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Abstract This study, for the first time, applies multivariate spectrophotometric calibration for

simultaneous determination of three pyrimidine bases including uracil (URA), cytosine (CYT)

and thymine (THY). Although determination of these bases is of great importance from a physio-

logical and pharmaceutical perspective, it could be a difficult task since there is some sort of spectral

overlapping. The principal component regression (PCR) and partial least-squares (PLS) model were

used to overcome this problem and to construct the calibration sets containing URA, CYT and

THY in the concentration range of 1.12–22.42, 1.11–27.78 and 1.26–25.22 lg mL�1, respectively.

The absorption spectra were recorded from 220–320 nm. The results showed that the NPCs for

URA, CYT and THY were 6, 5 and 4 by PCR and 4, 5 and 3 by PLS, respectively. In addition,

the RMSEPs for URA, CYT and THY were 0.7067, 0.5093 and 0.6371 by PCR and 0.5469,

0.2700 and 0.5087 by PLS, respectively. The proposed method yielded recoveries ranging from

93.85 to 107.45 by PLS and 90.48 to 111.42 by PCR. The method was successful in simultaneous

determination of the three bases in urine, serum and plasma.
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Pyrimidine bases are the building blocks in both DNA and
RNA which in turn play important roles in cell metabolism.
Base changes in DNA may seriously affect the structure and
function of products of gene expression protein, which is con-
sidered the main cause of inherited diseases and most human

cancers (Vnencak-Jones, 1999; Lane, 1999; Lindblom and
Nordenskjold, 1999). Among the pyrimidine bases, uracil
(URA), cytosine (CYT) and thymine (THY) can be mentioned.

URA, a common and naturally occurring pyrimidine deriv-

ative (Garrett and Grisham, 1997), originally was discovered in
1900 and was isolated by hydrolysis of yeast nuclein that was
found in bovine thymus and spleen, herring, sperm, and wheat

germ (Brown, 1994). URA can be used for drug delivery and
also as a pharmaceutical drug. URA is used in the body to help
carry out the synthesis of many enzymes necessary for cell

functions through bonding with riboses and phosphates
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(Garrett and Grisham, 1997). It serves as an allosteric regula-

tor and coenzyme for reactions in the human body and in
plants. URA is also involved in the biosynthesis of polysaccha-
rides and the transportation of sugars containing aldehydes
(Brown, 1998). It can also increase the risk for cancer in cases

where the body is deficient in folate (Mashiyama et al., 2004).
URA derivatives containing a diazine ring are used in pesti-
cides (Pozharskii et al., 1997).

CYT is one of the five main bases found in DNA and RNA.
It is a pyrimidine derivative with a heterocyclic ring and two
substituents attached (an amine group at position 4 and a keto

group at position 2) (Kossel and Steudel, 1903). Recently,
CYT has been used in quantum computation. CYT can be
found as a part of DNA, RNA, or a nucleotide.

THY is one of the four bases in the nucleic acid of DNA
and it is also known as 5-methyluracil. THY may be derived
by methylation of URA at the 5th carbon. THY could also
be a target for actions of 5-fluorouracil (5-FU) in cancer treat-

ment. 5-FU can be a metabolic analog of THY (in DNA syn-
thesis) or URA (in RNA synthesis). THY bases are often
oxidized to hydantoins over time after the death of an organ-

ism (Hofreiter et al., 2001).
Many areas such as pharmacological studies, clinical diag-

nosis and DNA damage assay need a quick, inexpensive and

accurate method for the determination of pyrimidine bases
(Cadet and Weinfeld, 1993; Tseng et al., 1994; Lin et al.,
1997; Ames, 1998; Atamna et al., 2000; Ames and Acad,
1999). Because of the central biological significance of nucleic

acids, it is important to know as much as possible about their
function, their structure, and their chemical composition.

High performance liquid chromatography (HPLC) is a

commonly used method for the analysis of pyrimidine bases
(Perrett and Simmonds, 1990; Grune et al., 1993; Minniti
et al., 1998). Capillary electrophoresis (CE) is a powerful alter-

native to HPLC for the separation of charged and polar com-
pounds (Yang et al., 1997; Altria, 1999; Fritz, 2000; Krylov
and Dovichi, 2000). CE has been successfully used for the anal-

ysis of nucleic acids and nucleotides because they are nega-
tively charged in neutral pH buffer (Boyce, 2001; Cohen
et al., 1987; Deforce et al., 1996; Geldart and Brown, 1998).
A spectrophotometric technique is always an acceptable alter-

native chemical analysis method, because of its acceptable pre-
cision and accuracy, associated with its lower cost compared to
other techniques.

