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Abstract Significance of the study: The clinical management of severe and chronic pain relies

heavily on opioids that cause serious side-effects. There therefore exists an urgent need to develop

safer and effective analgesics. Moreover, there has been significant progress in the understanding of

pain physiology, especially the role of some ion channels in the pain process. Thus, the immense

potential of ion channel therapeutics in pain management is a subject of current interest.

Aim of the study: This study is a comprehensive review, focused on ion channels as potential

therapeutic targets for the treatment of pain.

Research methodology: A systemic search of available literature on ion channels analgesics was

performed. Articles related to the drug discovery and clinical trials on relevant topics were extracted

from PubMed and other databases.

Major conclusion of the study: Small molecules targeted at ion channels pathways hold great pro-

mise for creating a new approach to pain treatment. Several molecules targeting TRPV1, TRPV3,

TRPV4, TRPA1, TRPM8, Nav1.7, Nav1.8, CaV2.2, CaV3.2, ASIC, and P2X3 have demonstrated

potential clinical benefits. However, till date US FDA has approved capsaicin, ziconotide, and pre-

gabalin for the treatment of different pain conditions. This review highlights the possibilities for dis-

covery and research on ion channels and their potential for pain treatment.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Pain is a serious healthcare problem that can adversely affect human

health and quality of life. Chronic pain affects around 17 million peo-

ple worldwide and among these > 75% experience moderate to severe

pain (WHO guidelines, 2018). According to GSK global pain index,

globally more than half of people claim to have experienced body pain

on a weekly basis (Hunter et al., 2008). Around, 20% of the world’s

population experience some sort of enduring pain, and the older

patients are more likely to experience several conditions such as arthri-

tis, bone-joint disorders, and other chronic illnesses associated with

pain (Thomas, 2013). According to recent surveys, approximately
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70% of the medical care in emergency departments of hospitals is

being carried out for the management of acute pain and acute exacer-

bations of chronic pain (Wu et al., 2019). Moreover, the Global Bur-

den of Disease study estimated that the pain and the pain-related

syndrome is the leading cause of disability and disease burden world-

wide (Vos et al., 2017).

Pain is a traumatic experience often processed by a specific high-

threshold sensory receptor called ‘‘nociceptor” (Osterweis et al.,

1987). The International Association for the Study of Pain (IASP)

has defined pain as ‘‘an obnoxious sensory and emotional sense due

to actual or likely tissue damage” (IASP Terminology, 1979). Pain is

a subjective or emotional experience that arises from potentially dam-

aging noxious stimuli, and the release of pain mediators from the

injured or inflamed tissues, and dysesthesia due to sensory nerve dam-

age (Yaksh et al., 2018). The neuronal event of pain sensation proceeds

through four phases, viz. transduction, transmission, pain modulation,

and perception (Yam et al., 2018). Transductions occurs at the end of

sensory nerve cells when noxious stimuli such as intense thermal,

mechanical, and chemical stimuli is converted into a nerve signal or

action potential. The pain information is then transmitted from the

peripheral to the central nervous system. Pain modulation refers to

up or down regulation of pain signals throughout the spinal cord

and the brain. Finally, the signal is processed in the brain for the per-

ception of pain as uncomfortable awareness (Belmonte and Viana,

2007). Sometimes, alteration in these steps due to tissue or nerve dam-

age, as in the case of inflammation and cancer, may cause sensory

hypersensitivity, a condition of pain without any stimuli (Cummins

et al., 2007). These threshold reduction does not serve as a warning

and, over a period, often turn into chronic pain characterized by per-

sistent somatic disorders associated with psychological anguishes such

as tension, anxiety, and depression (Katz et al., 2015).

Recent progress in the discovery of analgesics was only possible

because of several advanced animal models that mimic many aspects

of human pain (Abboud et al., 2021). In the last sixty years, around

140 analgesics belonging to different chemical classes have been

approved by the U.S. Food and Drug Administration (FDA) (Igor,

2010). Some important class of approved analgesics includes opiates,

phenylacetic acid, propionic acids, salicylates, oxicams, fenamates,

diarylpyrazoles etc. However, majority of these drugs are associated

with intolerable adverse effects, including nephrotoxicity, cardiotoxic-

ity, constipation, respiratory depression as well as stomach ulcers that

can lead to internal bleeding and anaemia (Hill, 2006).

Moreover, several promising clinical candidates failed in the late

stages of clinical studies due to their poor drug-like properties. Thus,

research focusing on deciphering the underlying mechanisms of

chronic pain and developing novel non-addictive and efficacious anal-

gesics is the need of the hour. Taking benefits of exciting new advances

in discovery and research on analgesics, we provided an overview of

promising investigational molecules that have been evaluated clinically

for their analgesic potential. We also highlighted the potential ion

channels as novel molecular targets, and their modulators’ develop-

ment, focusing mainly on lead optimization and their progress as clin-

ical candidates.

2. Ion channels as a therapeutic target for pain management

Modulation of ion channel signalling has received much atten-
tion from big pharma companies due to their potential to

effectively treat pain. The top analgesic companies are now
developing more selective, safer, and effective drugs to
improve treatment outcomes and patient experience. Accord-
ing to an estimate, ion channels account for around 21% of

the total analgesic pipeline. Of the ion channels, Na+ and
Ca2+, which play a vital role in pain, lead the ion channel pipe-
line. Therefore, we have reviewed the current research trends

and lists of pipelines with approved drugs of the top pharma
companies focusing research on ion channels therapeutics.
(Table 1).

2.1. Transient receptor potential (TRP) channels modulators

Transient receptor potential (TRP) channels are important
nociceptive ion channels of thermal and chemical stimuli that

activate the somatosensory system to produce acute or persis-
tent pain (Patapoutian et al., 2009). In the last two decades,
appreciable efforts have been made to identify the common

pain pathways using natural products as probes. Many of
these compounds such as proalgesic capsaicin, cooling men-
thol and pungent isothiocyanate have been shown to elicit dis-

comfort and pain through a shared molecular mechanism in
which they excite sensory, nociceptive neurons by activating
TRP ion channels (Maliszewska et al., 2008). Based on these
natural probes, three distinct members of the TRP ion channel

family have been characterized viz. TRPV1 (the capsaicin
receptor) (Menigoz and Boudes, 2011), TRPM8 (the menthol
receptor) (Bautista et al., 2007), and TRPA1 (the wasabi recep-

tor) (Guimaraes and Jordt, 2007) as molecular detectors of
pain.

The TRPs ligands can be classified according to their phar-

macological profiles, the two main classes being agonist and
antagonist ligands. Both classes appeared to be extremely use-
ful novel therapeutics for inflammatory and neuropathic pain
syndromes. TRP agonists generally elicit pain but also desen-

sitize the channel. This inactivation reduces sensitivity to heat
and other ligands, which can be therapeutically utilized as
analgesics with limited efficacy. Whereas the latter, TRP chan-

nels antagonists reduce pain by preventing transduction in the
periphery, acting on channels expressed in keratinocytes or
nociceptors, reducing ectopic activity generated by TRP chan-

nels along the axon and by reducing transmitter release as well
as possibly acting on central neurons (Patapoutian et al.,
2009). This section provides a brief overview of promising

leads and clinical drug candidates of the TRP channels that
have been postulated for pain management.

