and PUL30
decreased slightly due to the formed crosslinked network men-
tioned before. With the further addition of MH, WVP began

to decrease when MH supplemental level was more than
5 %. The sugars moieties of MH can form hydrogen bonds
with the free water retained by film and the substrate itself

to produce a denser structure, thus reducing the mobility of
es of ternary blend films.



Fig. 4 DSC and TGA curves of ternary blend films.

Table 1 Thermal stability data for prepared films.

Samples Tg (�C) Tm (�C) T10 (�C) T50 (�C) Mass loss (%)

Control 105.5 187.3 301.8 25.3

PUL20 92.4 179.9 140.2 298.3 23.3

PUL25 85.3 189.6 166.4 312.3 24.3

PUL30 95.1 190.8 150.7 301.8 23.2

MH2.5 103.1 194.9 147.5 310.9 27.3

MH5 103.3 177.3 139.3 313.9 26.5

MH7.5 94.2 180.2 126.8 301.5 24.7

MH10 93.5 184.3 129.3 304.2 24.6
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water molecules in film to decrease WVP. (Friesen et al., 2015).
However, there is no consistent effect of phenolic compounds
on the WVP of packaging film. Haghighi et al., (2019) found
five different types of 1 % essential oil all increased WVP of

chitosan–gelatin films because the uneven structure caused
by bubbles and oil droplets impaired the intermolecular forces
and led to an open structure that facilitated the passage of

water molecules. Shojaee-Aliabadi et al., (2013) added Satureja
hortensis essential oil decreasing WVP of j-carrageenan-based
films significantly because hydrophobic dispersed phase could

increase the tortuosity factor. Mathew et al., (2007) reported
the incorporation of ferulic acid improved crosslinking degree
and resulted in a better organized network to decrease WVP.
Alexandre et al., (2016) found that ginger essential oils had

no obvious effect on the WVP of gelatin-based film because
they occupied the low part in dispersed systems. Hosseini
et al., (2015) mentioned that the proportion of hydrophilic

and hydrophobic components of film determined the WVP.
These widely divergent results suggested that substrate type,
polarity, morphology and amount of phenolic compound

could affect their interaction, thus influencing the WVP.

3.7. WCA

The WCA of ternary blend films were shown in Fig. 5(b).
According to previous studies (Lee et al., 2019, Zhao et al.,
2019), the WCA of PUL films was between 50� and 60�, larger
than the control group. After blending with PUL, the maxi-
mum WCA of film was increased from 29� to 37.6�. The
crosslinking of proteins with polysaccharides depleted hydro-
philic groups such as hydroxyl and amino groups forming a
denser structure, resulting in the improvement of WCA (Qin,

et al., 2020). The subsequent addition of MH did not signifi-
cantly improve the WCA of film, and WCA was still not more
than 40�, presenting a hydrophilic nature. Actually, the phys-

ical and chemical properties (surface energy and roughness)
of material surface had a greater impact on the WCA, and
many work to greatly improve the surface hydrophobicity

was via surface treatment. The classical Wenzel Model showed
that the increase of roughness can make the hydrophilic sur-
face (h < 90�) more hydrophilic and the hydrophobic surface
(h greater than 90�) more hydrophobic (Quéré, 2008). Hurwitz

et al. (2010) proved that the presence of divalent cations on
film surface resulted in better hydrophilicity. Thus, for hydro-
philic substrates like we used in this paper, it may be a good

idea to improve WCA greatly by regulating the surface prop-
erties of film.

3.8. Viscosity

Several factors could determine the viscosity of solutions, such
as impregnation properties, size and structure of solute mole-

cules (Wu et al., 2011). The protein blend of the control group
had a very low viscosity due to its effective volume was close to
the volume of protein chains (Tong et al., 2022). It was
observed from Fig. 6 that the overall viscosity of the film-



Fig. 5 (a) WVP and (b) WCA of ternary blend films.

Fig. 6 Viscosity of ternary blend films.
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forming solutions increased substantially after PUL was
added. The crosslinking, expansion, unfolding and aggregation

of polymer chain all can increase the viscosity of solutions (Wu
et al., 2011). In sample PUL 20 and PUL 25, crosslinking con-
tributed more on viscosity. In sample PUL 30, aggregation was

more decisive, thus decrease the mechanical properties. The
typical shear thinning behavior of non-Newtonian fluids can
be observed at low rpm. This phenomenon was ascribed to

the fact that rate of intermolecular junctions was disrupted fas-
ter than the reformation as the shear rate increased and the ori-
entation of polymer chains along the stream line of the flow
(Chang et al., 2021, Kaczmarek, et al., 2020). The addition

of MH also increased the viscosity due to the filler van der
Waals interaction (Tang et al., 2018), but far less than the
effect of PUL on the blend.
3.9. Antimicrobial activity