Multivariate spectral calibrations are also new standard
methods for performing quantitative spectral analysis. Among
the different regression methods existing for multivariate cali-

bration, the factor analysis based methods including partial
least squares (PLS) regression and principal component regres-
sion (PCR) have received considerable attention in chemomet-

rics (Martens and Naes, 1989). PLS and PCR perform data
decomposition into spectral loadings and scores before model
building with the aid of these new variables. In PCR, the data
decomposition is done using only spectral information, while

PLS employs spectral and concentration data. These tech-
niques are powerful multivariate statistical tools that have been
successfully and widely used in the quantitative analysis of

spectroscopic data. They are strong enough to overcome com-
mon statistical problems such as co linearity, band overlaps and
interactions (Martens and Naes, 1989; Boyce, 2001; Cohen

et al., 1987; Deforce et al., 1996; Geldart and Brown, 1998).
This study aims to use PCR and PLS to develop a suitable

method for simultaneous spectrophotometric determination of
CYT, THY and URA.

2. Experimental

2.1. Chemicals

All the used chemicals were of analytical reagent grade.
Throughout the experiments, double distilled water was used.

CYT, THY and URA were purchased from Fluka, while tri-
chloroacetic acid was supplied from Merck. The stock solu-
tions of CYT, THY and URA were prepared daily, by

dissolving them in a buffer solution (pH = 7.0) that was pre-
pared by KH2PO4 and NaOH (Merck).

2.2. Instrumentation and software

Electronic absorption measurements were carried out on a Jas-
co v-570 spectrophotometer (slit width: 1.0 nm, scan rate:

2000 cm/min) using 1.00 cm quartz cells. Measurements of
pH were made with a Metrohm 692 pH meter using a com-
bined electrode. All spectra were digitized and stored at wave-

lengths from 220 to 320 nm in steps of 1 nm and then
transferred in TXT format to a Pentium 4, 2.4 GHz computer
using MATLAB software, version 7 (The Math Works). PCR

and PLS calculuses were carried out in the PLS Tool box
(Eigenvector Company, Version 2.5).

2.3. Procedure

2.3.1. Calibration set
A mixture design for three components was used for calibra-
tion set. To provide good prediction in PCR and PLS method,
a training set of 36 samples was taken (Table 1). The concen-

trations of CYT, THY and URA were varied between 1.11–
27.78, 1.26–25.22 and 1.12–22.42 lg mL�1, respectively. The
mixed standard solutions were placed in a 10 ml volumetric

flask and completed to final volume with buffer solution
(pH= 7.0). Finally the absorption spectra of all prepared
solutions were recorded between 220 and 320 nm against a
blank of universal buffer.

2.3.2. Prediction set
10 mixtures were prepared randomly for prediction set but due
to employing as an independent test, concentrations were not
present in the previous set. Table 2 depicts the solutions used
for prediction set. The range added to be 3.33–24.45, 2.52–

21.44 and 1.79–17.04 lg mL�1 for CYT, THY and URA
respectively.

2.4. Real sample preparation

2.4.1. Serum and plasma samples
The serum and plasma samples were homogenized. For depro-
teinization, 1 ml of 24% w/v trichloroacetic acid was added
to1 ml of serum and 1 ml of plasma. After 15 min, the resulting

mixtures were centrifuged at 3000 rpm (Khajehsharifi and
Eskandari, 2009). The pH of supernatant solution was fixed
on pH = 7.0 by some amount of NaOH solution. Afterward,

the appropriate amount from the stock solution of CYT, THY



Table 2 Added and founded results of the synthetic mixture of CYT, THY and URA for PLS and PCR.