Cloning of the capsaicin receptor and its identification as
the cation channel TRPV1 was one of the breakthrough pain

research discoveries in the past 20 years. TRPV1 is a ther-
mosensitive TRP channels that acts as a sensor for noxious
heat (greater than � 42 �C) by producing thermal hyperalgesia

and pain hypersensitivity due to injury. The channels are acti-
vated by some endogenous lipid-derived molecules, acidic solu-
tions (pH < 6.5) and some pungent chemicals and food

ingredients such as capsaicin, as well as by toxins such as
resiniferatoxin and vanillotoxins (Fig. 1) (Story, 2006). The
endogenous lipids which activate the TRPV1 includes anan-
damide, N-arachidonoyldopamine, and various metabolic

products of lipoxygenases (Ross, 2003).
Capsaicin (1) and (and its synthetic cis-isomer Zucapsaicin)

induces a sensation of irritation and burning pain by activating

a TRPV1 (EC50 40 nM) (Smutzer and Devassy, 2016), on sen-
sory nerve endings in mammals however, birds are indifferent
to the pain-producing effects of vanilloid compounds cap-

saicin. It is also currently under investigation for the relief of
severe pain in adults suffering from episodic cluster headache
(Jordt and Julius, 2002). This interesting fact led to the discov-

ery of molecular basis of capsaicin sensitivity through the
vanilloid receptor. Vanilloid sensitivity reside within the resi-
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dues of transmembrane TM2 and TM3 regions of the cap-
saicin receptor (Voets et al., 2005). Capsaicin is a topical anal-
gesic (orally not active), approved by the FDA as an orphan
Table 1 Clinical updates of potential ion channels modulators for

S.

No.

Drug Developer Target

channel

1. QUTENZA�
(8% capsaicin TD

patch)

Averitas Pharma TRPV1

2. Civamide/Zucapsaicin Winston Pharmaceuticals TRPV1

3. Vocacapsaicin Concentric Analgesics TRPV1

4. Resiniferatoxin Sorrento Therapeutics TRPV1

5. NEO-6860* NEOMED Institute TRPV1

6. AMG-517 Amgen Inc. TRPV1

7. ABT-102 Abbott TRPV1

8. AZD-1386 AstraZeneca TRPV1

9. DWP-05195 Daewoong TRPV1

10. MK-2295 Merck TRPV1

11. SB-705498 GlaxoSmithKline TRPV1

12. GRC-15300* Glenmark TRPV3

13. GSK-2798745 GlaxoSmithKline TRPV4

14. GRC-17536 Glenmark Pharmaceuticals TRPA1

15. CB-625* Cubist Pharmaceuticals Inc. TRPA1

16. HX-100* Hydra Biosciences TRPA1

17. ODM-108* Orion Pharma TRPA1

18. Menthol University of Brit.

Columbia

TRPM8

19. PF-05105679 Pfizer TRPM8

20. AMG-333 Amgen TRPM8

21. Halneuron� (TTX) WEX Pharmaceuticals Nav1.7

22. NeoSTX Grunenthal Nav1.7

23. ST-2427* SiteOne Therapeutics Nav1.7

24. Ralfinamide Newron Pharmaceuticals Nav1.7

25. PF-05089771 Pfizer Inc Nav1.7

26. Vixotrigine/

Raxatrigine $

Convergence

Pharmaceuticals

Nav1.7

27. Funapide$ Flexion Therapeutics Nav1.7

28. DSP-2230/ANP-230 Alphanavi Pharma Nav1.7

29. GDC-0276 Genentech Nav1.7

30. GDC-0310 Genentech Nav1.7

31. AZD-3161 AstraZeneca Nav1.7

32. GSK-2339345 GlaxoSmithKline Nav1.7

32. PF-04531083 Pfizer Nav1.8

34. PF-06305591 Pfizer Nav1.8

35. VX-150 Vertex Pharmaceuticals Inc Nav1.8

33. Leconotide/CNSB004 Zenyth Therapeutics CaV2.2

34. Prialt� (Ziconotide)

(Intrathecal infusion)

Elan Pharmaceuticals CaV2.2

35. Z-160 Neuromed Pharmaceuticals CaV2.2

36. CNV-2197944 Convergence

Pharmaceuticals

CaV2.2

37. ABT-639 AbbVie CaV3.2

38. Z-944 Zalicus Inc CaV3.2

39. Amiloride University of California ASIC

40. Gefapixant Merck Sharp & Dohme

Corp.

P2X3

41. Minodronate Astellas Pharma P2X3

42. Eliapixant Bayer P2X3

43. Sivopixant Shionogi P2X3

� Registered trademark, *Structure not disclosed, $ Orphan-drug design
drug for the treatment of neuropathic pain associated with
peripheral neuropathy (PHN) (Ausı́n-Crespo et al., 2022;
Hong et al., 2019). It has since become an attractive lead mole-
pain management.

Indications CT Identifier Progress

PHN, DPN – FDA

approval-2009

Episodic cluster headache NCT00033839 Phase III

Total knee arthroplasty NCT03731364 Phase II

Cancer pain NCT00804154 Phase I

OA NCT02712957 Phase II

Pain due to tooth extraction – Phase I

– NCT00854659 Phase I

Pain due to tooth extraction NCT00672646 Phase II

PHN NCT01557010 Phase II

Pain due to tooth extraction NCT00387140 Phase II

Pain due to tooth extraction NCT00281684 Phase II

Chronic neuropathic pain NCT01463397 Phase II

Diabetic macular edema NCT04292912 Phase I

DPN NCT01726413 Phase II

Acute pain – Phase I

DPN – Phase I

– NCT02432664 Phase I

DPN NCT02728687 Phase I/II

Pain NCT01393652 Phase I

Migraine NCT01953341 Phase I

CRP, CINP NCT00725114 Phase III

LA NCT01786655 Phase I

Moderate-to-severe pain NCT04475198 Phase I

NLBP NCT01019824 Phase III

DPN, Dental pain NCT02215252 Phase II

TN, LR NCT03637387 Phase III

PHN, OA NCT02068599 Phase II

Peripheral neuropathy IRAS ID

103329

Phase I

Pain – Phase I

Pain – Phase I

UVC exposed Skin NCT01240148 Phase I

Refractory chronic cough NCT01899768 Phase II

UVB exposed skin, dental

pain

NCT01127906

NCT01512160

Phase I/II

Pain NCT01776619 Phase I

Pain due to SFN NCT03304522 Phase II

Intractable pains – Phase IIa

Severe chronic pain – FDA

approval-2004

LR WO2009146540 Phase II

PHN, DPN NCT01848730 Phase II

DPN NCT01345045 Phase II

Neuropathic pain – Phase I

Migraine – Pilot study

Endometriosis-related pain,

OA

NCT03654326

NCT01554579

Phase II

Back pain – Pilot study

DPN NCT04641273 Phase II

Neuropathic pain – Phase I

ation by the FDA.