The diameter of inhibition zones against S. aureus and E. coli
are plotted in Fig. 7. A concise schematic diagram of experi-

ment is presented in Fig. 8. The films were more sensitive to
S. aureus and began to exhibit antibacterial activity at a con-
centration of 5 % MH, lower than against E. coli. Further-
more, the inhibition zones for S. aureus were larger than

E. coli indicated stronger inhibiting effect on S. aureus for
the reason of good barrier effect from lipopolysaccharide layer
around the cell wall of Gram-negative bacteria (Benavides,

et al., 2012). Several factors, such as molecular conformation,
hydrophobicity, solubility, sugar moiety and the type of sugar
in the chemical backbone, all could take effect on antibacterial

activity of flavonoids (Iranshahi et al., 2015). Flavonoids



Fig. 8 The schematic diagram of experiment.

Fig. 7 The diameter of inhibition zones.
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mainly interfere with energetic metabolism and cytoplasmic
membrane function, inhibit nucleic acid and cell membrane

synthesis to achieve antibacterial function (Xie et al., 2015).
Common extracts (hesperidin, rutin, naringin) from citrus peel
are very similar in structure and have huge amount of hydroxyl
groups, adhering to the cell membrane by hydrogen bonding

and destroy its structure or produce delocalized electrons to
affect the normal function of the cell (Chibane et al., 2018).
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Gyawali et al., (2014) also mentioned the effect of hydroxyl
groups’ position and number of double bonds on antibacterial
activity. Pauli et al., (1987) confirmed the powerful antifungal

effects after attached alkyl or methoxy groups.

4. Conclusion

The GP/SPI/PUL ternary blend composites showed good compatibil-

ity and the section morphology was more like a two-phase distributed

sea-island structure. 25 % PUL can increase the TS of ternary compos-

ites from 3.4 MPa to 7.0 MPa on the premise of keeping EAB stable.

Excessive MH reduced crystallinity and impaired the mechanical prop-

erties of ternary composites, especially the decrease of EAB. The bar-

rier properties and hydrophobicity of film increased slightly after

modification. In addition, ternary composites exhibited lower initial

decomposition temperatures and glass transition temperatures, damag-

ing the thermal stability. The final antimicrobial test showed good bac-

teriostatic properties on E. coli and S. aureus of ternary blend with

addition of MH. This study proved a great application prospect of edi-

ble insect protein in active packaging. As for the GP/SPI/PUL com-

posites, there is still large room for improvement on the water

resistance and barrier properties.
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A., 2015. Selected species of edible insects as a source of nutrient

composition. Food Res. Int. 77 (3), 460–466.

http://refhub.elsevier.com/S1878-5352(23)00024-2/h0310
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0310
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0315
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0315
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0315
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0320
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0320
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0320
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0320
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0325
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0325
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0325
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0330
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0330
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0330
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0330
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0330
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0335
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0335
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0335
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0340
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0340
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0340
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0340
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0345
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0345
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0345
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0345
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0345
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0350
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0350
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0350
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0355
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0355
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0355
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0355
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0360
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0360
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0360
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0365
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0365
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0365
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0365
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0370
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0370
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0370
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0370
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0375
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0375
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0375
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0375
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0380
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0380
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0380
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0380
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0385
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0385
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0385
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0385
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0390
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0390
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0390
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0390
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0395
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0395
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0395
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0400
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0400
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0400
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0405
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0405
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0405
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0405
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0410
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0410
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0410
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0410
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0415
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0415
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0415
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0415
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0420
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0420
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0420
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0420
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0425
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0425
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0425
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0430
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0430
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0430
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0435
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0435
http://refhub.elsevier.com/S1878-5352(23)00024-2/h0435

	Novel grasshopper protein/soy protein isolate/�pullulan ternary blend with hesperidin derivative �for antimicrobial edible film
	1 Introduction
	2 Materials and method
	2.1 Materials
	2.2 Protein extraction
	2.3 Film preparation
	2.4 Film characterization
	2.4.1 Scanning electron microscope (SEM)
	2.4.2 Fourier transform infrared spectroscopy (FTIR)
	2.4.3 X-ray diffraction (XRD)
	2.4.4 Mechanical properties
	2.4.5 Differential scanning calorimeter (DSC)
	2.4.6 Thermogravimetric analysis (TGA)
	2.4.7 Water vapor permeability (WVP)
	2.4.8 Water contact angle (WCA)
	2.4.9 Viscosity
	2.4.10 Antimicrobial activity


	3 Results and discussion
	3.1 SEM
	3.2 FTIR
	3.3 XRD
	3.4 Mechanical properties
	3.5 Thermal properties
	3.6 WVP
	3.7 WCA
	3.8 Viscosity
	3.9 Antimicrobial activity

	4 Conclusion
	CRediT authorship contribution statement
	Acknowledgements
	References