Mixtures Add (lg/ml) Found (lg/ml) Recovery (%)

URA CYT THY URA CYT THY URA CYT THY

PLS

1 6.72 17.78 2.52 7.03 17.94 2.66 104.61 100.90 105.56

2 11.21 24.45 18.92 11.86 24.13 18.26 105.8 98.69 96.51

3 1.79 10.00 6.31 1.68 9.78 6.28 93.85 97.80 99.52

4 5.60 3.33 21.44 5.37 3.55 21.98 95.89 106.61 102.52

5 13.45 6.67 12.61 13.29 6.36 12.83 98.81 95.35 101.74

6 7.85 21.20 10.09 7.98 21.66 9.85 101.66 102.17 97.62

7 17.04 12.00 11.98 17.37 12.01 12.23 101.94 100.08 102.09

8 3.20 14.00 8.30 3.30 14.11 8.22 103.13 100.79 99.04

9 9.00 8.20 14.10 9.71 8.02 15.15 107.89 97.80 107.45

10 14.80 19.80 16.20 16.12 20.19 16.95 108.92 101.97 104.63

PCR

1 6.72 17.78 2.52 6.08 18.49 2.32 90.48 103.99 92.06

2 11.21 24.45 18.92 10.19 25.27 19.48 90.90 103.35 102.96

3 1.79 10.00 6.31 1.66 9.54 6.39 92.74 95.40 101.27

4 5.60 3.33 21.44 5.86 3.22 20.39 104.64 96.70 95.10

5 13.45 6.67 12.61 14.21 7.09 14.05 105.65 106.30 111.42

6 7.85 21.20 10.09 7.72 21.87 10.81 98.34 103.16 107.14

7 17.04 12.00 11.98 17.82 12.26 11.93 104.58 102.17 99.58

8 3.20 14.00 8.30 3.30 14.35 8.33 103.13 102.50 100.36

9 9.00 8.20 14.10 9.71 8.28 14.13 107.89 100.98 100.21

10 14.80 19.80 16.20 16.12 20.41 16.23 108.92 103.08 100.19

Table 1 Concentration data of mixtures that are used in the calibration set for the determination of CYT, THY and URA.

Mixtures URA (lg/ml) CYT (lg/ml) THY (lg/ml) Mixtures URA (lg/ml) CYT (lg/ml) THY (lg/ml)

M1 22.42 1.11 1.26 M19 13.34 1.11 11.48

M2 19.39 4.89 1.26 M20 16.36 1.11 8.07

M3 19.36 7.78 1.26 M21 19.39 1.11 4.67

M4 13.34 12.56 1.26 M22 19.39 23.89 8.07

M5 10.2 16.33 1.26 M23 16.36 23.89 11.48

M6 7.17 20.11 1.26 M24 13.34 23.89 15.01

M7 4.15 23.89 1.26 M25 10.2 23.89 18.41

M8 1.12 27.78 1.26 M26 7.17 23.89 21.82

M9 1.12 23.89 4.67 M27 10.2 20.11 21.82

M10 1.12 20.11 8.07 M28 13.34 20.11 18.41

M11 1.12 16.33 11.48 M29 16.36 20.11 15.01

M12 1.12 12.56 15.01 M30 19.39 20.11 11.48

M13 1.12 7.78 18.41 M31 19.39 16.33 15.01

M14 1.12 4.89 21.82 M32 16.36 16.33 18.41

M15 1.12 1.11 25.22 M33 13.34 16.33 21.82

M16 4.15 1.11 21.82 M34 16.36 12.56 21.82

M17 7.17 1.11 18.41 M35 19.39 12.56 18.41

M18 10.2 1.11 15.01 M36 19.39 7.78 21.82
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and URA was added to 0.5 ml of the final prepared serum and
plasma. Then it was filled to the final volume (10 ml) with buf-
fer solution to obtain the desired concentration. The electronic

absorption spectrum was recorded in the range of 220–320 nm
against a blank solution of serum and plasma.