http://S.No
http://S.No


Fig. 1 Overall mechanism of TRPV1 activation by capsaicin A. Activation of TRPV1 channel, B. Docked pose of capsaicin at the

binding pocket of open state TRPV1 structure (PDB ID: 7LR0), C. Cartoon summarizing capsaicin binding and opening of TRPV1

channel.
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cule for the development of safer and effective analgesics and
subsequently several capsaicinoids have reached preclinical

or clinical development stages. (Fig. 2). One of such small
molecules is a capsaicin-prodrug vocacapsaicin (CA-008) (2)
which is a non-opioid, water-soluble drug developed by Con-

centric Analgesics, Inc. The prodrug was a first-in-class
TRPV1 agonist successfully going for Phase III trial for the
management of postsurgical pain. Results of its Phase II trial

showed that patients administered with 36 mg of vocacapsaicin
during surgery had significantly reduced pain and opioid con-
sumption (NCT04203537). Nevertheless, capsaicin and related
analogues has very strong pungency, therefore several non-

pungent analogues have also been discovered (Huang et al.,
2013).

In pursuit of this, a non-pungent, synthetic, and orally

active capsaicin derivative, olvanil (N-9-Z-octadecenoyl-
vanillamide, NE-19550) (3) was developed as a potent agonist
(TRPV1 EC50 0.7 nM). Appendino et al., 2005 further modi-

fied the fatty acyl chain of olvanil and introduced a hydroxyl
group at C-12 yielding a compound rinvanil (4) (EC50

6.0 nM) named after after ricinoleic acid. Phenylacetylation

of rinvanil dramatically enhanced the potency of vanillamide
with two-digit picomolar EC50 of 90 pM yielding phenylacetyl-
rinvanil (5) (IDN5890). IDN 5890 was the first ultra-potent
capsaicinoid agonist at TRPV1 channels. At present several

capsaicin-based formulations are also being gauged. For exam-
ple, phase III clinical trial has established the efficacy of 8%
capsaicin patch (Qutenza�) in treating peripheral neuropathic

pain and subsequently FDA has approved Qutenza� for the
treatment of neuropathic pain associated with diabetic periph-
eral neuropathy (DPN) in adults (NCT01533428). In early 90s,

scientists at the National Cancer Institute (NCI), Bethesda dis-
covered a natural ultrapotent TRPV1 agonist resiniferatoxin
(6) (RTX) (EC50, 11 pM) from Euphorbia cactus (Szallasi

and Blumberg, 1990). RTX is currently undergoing clinical
phase I and II trials for the treatment of severe pain in patients
with advanced cancer (NCT00804154). Further, iodination of

its vanillyl moiety, led to the most potent TRPV1 antagonist
available to date, 5´-iodoresiniferatoxin (7) (Wahl et al., 2001).

The advent of radioligand [3H]RTX binding assay and
TRPV1 gene cloning has led to a new concept of design and

development of small molecule analgesics (Pearce et al.,
2017). Since then, many pharmaceutical companies have
started drug screening and lead optimization programs for

the discovery of clinically useful small molecule TRPV1 antag-
onists. And this endeavour has led to the discovery of several
TRPV1 antagonists in the different stages of clinical phases

(Fig. 3). In the early 90 s, collaborative endeavours of scientists
at the Sandoz Institute of medical research, UK (Novartis)
resulted in the development of a first competitive vanilloid

antagonist, capsazepine (8) which is a conformationally con-
straint analogue of capsaicin. Capsazepine competitively
blocks the painful sensation of heat produced by capsaicin
and resiniferatoxin with moderate potency in a variety of

in vitro and in vivo bioassays (Walpole et al., 1994). Later,
many promising compounds in preclinical studies have suc-
cessfully moved forward and their clinical trials progressed

at unprecedented speed. A number of TRPV1 antagonists



Fig. 2 Capsaicin based TRPV1 agonists under clinical development.
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belonging to different chemotypes, viz., cinnamides
(AMG0347 (9) and AMG9810 (10)), pyrimidines (AMG-517

(11)), ureas (JYL-1421 (12) and A-425619 (13)), and piperazi-
nes (BCTC (14)), ABT-102 (15), AZD-1386 (16), DWP-05195
(17), JTS-653 (18), MK-2295 (19), and SB-705498 (20) have

already entered clinical trials (Garami et al., 2020). However,
clinical trials for some of these first generation TRPV1 antag-
onists are being discontinued due to their inherent deleterious

side effects such as hyperthermia and long-lasting alteration of
the noxious heat sensation. For example,

� AstraZeneca discontinued the phase II clinical studies of
AZD-1386 (16) because it causes a moderate increase in
core body temperature. AstraZeneca was developing this
benzimidazole based orally active TRPV cation channel

inhibitor for the treatment of gastro-oesophageal reflux dis-
ease (GERD) and pain (Quiding et al., 2013).

� Another novel 4-oxopyrimidine derivative, AMG-517 (11)

developed by Amgen Inc. was found to be potent
(IC50 < 10 nM) orally bio-available TRPV1 antagonist.
AMG-517 reverses inflammation induced pain in rats with

ED50 of 0.33 mg/kg p.o. Based on its promising selectivity,
pharmacokinetic, and safety profile, the drug candidate was
selected for three independent phase I clinical trials on
healthy adults. In one of the studies, AMG-517 showed

emergence of marked and persistent hyperthermia in sub-
jects undergoing molar extraction. Due to these, clinical
studies of AMG-517 were discontinued and very few sub-

jects were evaluated for the potential analgesic effect of
AMG 517 (Doherty et al., 2007; Gavva et al., 2008).
Customarily, TRPV1 has been considered the most impor-
tant TRP channel involved in nociceptive transduction. How-

ever, some other subfamilies of TRP channels are also most
prominently expressed in nociceptors and have been exten-
sively studied. Here, we summarize the clinical updates of

the other TRP channels modulators as a miscellaneous class.
Fig. 4 summarizes the structures of the reported miscellaneous
TRP-modulators progressed to the clinical trials.

Transient receptor potential vanilloid 2 (TRPV2) belongs
to the TRPV subfamily of TRP channels (TRPV1-TRPV4)
however, TRPV2 does not contribute to in vivo thermal noci-
ception and is insensitive to vanilloids (Iwata et al., 2020).

The analgesic potential of TRPV2 has been least studied how-
ever, it has a proven track record of success mainly in treating
heart failure and cardiomyopathy. The literature revealed that

only two FDA approved drugs having TRPV2 modulatory
effects such as probenecid (21) (uricosuric) and tranilast (22)
(antiallergic) entered clinical trials for the treatment of heart

disorders due to its positive ionotropic effects (Robbins
et al., 2018; Matsumura et al., 2018). Recently, a cell-based cal-
cium mobilization and electrophysiological assays to identify
novel cannabinoid TRPV2 agonists was carried out. Results

showed that cannabidiol (CBD) which is a non-psychotropic
therapeutically active ingredient of Cannabis sativa, is an acti-
vator of TRPV2 (EC50 3.7 lm) and modulator of other TRP

channels (Quin et al., 2008).
Another member of the TRPV family is a heat-sensitive

TRPV3 ion channel, which shares around 43% sequence sim-

ilarity with TRPV1. TRPV3 is highly expressed in the skin,
where it is involved in skin barrier function, keratinocyte pro-



Fig. 3 Selective blockers of TRPV1 ion channel developed as a potential treatment for chronic pain.
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liferation, skin homeostasis, wound healing, and nociception
(Nilius et al., 2014). TRPV3 can be activated by chemical ago-

nists that include, 2-aminoethoxydiphenyl borate (2APB), far-
nesyl pyrophosphate, and various natural compounds such as
camphor, carvacrol, eugenol, and thymol (Colton and Zhu,

2007; Xu et al., 2008). Recent reports suggest that TRPV3



Fig. 4 Structures of the reported miscellaneous TRP-modulators progressed to the clinical trails.
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plays significant roles in inflammatory skin disorders, itch, and
pain sensations. Despite several compounds have shown high
potentiality towards TRPV3, GRC-15300 (structure not dis-
closed) is the one and only first-in-class TRPV3 inhibitor
developed by Glenmark that entered clinical trials globally
for the treatment of neuropathic pain (NCT01463397). Unfor-
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tunately, the trial was dropped in 2014 when the compound
failed in Phase II proof of concept trial (WO2007056124;
NCT01463397).

TRPV4 channels, as an important sensor for osmotic and
mechanical stimuli, play a central role in the essential hall-
marks of nociception. Several small molecules such as, anan-

damide, 5,6-epoxyeicosatrienoic acid, GSK 1016790A, and
heat (27–34 �C) are known to activate TRPV4 channel
(Lawhorn et al., 2020). Many selective TRPV4 antagonists

have been evaluated in recent years however, the only TRPV4
ligand to have entered clinical trials is GSK-2798745 (23).
Compound 23 demonstrated excellent in vivo efficacy
(hTRPV4 IC50 1.8 ± 0.2 nM, rTRPV4 IC50 1.6 ± 0.2 nM)

and satisfactory preclinical safety profile that supported its
subsequent development to clinical studies. Compound 23
from GlaxoSmithKline turned out to be highly potent and

orally active TRPV4 inhibitor, that is currently being investi-
gated for the treatment of chronic cough (NCT03372603)
(NCT03372603) and diabetic macular oedema

(NCT04292912).
The wasabi receptor, TRPA1, represents another TRP sub-

family as a detector of chemical irritants. TRPA1 is a non-

selective cationic channel generally co-expressed with TRPV1
channels in the CNS and PNS and can be activated by several
chemical, thermal, mechanical, and osmotic stimuli. TRPA1 is
activated by isothiocyanates and thiosulfinates that constitute

pungent agents from mustard (e.g., wasabi) and allium (e.g.,
garlic and shallot) plants, respectively. Pharmacological and
genetic studies have shown that TRPA1 plays an essential role

in the nociceptive response to these and other environmental
irritants (King et al., 2019). Therefore, TRPA1 has become a
validated target for the development of analgesic drugs. Recent

literature showed that many promising TRPA1 modulators
have been postulated to have potential role in pain manage-
ment. TRPA1 antagonists such as 6-Methyl-5-(2-(trifluorome

thyl)phenyl)-1H-indazole, CMP1, AZ868, HC-030031, and
A-967079 were found to be effective in reversing the
chemically-induced hyperalgesia and allodynia in mice without
changing the core body temperature (Giorgi et al., 2019). To

date, four TRPA1 modulators including GRC-17536 (24)
(Glenmark) (NCT01726413), CB-625 (structure not disclosed)
(Cubist Pharmaceuticals Inc.) (Giorgi et al., 2019), HX-100

(structure not disclosed) (Hydra Biosciences) (Giorgi et al.,
2019), and ODM-108 (structure not disclosed) (Orion Pharma)
(NCT02432664) have entered clinical trials for the treatment of

neuropathic pains but latter discontinued mainly due to their
low oral bioavailability.

Transient receptor potential melastatin-8 (TRPM8) is a
non-selective cation channel activated by cold temperature

and by cooling agents such as menthol. Several novel TRPM8
modulators have shown promising effects in reducing both
acute and chronic pain (Perez de Vega et al., 2016). As menthol

(25) acts by selectively activating TRPM8 channel therefore,
widely used as a topical analgesic (up to 16%) to relieve acute,
inflammatory, and neuropathic pain. >200 different topical

and oral formulations of menthol are being evaluated under
phase I/II clinical trials for cosmetic and medical indications
including carpal tunnel syndrome, knee osteoarthritis,

chemotherapy-induced peripheral neuropathy, migraine, and
cancer pain (Fernández-Carvajal et al., 2020). Inspired by this,
many pharma companies have begun drug development pro-
gram on menthol-based carboxamide and ester derivatives as
TRPM8 agonists (González-Muñiz et al., 2019). In 2016, scien-

tists at Beiersdorf AG, Germany assessed two similar type of
compounds, (1R,2S,5R)-N-(2-(2-pyridinyl)ethyl)-2-ispropyl-5-
methylcyclohexancarboxamide (26) and menthoxypropanediol

(MPO) (27) in a randomized, double-blind, pilot study in dry
skin patients with pruritus (NCT00669708). Combined appli-
cations of these two cooling compounds have shown stronger

activation of TRPM8 with significant improvement in skin
roughness, dryness and hydration conditions (Stander et al.,
2017). Lately, a group of scientists at Chonnam National
University Hospital, South Korea also found that administra-

tion of water-soluble, non-menthol derivative, cryosim-3 (28)
(TRPM8 agonist) significantly cured dry eye disease when
tested on human subjects (ISRCTN24802609/ISRCT

N13359367) (Yang et al., 2017). TRPM8 antagonists have also
been implicated in pain, inflammation, and cancer. Till now,
only three TRPM8 antagonists have progressed to clinical

studies. The first two promising compounds viz. PF-
05105679 (29) and AMG-333 (30) were precluded after com-
pleting phase I clinical trials due to its severe side effects

(Andrews et al., 2015; Horne et al., 2018) however the third
compound, cannabidivarin (31) is currently being evaluated
in the phase II clinical trial for autism spectrum disorder
(ASD) (NCT03202303). As cannabidivarin, is effective in

treating paediatric epilepsy therefore, the drug demonstrates
potential mechanisms for treating ASD (NCT03202303).