2.4.2. Urine sample
The urine sample was diluted 1:3 with double distilled water.
Then cell debris and the particulate matter were removed from

the urine using low-speed centrifugation for 5 min at
1500 rpm. Afterward the pH of the sample was fixed on
pH = 7.0 by some amount of NaOH solution. Then appropri-
ate amount of the stock solution of CYT, THY and URA was
added to 0.5 ml of the final prepared urine and completed to
the final volume (10 ml) with buffer solution to obtain the de-
sired concentration. The electronic absorption spectrum was

recorded in the 220–320 nm against a blank of urine (Khajeh-
sharifi and Eskandari, 2008).
3. Results and discussion

3.1. Spectral characteristics

The electronic absorption spectra of URA, CYT and THY are
shown in Fig. 1. As it can be seen, the spectrum of each com-
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S144 H. Khajehsharifi et al.
ponent is overlapped with each other. Thus, these compounds
cannot be analyzed in the presence of each other by a simple
calibration procedure without prior separation. Therefore
multivariate calibration was used to resolve the spectra and

to determine each component in the mixtures. The composi-
tion data of the solutions are listed in Table 1. On spectral
data, it was recorded in the region between 220 and 320 nm

(1.00 nm steps). The same method was performed for valida-
tion, artificial and unknown samples.

3.2. Univariate calibration

Individual calibration curves were constructed with several
points (Fig. 2), as absorbance versus pyrimidine bases concen-

tration in the range 1.12–22.42, 1.11–27.78 and 1.26–
25.22 lg mL�1 for URA, CYT and THY, respectively. The
maximum wavelength of URA is 259, that of CYT is 267

and that of THY is 265. The wavelengths used to make cali-
bration curves were 220–320 nm. Linear regression results, line
equations and R2 are shown in Fig. 2.

3.3. Multivariate calibration and prediction

Multivariate calibration methods such as PCR and PLS re-
quire a suitable experimental design of the standard that be-
longs to the calibration set to provide good prediction. In
this study, the mixture design was used for experimental de-

sign. It is important to use a method of selection that does
not create an underlying correlation among the concentrations
of the components.

3.3.1. Selection of the optimum number of factors
The optimum number of factors (latent variables) to be in-

cluded in the calibration model was determined by computing
the prediction error sum of squares (PRESS) for cross valida-
tion models using a high number of factors (half the number of

total standard + 1), which is defined as follows:

PRESS ¼
Xn
i¼1
ðĉi � ciÞ2 ð1Þ

where ci is the reference concentration for the i th sample and

ĉirepresents the estimated concentration (Stone, 1974;
Despagne and Massart, 1997). The cross-validation method
is employed to eliminate only one sample at a time and then
PLS calibrates the remaining standard spectra. By using this
calibration the concentration of the sample left out was pre-
dicted, this process was repeated until each standard left out

once.
One reasonable choice for the optimum number of factors

would be the number that yielded the minimum PRESS. Since

there are a finite number of samples in the training set, in many
cases the minimum PRESS value causes over-fitting for un-
known samples that were not included in the model. A solution
to this problem has been suggested by Haaland et al. in which

the PRESS values for all previous factors are compared with
the PRESS value at the minimum (Haaland and Thomas,
1988). The F-statistical test can be used to determine the signif-

icance of PRESS values greater than the minimum. The max-
imum number of factors used to calculate the optimum PRESS
was selected and the optimum number of factors obtained by

PCR and PLS model is summarized in Table 3. PLS and its
relation to PCR and heuristic arguments are presented to ex-
plain that PLS needs fewer factors to give optimal prediction

(Helland, 1988). In all cases, the number of factors for the first
PRESS values whose F-ratio probability drops below 0.75 was



Table 3 Statistical parameters of the optimized matrix using

the PLS and PCR.

Method Component NPC PRESS RMSEP RSEP (%)

PLS

URA 4 2.9915 0.5469 5.1480

CYT 5 0.7292 0.2700 1.7663

THY 3 2.5876 0.5087 3.7312

PCR

URA 6 2.7902 0.7067 6.6715

CYT 8 2.4827 0.5093 3.2528

THY 5 4.0570 0.6371 4.7094
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Figure 3 Plots of PRESS vs. number of factors by PCR (h) and

PLS (s).
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Figure 4 Plots of predicted concentration vs. actual concentra-

tion of URA, CYT and THY by PLS.
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selected as the optimum. Plots of PRESS vs. number of factors
by PCR and PLS are shown in Fig. 3.

3.3.2. Statistical parameters
To evaluate the predictive ability of a multivariate calibration
model, the root mean square error of prediction (RMSEP) and
relative standard error of prediction (RSEP) can be used Lin
et al., 1997:
RMSEP ¼ 1

n

Xn
i¼1
ðcpred � cobsÞ2

" #0:5
ð2Þ

RSEPð%Þ ¼ 100

Xn
i¼1
ðcpred � cobsÞ2P
ðcobsÞ2

2
6664

3
7775

0:5

ð3Þ

where cpred and cobs are the predicted concentration and the
observed value of the concentration in the sample, respectively,
and n is the number of samples in the validation set. The values

of RMSEP and RSEP for URA, CYT and THY are summa-
rized in Table 3. In all instances, the values of R2 obtained
are excellent (>0.99).