2.2. Sodium channel blockers

The afferent neurons transmit pain signals of noxious stimuli
from the periphery to the CNS (von Hehn et al., 2012). These

pain signals are conducted as electrical excitability or action
potential (AP) across axonal membrane due to sequential
opening and closing of voltage-gated ion channels (Lodish

et al., 2000). Several studies have shown that many different
types of ion channels play significant roles in nociception
and altered pain sensitivity (Matzner et al., 1994; Baker
et al., 2001; Du et al., 2013). Among these, voltage-gated

sodium (Nav) channels are vital for AP electrogenesis and
transmission of painful stimuli (Cummins et al., 2019). The
central role of Nav channels in regulating nociception was con-

firmed by many studies one of which showed that local anaes-
thetics relieve pain through Nav blocking actions and have
potential therapeutic applications for the treatment of pain

(Clare et al., 2000; Holmdahl et al., 1998). Gene cloning studies
showed that around nine distinct Nav isoforms viz. Nav1.1-
Nav1.9 are known to be expressed in humans (Levinson
et al., 2012). Preclinical studies involving gain-of-mutations

research identified only three isoforms, Nav1.7, Nav1.8 and
Nav1.9 as validated targets for pain management as these iso-
forms are preferentially expressed in the peripheral nervous

system (Cregg et al., 2010). Many non-selective Nav channel
blockers belonging to antiarrhythmic drugs (ADs), antiepilep-
tic drugs (AEDs) and local anaesthetics (LAs) has also widely

been prescribed as ‘‘off-label drugs” for the treatment of vari-
ous pain conditions. Some of the examples of these drugs
include carbamazepine (32), oxcarbazepine (33), eslicar-

bazepine (34), phenytoin (35), lacosamide (36), rufinamide
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(37), and mexiletine (38) that hold promise for treating
migraine, trigeminal neuralgia (TN), DPN, fibromyalgia,
chronic post-thoracotomy pain syndrome, cryptogenic sensory

polyneuropathy, erythromelalgia etc.
The clinical benefits of some of these approved drugs are

continuously being verified and consequential additional clini-

cal indications are also being approved by the FDA through
supplemental biologic licensing (Fig. 5). However, these drugs
have narrow therapeutic margins due to their associated

adverse effects like cardiac arrhythmia, ataxia, sedation, and
because of their non-selective actions on CNS, cardiac and
skeletal muscle tissues (Fischer et al., 2009; Sheets et al.,
2011, Ryder and Stannard, 2005).

Thus, the development of selective Nav channel blockers
targeting peripheral sensory neurons has gained tremendous
interest in research on ion channel therapeutics for pain.

Towards this end, Nav1.7 channel has become a potential
pharmacotherapeutic target for the treatment of pain because
of its remarkable validation from human genetics and preclin-

ical studies. Many clinical and preclinical genetic studies
including knockout mice clearly implicate a major role for
Nav1.7 in acute and inflammatory pain as loss of Nav1.7 func-

tion leads to complete insensitivity to pain (Yeomans et al.,
2005). These findings were also confirmed by Geoff Woods
who noticed that some Pakistani children are insensitive to
pain, a rare condition known as congenital insensitivity to pain

(CIP) due to loss-of-function Nav1.7 mutations (Cox et al.,
2006). Thus, Nav1.7 is an ideal target for the development of
novel analgesics. Genomic analyses, together with molecular

modelling studies have tremendously helped researchers under-
stand the sodium ion channel structure (Baker and Nassar,
2020; Namadurai et al., 2014). The ion channel is consisting

of a gene SCN9A with a large pore forming a-subunit and
one or more smaller b-subunits. The a-subunit consists of four
homologous domains (DI-IV) with six subdomains (S1-S6).

The segments S1-S4 form the voltage-sensing domain (VSD)
whereas, the S5 and S6 domains forms the ion pore domain
(PD) made up of amino acid sequence Asp-Glu-Lys-Ala
(DEKA) which selectively allows the flux of hydrated

Na + through the ion pore. The sequences between S5 and
S6 also comprise the selectivity filter (SF) (Fig. 6) (Shen
et al., 2019).[81].

Recently, use of toxins to probe various ion channel struc-
tures and functions has contributed tremendously on our
understanding of voltage-gated sodium ion channels (VGSCs)

physiology. Moreover, the ensuing potential natural and syn-
thetic peptide-based toxins turned out to be promising lead
compounds in developing novel pain killers. Some small mole-
cules neurotoxins such as tetrodotoxin (TTX) (39) and saxi-

toxin (STX) (40) are also a relatively new class of
compounds acting as pore blockers (Yasumoto and Murata,
1993). These neurotoxins interact with VGSCs either through

physically obstructing the pores and inhibiting the sodium
ion conductance or modifying the gating kinetics (Marijke
et al., 2011). These inhibitors can bind at the six different bind-

ing sites in the channels based on their physicochemical prop-
erties and resulting into different mechanism of actions
(Fig. 7). TTX (IC50 18.6 nM, Nav1.7) and STX (IC50

702 nM, Nav1.7) are the hydrophillic secondary metabolites
causing paralysis and produced by puffer fish and molluscs,
respectively (Walker et al., 2012). Both are chemically alka-
loidal guanidinium class of compounds containing protonated
guanidino group which is required for efficient interaction with
the putative binding site 1 present at the P-loops connecting S5
and S6 domains (Suppiramaniam et al., 2010; Marijke et al.,

2011). The protonated guanidinium group of TTX forms ionic
interactions with the negatively charged amino acids Asp384
and Glu387 of DI and Glu942 of DII, whereas the hydroxyl

groups at C9, C10 and C11 form hydrogen bonds with
Glu945 of DII and Asp1532 in DIV. TTX block the pore ster-
ically and occludes sodium ion permeation, thereby inhibiting

the AP generation and propagation and consequently blocking
nerve conduction and paralysis (Lipkind and Fozzard, 1994;
Lee and Ruben, 2008). STX is chemically similar to TTX. It
belongs to the water-soluble neurotoxin containing positively

charged guanidinium groups which bind with the negatively
charged carboxyl groups in the outer pore loops of Nav. How-
ever, STX structure has an additional positive guanidinium

group that leads to slightly different binding interactions as
that of TTX (Penzotti et al., 1998). Apart from these nonpep-
tidic guanidinium toxins, venom peptides such as l-conotoxins
from the venoms of predatory cone snails have been shown to
act at Site 1 and preferentially block skeletal muscle voltage-
gated sodium channels. The l-conotoxin has long been used

as a paralyzing agent for fish-hunting until recently, studies
recognized that it preferentially blocked Nav channels
(Green et al., 2014). Several similar peptidic venoms belonging
to conotoxin families have also been characterized recently e.g.

lO-, d-, and i-conotoxins, and lO§-conotoxins (Gajewiak
et al., 2014). Site 2 is mainly targeted by lipophilic toxins such
as batrachotoxin (BTX) (41) and its analogues produced by

frogs (Phyllobates spp.). These toxins are also known as acti-
vators as they modulate Nav channel to open it more easily
and stay open for longer duration. BTX binding modulates

the voltage-dependent movement of the DIV S4 voltage sensor
and thereby alters channel activation and its coupling to inac-
tivation (Linford et al., 1998). Site 3 neurotoxins are mainly

produced from scorpions, sea anemones and spiders. Scorpion
toxins targeting the Nav channels are classified into two cate-
gories viz. a- and b-toxins. The a-toxins generally inhibit the
inactivation of VGSCs, whereas b-toxins produce a strong

hyperpolarizing shift in the voltage dependence of activation
at the neurotoxin site 4 (Gordon et al., 1996). Site 5 is targeted
by highly lipophilic, cyclic polyether compounds such as breve-

toxins (PbTxs) (42) and ciguatoxins (CTXs) (43) produced by
marine dinoflagellates Karenia brevis and Gambierdiscus tox-
icus, respectively (Schreibmayer and Jeglitsch, 1992). Bindings

of PbTx at the site 5 produces distinct alteration in channel
gating and stabilize the conductance level, whereas CTXs shift
the activation of channels towards more negative potential and
suppress the fast inactivation (Schreibmayer and Jeglitsch,

1992; Hogg et al., 2002).
Considering the promising selectivity of these neurotoxins

towards Nav1.7, several small molecules and peptides are in

pre-clinical and clinical development. Many of these mole-
cules, from Pfizer, Convergence, Xenon, Genetech, Teva,
Sumitomo Dainippon Pharma, Nektar Therapeutics, Wex

Pharmaceuticals and AstraZeneca, have demonstrated signifi-
cant results in the preclinical and clinical studies. However,
some of these molecules failed to achieve end-results in early

clinical studies and therefore, dropped from their pipelines.
Therefore, in this section we are pursuing on the investigator’s
investigational new drugs (INDs) that are being developed to
manage acute and chronic pain (Fig. 8).



Fig. 5 Clinical trials of non-specific Nav blockers in pain management (https://clinicaltrials.gov/).

Fig. 6 (a) Crystal structure of human voltage-gated sodium channel Nav1.7 showing the a subunit which folds to four homologous

repeats, each containing six transmembrane helices designated S1-S6 (PDB ID: 6J8J). (b) Side view of the open-channel conformation

showing channel pores.
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WEX Pharmaceuticals Inc. is a biopharmaceutical com-

pany based in Canada focused on the therapeutic fields of
non-opioid analgesics. The company has completed open-
label, phase III trial for Halneuron� (Ingredient: TTX) to
treat cancer related pain (CRP) and chemotherapy-induced

neuropathic pain (CINP) in the United States and Canada
(NCT00725114, NCT00726011). The study demonstrated that
patients receiving a subcutaneous 30 lg b.i.d. dose of TTX for

4-days had effectively reduced pain outcomes and improved
quality of life (NCT00725114; NCT00726011). Prof. Charles
Berde at the Boston Children’s Hospital, US had finished

phase I trial of neosaxitoxin (NeoSTX) (44), an analogue of
STX as subcutaneous injection in combination with the com-
monly used local anaesthetic, bupivacaine, and epinephrine

(NCT01786655). SiteOne Therapeutics scientists have consis-
tently used this template to benchmark their synthetic com-
pounds based on toxins. Recently they have initiated a phase
I study of its saxitoxin-based synthetic molecule ST-2427, for

managing moderate to severe pain. ST-2427 acts as a selective
inhibitor of Nav1.7. To date, structure of the molecule ST-
2427 has not been disclosed by the company (NCT04475198).

Newron Pharmaceuticals is a fully integrated biopharma-
ceutical company focused on the development of novel thera-
pies for patients with diseases of the central and peripheral
nervous system. Currently, there is one drug in its analgesic

portfolio acting through Nav1.7 mechanism. The drug is an
orally active, selective blocker of the Nav1.7 known as ralfi-
namide (45) and has been progressed into phase IIb/III study
in patients with moderate neuropathic low back pain (NLBP)

to evaluate its safety and efficacy of two dose regimens com-
pared to placebo. Results demonstrated that patients with neu-
ropathic pain due to nerve compression showed a response to

ralfinamide treatment (NCT00736151; NCT01019824).
Researchers at Pfizer Inc. are also working tirelessly to

design new molecules acting as Nav1.7-selective inhibitors.

One of these molecules is a PF-05089771 (46), that has success-
fully completed phase I studies to assess its safety and tolera-
bility in healthy subjects. Efficacy of PF-05089771 in treating

postoperative dental pain and DPN were also completed in
phase II clinical trials in 2018 (NCT01529346;
NCT02215252). Biogene is conducting numerous clinical trials
in neuropathic pain to evaluate the efficacy and safety of two

orally administered Nav1.7 inhibitors viz. BIIB074 (vixotrig-
ine/raxatrigine) (47) and BIIB-095 (48). Vixotrigine developed
by Convergence Pharmaceuticals (now acquired by Biogene),

has been evaluated in phase II clinical studies for their efficacy
of in treating pain with lumbosacral radiculopathy (LR)
(NCT02935608). Vixotrigine (formerly known as

https://clinicaltrials.gov/


Fig. 7 Figure showing the trans-membrane diagram of a-subunit of Nav channel with their binding sites ligands.
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CNV1014802) was previously granted orphan-drug designa-
tion by the FDA for the treatment of TN. Results of its phase
IIa demonstrated that, patients treated with vixotrigine
showed a significant reduction in TN paroxysms compared

with those receiving placebo (Zakrzewska et al., 2017).
Recently, phase III studies evaluating efficacy and safety study
of BIIB074 in participants with TN has been registered
(NCT03637387). BIIB095 has also completed phase I studies
for safety, tolerability, and pharmacokinetics in healthy partic-
ipants (NCT03454126).

In 2021, Flexion Therapeutics, Inc. announced the FDA
clearance of the IND application for FX301, a preclinical



Fig. 8 Figure showing role of Nav1.7 inhibitors in treating pain and potential clinical candidates.
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program for the extended-release thermosensitive hydrogel of
funapide (49) (XEN402) as peripheral nerve blocking agent
for controlling post-operative pain. The molecule funapide

was earlier developed by Xenon Pharmaceuticals as a Nav1.7
and Nav1.8 blocker and had orphan drug designation from
the FDA for treating pain associated with erythromelalgia

(EM) (Price et al., 2017). Funapide also completed phase II
clinical studies in patients with PHN (NCT02365636) and
osteoarthritis (OA) (NCT02068599).