3.3.3. Resolution of synthetic mixtures
The predictive ability of the method was determined using 10

three-component mixtures (their compositions are given in Ta-
ble 2). The results obtained by applying PCR and PLS algo-
rithm to 10 synthetic samples are listed in Table 2 which also

shows the recovery for the synthetic series of URA, CYT
and THY mixtures. As it can be seen, the recovery was also
acceptable. The plots of the prediction concentration versus

actual values by PLS are shown in Fig. 4 for URA, CYT
and THY (line equations R2 values are also shown).

3.3.4. Determination of URA, CYT and THY in spiked real

samples
To assess the reliability of the method, 6 real sample prepara-
tions were analyzed. Table 4 shows the results as well as the



Table 4 Recoveries of CYT, THY and URA in spiked real samples by PLS.

Mixtures Added (lg/ml) Found (lg/ml) Recovery (%)

URA CYT THY URA CYT THY URA CYT THY

Serum samples

S1 7.85 15.56 6.31 7.96 16.59 6.13 101.40 106.62 97.15

S2 13.45 7.78 11.35 13.26 7.45 12.11 98.59 95.76 106.70

S3 4.48 11.11 17.66 4.26 11.39 17.34 95.09 102.52 98.19

S4 6.72 12.22 11.35 11.97 8.90 4.80 97.08 100.11 95.24

S5 12.33 8.89 5.04 8.18 13.12 12.51 97.27 98.42 99.21

S6 8.41 13.33 12.61 7.96 16.59 6.13 101.40 106.62 97.15

Plasma samples

P1 7.85 15.56 6.31 7.53 15.35 6.24 95.92 98.65 98.89

P2 13.45 7.78 11.35 13.74 7.64 11.30 102.16 98.20 99.56

P3 4.48 11.11 17.66 4.32 10.66 18.34 96.43 95.95 103.85

P4 6.72 12.22 11.35 13.05 9.50 5.01 105.84 106.86 99.40

P5 12.33 8.89 5.04 8.35 13.92 11.83 99.29 104.43 93.81

P6 8.41 13.33 12.61 7.53 15.35 6.24 95.92 98.65 98.89

Urine samples

U1 7.85 15.56 6.31 7.63 15.79 6.46 97.20 101.48 102.38

U2 13.45 7.78 11.35 13.18 7.61 11.04 97.99 97.81 97.27

U3 4.48 11.11 17.66 4.34 11.48 18.49 96.88 103.33 104.70

U4 6.72 12.22 11.35 11.64 8.52 5.06 94.40 95.84 100.40

U5 12.33 8.89 5.04 8.70 13.97 12.42 103.45 104.80 98.49

U6 8.41 13.33 12.61 7.63 15.79 6.46 97.20 101.48 102.38
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composition of the real samples. The validation of the method

has been carried out by comparing with the labeled amounts.
As it is clear, the recovery was quantitative and there were
no significant differences between the amounts obtained from

this method and the labeled amounts.

4. Conclusions

This study aimed to determine the amount of pyrimidine bases
(i.e., uracil, cytosine and thymine) while they are mixed to-

gether. The overlapping of signals corresponding to the mix-
ture made it necessary to use multivariate analysis tools
including principal component regression or partial least
squares to determine each pyrimidine base separately in their

mixture. PLS seems to get its optimal prediction with fewer
factors than PCR. Besides, PLS reaches better values of the
PRESS, RMSEP and relative RSEP. Also unlike PCR, the

PLS method gives a unique way of choosing which factor to
include next. The results on data sets of URA, CYT and
THY mixtures demonstrate that the predictive ability of the

models obtained was very good and satisfactory. It can be con-
cluded that the spectrophotometric method which was used in
this study is more simple and inexpensive. The good agreement

clearly shows the utility of this procedure in simultaneous spec-
trophotometric determination of URA, CYT and THY in hu-
man serum, human urine and plasma samples.
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