A Japan based company Sumitomo Dainippon Pharma Co.
Ltd. and its venture AlphaNavi Pharma Co. are also continu-
ing the development of imidazo-pyridine derivative DSP-2230/
ANP-230 (50) for the treatment of voltage-gated sodium chan-

nel (Nav)-mutated rare pain diseases. The molecule is currently
in phase I clinical trial for its safety, tolerability, and pharma-
cokinetic studies (Wulff et al., 2019).

Stumpf et al. at the Genentech, Inc. discovered acylsulfony-
lurea GDC-0276 (51) as a potent and efficacious, orally
bioavailable, inhibitor of Nav1.7 and was chosen for clinical

development. Phase I studies demonstrated that GDC-0276
exhibited a safety and pharmacokinetic profile that supports
its future investigation as a potential therapeutic for pain

(Stumpf et al., 2019). Further, optimization through blocking
the labile benzylic position led to the discovery of GDC-0310
(52). GDC-0310 exhibited improved metabolic stability, Nav
selectivity and pharmacokinetic profile as compared to

GDC-0276 in the phase I trial (Safina et al., 2021).
AstraZeneca, Sweden developed first of its kind chromane

derivative AZD-3161 as a potent Nav1.7 inhibitor (IC50

Nav1.7 is 66 nM). AZD-3161 (53) was investigated in the
phase I study for its effect on mechanical pain sensitivity in
ultraviolet C irradiated skin. Unfortunately, further develop-

ment of this compound was halted as it failed in the clinical
proof-of-mechanism study (NCT01240148).

Scientists at GlaxoSmithKline have worked extensively on

the discovery of Nav1.7 inhibitors. They disclosed a pan-Nav
channel inhibitor, GSK-2339345 (54), that was evaluated in
phase II clinical trials for patients with chronic refractory
cough. The effect of GSK2339345 on cough responses during

cough challenges was inconclusive, and further progress of this
molecule was stopped (WO2013006596) (Boehm et al., 2013).

Nav1.8 has also gained much attention as the inhibition of

Nav1.8 has been associated with hyperalgesia, neuropathic
pain, and reduced functionality of opioid receptors. Studies
on Nav1.8 knockout mice showed deficits in nociception with

inflammation, advocating the association of Nav1.8 in inflam-
matory pain. Nav1.8 turned out to be the first tetrodotoxin-
resistant (TTX-r) VGSC mainly expressed in DRG neurons
and sensory fibres; therefore, Nav is a potential target for pain

(Alsaloum et al., 2020). Despite the promising therapeutic
effects of Nav1.8 inhibitors in animal models of inflammatory
and neuropathic pain, there have been a lack of studies into the

efficacy of Nav1.8-specific inhibitors in humans. Currently,
three Nav1.8 inhibitors are undergoing clinical studies for
treating different pain conditions (Fig. 9). Molecule PF-

04531083 (55), is an orally active, small molecule Nav1.8
VGSC blocker (hNav1.8 IC50 0.7 lM) developed by Pfizer
Neusentis, UK. Compound 55 was efficacious in preclinical

models of neuropathic pain and tibial nerve transection
(TNT) induced mechanical allodynia model in rats (Bagal
et al., 2015). The clinical efficacy of compound 55 was estab-
lished by assessing its effect on heat pain in healthy volunteers
in Phase I with ultraviolet light sensitized skin (NCT01127906)
and post-surgical dental pain in Phase II (NCT01512160). Pfi-
zer reported another clinical candidate PF-06305591 (56), as

selective inhibitor of Nav1.8. Compound 56 was found to be
potent, highly selective Nav1.8 blocker (IC50 15 nM) with an
excellent preclinical in vitro ADME and safety profile. Com-

pound 56 has completed the investigation in Phase I clinical
trial for its safety and tolerability (NCT01776619). However,
Pfizer is not listing this compound in its present-day pipeline

and might be keeping this as a backup molecule. The third
small molecule VX-150 (57), is a highly selective inhibitor of
Nav1.8 (>400-fold). Compound 57 was developed as an orally
bioavailable prodrug that rapidly converts into its active

metabolite (Anderson et al., 2016). In 2018, Vertex Pharma-
ceuticals Inc. revealed the promising Phase II results of its
investigational Nav1.8 inhibitor VX-150 in patients with pain

caused by small fibre neuropathy. VX-150 was well tolerated
in this study and demonstrated statistically significant and clin-
ically meaningful pain reductions. Moreover, this study was

the third consecutive proof-of-concept study for VX-150 and
validated the potential role of Nav1.8 inhibitors in treating
several pain disorders (NCT03304522).
2.3. Calcium channel blockers

Ca2+ channels play a critical role in controlling sensory func-
tions associated with the transduction, transmission, process-

ing, and modulation of pain signals (Yaksh et al., 2006). An
increase in intracellular Ca2+ ion through influx of Ca2+ ion
due to opening of membrane channels causes depolarization

of membrane current and contributes to neuronal firing. Cal-
cium channels are classified based on their activation charac-
teristics as high- and low-voltage activated channels,

structural subunit composition as CaV1, CaV2, CaV3, and
their pharmacology as L, P/Q, N.R, T-type (Bourinet et al.,
2005). L-type Ca2+ channels are high-voltage activated chan-

nels containing four subunits CaV1.1, CaV1.2, CaV1.3,
CaV1.4. L-type Ca2 + channels function in the excitation-
secretion coupling of endocrine cells and some neurons. The
L-type channels are blocked by a phenylalkylamines, benzoth-

iazepines and dihydropyridines (Striessnig, 1999). Research
involving the intrathecal administration of L-type Ca2+ chan-
nel blockers have shown that they do not offer satisfactory

pain relief (Lee, 2013). N-type calcium channel contains a sin-
gle a1 subunit gene (also known as a1B or CaV2.2) restricted
to primary afferent neurons, the dorsal horn, and the synaptic

connections of nociceptive afferent neurons. Studies showed
that indirect inhibition of N-type Ca2+ channels via
morphine-induced activation produces potent analgesic
actions (Westenbroek et al., 1992). Several peptides from the

snail’s venoms were reported as potent N-type calcium channel
blockers. x-Conotoxin is a peptide containing 24–30 amino
acids with three disulphide bonds obtained from Conus geogra-

phus, C. magus and C. catus. x-Conotoxin mainly acting
through inhibit synaptic transmission by blocking N-type
Ca2 + channels (Ellinor et al., 1994). Leconotide (x-
conotoxin CVID, AM-336) has been investigated in phase I/
IIa trials as a drug under the patronage of Zenyth Therapeu-
tics for the treatment of intractable pains. Despite its selectivity

and stability, the development of leconotide is now on hold
due to the sluggish market scenario (Schroeder et al., 2012).



Fig. 9 Small molecule Nav1.8 inhibitors that progressed to clinical trials.
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Currently, the only FDA approved x-conotoxin is ziconotide
(Prialt�) (58) which is the first-in-class drug acting as

CaV2.2 channel blocker. Ziconotide is a synthetic peptide of
x-conotoxin MVIIA [H-Cys-Lys-Gly-Lys-Gly-Ala-Lys-Cys-S
er-Arg-Leu-Met-Tyr-Asp-Cys-Cys-Thr-Gly-Ser-Cys-Arg-Ser-

Gly-Lys-Cys-NH2] indicated for the treatment of severe
chronic pain in patients for whom intrathecal therapy is neces-
sary (Pope et al., 2013) (Fig. 10). Till date, only two drugs,
morphine and ziconotide have been approved by the FDA

for targeted intrathecal drug delivery administration for
chronic pain as monotherapy (Van Zundert and Rauck,
2023). A small molecule NMED-160 (Z-160) (59) acting as a

potent N-type Ca2+ channel blocker was developed by Neu-
romed Pharmaceuticals. The compound was evaluated in
phase II trials for the treatment of lumbosacral radiculopathy

(LR) and PHN but further study was discontinued due its poor
Fig. 10 a. crystal structure of x-conotoxin from Conus geographus (P
pharmaceutical characteristics (Pajouhesh et al., 2009).
Another small molecule benzenesulfonamide derivative,

CNV-2197944 (60) is being developed by Convergence Phar-
maceuticals (acquired from GSK in 2010) as CaV2.2 selective
blocker. The molecule has completed its phase II trials for both

PHN (NCT01848730) and DPN (NCT01893125). Scientists
have been investigating a plethora of AEDs that may be repur-
posed to combat pain. One of these drugs, levetiracetam (61)
acting via blocking N-type Ca2+ channel has been evaluated

in phase IV trial for painful polyneuropathy
(NCT00286260), PHN (NCT00160511) and fibromyalgia
(NCT00254657).

P-type Ca2+ channels are distributed to Purkinje cells
where they facilitate depolarization-induced repetitive spikes.
These channels are blocked by x-agatoxin IVA isolated from

the funnel web spider venom which could be useful as a ther-
DB ID: 1TTL) and b. ziconotide showing three disulphide bonds.
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apeutic lead for pain treatment. Unfortunately, none of the P-
type Ca2 + channels blockers progressed into clinical studies
(Olivera et al., 1994).

T-type Ca2+ channels (CaV3) are low voltage activated
channels that open in response to small membrane depolariza-
tion and can contribute to secretory processes (Snutch et al.,

2018). Clinically available AEDs, ethosuximide (62) and zon-
isamide (63) are the molecules known to act through blocking
T-type Ca2+ channels (Kostyuk et al., 1992; Kawata et al.,

1999). Currently, ethosuximide is being evaluated in phase II
clinical trials in the treatment of peripheral neuropathic pain
(NCT04431778) and phase III trial in abdominal pain
(NCT04217733). Zonisamide is being investigated in phase II

trial for its safety and effectiveness in subjects with migraine
headache (NCT00055484). ABT-639 (64), a benzenesulfon-
amide derivative was also developed as a selective T-type

CaV blocker. The compound has been shown to be efficient
in reducing nociceptive and neuropathic pain in various pre-
clinical models but failed in achieving significant pain-

attenuating actions in phase II trial (Ziegler et al., 2015). Zali-
cus Inc., a biopharmaceutical company focused on developing
Fig. 11 Promising pipeline analgesics
novel treatments for pain has recently completed phase I and
Ib trials of novel, orally active T-type Ca2+ channel blocker
Z-944 (65). The results demonstrated that Z-944 was well tol-

erated and efficacious in human models measuring laser-
evoked potentials (LEP) from skin irritated by topical applica-
tion of capsaicin (Lee, 2014).

Recently, gabapentinoid blockbuster drugs such as gaba-
pentin (66) and pregabalin (67) acting through modulation
via binding to the a2d-1 and a2d-2 Ca2 + channel subunit

received much attention for their analgesic profile. These drugs
have been approved by the FDA for the treatment of PN,
PHN and fibromyalgia apart from the indication of epilepsy
(Patel et al., 2018; Gee et al., 1996; Arnold et al., 2017;

Najam et al., 2022) (Fig. 11).

2.4. Acid-sensing ion channel modulators

Acid-sensing ion channels (ASICs) are crucial acid sensors
implicated in neural modulation in the CNS and pain-
associated tissue acidosis in the peripheral system. Several

pain-causing stimuli, including inflammation, lower extracellu-
acting as calcium channel blockers.
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lar pH and local tissue acidosis (pH < 6) due to tissue damage
activate the TRPV1 through protons. ASICs are also activated
by the decrease in extracellular pH and initiate the proton-

evoked currents in the sensory neurons. ASICs at the extracel-
lular amino-acid residues E600 and E648, open the channel (at
low pH < 6) and lower the threshold for TRPV1 activation,

by inflammatory meditators (at high pH > 6) (Holzer, 2009;
Jordt et al., 2000). Four acid-sensing ion channel (ASIC) genes
(ASIC1, ASIC2, ASIC3 and ASIC4) and six ASIC subunits

(ASIC1A, ASIC1B, ASIC2A, ASIC2B, ASIC3 and ASIC4)
have been identified. Vanillotoxins (VaTxs 1, 2 and 3) are
potent peptidic neurotoxins found in the venom of the Trini-
dad chevron tarantula (Psalmopoeus cambridgei) inhibiting

ASIC1A homomultimeric channel activity. These spider toxins
are also potent agonists of TRPV1 and antagonists of Kv2-
type voltage-gated potassium channels (Siemens et al, 2006).

Recent studies employing intrathecal injection of VaTx1
had significantly reduced thermal, mechanical, chemical,
inflammatory and neuropathic pain in mice (Mazzuca et al.,

2007; Baron et al., 2013). The potential roles of ASIC inhibi-
tors amiloride (68) (a K + -sparing diuretic, IC50 5–100 lM)
and benzamil (69) (benzyl amiloride) in nociception have

recently been investigated (Kleyman and Cragoe et al.,
1988). The clinical efficacy of amiloride in alleviating aura
and headache has also been proved successful in an open-
labelled pilot study consisting of 4–7 patients (Holland et al.,

2012). Several synthetic and natural compounds modulating
the ASICs such as GMQ, A-317567, NSAIDs, tetraethylam-
monium, 4-aminopyridine, aminoglycosides and local anaes-

thetics have been identified (Fig. 12). GMQ (70) (2-
guanidine-4-methylquinazoline) is amiloride like compound
Fig. 12 Acid-sensing ion
belonging to the guanidinium class that activates ASIC3 at
physiological pH7.4 and induce pain in an ASIC3-dependent
manner, when injected into the paw of a mouse (EC50

2 mM) (Alijevic and Kellenberger et al., 2012).[156] Abbott
Neuroscience Research Laboratory discovered a more potent
amidine analogue A-317567 (71), as ASIC3 blocker

(IC501025 nM). Compound 71 was found to be effective in
the rat CFA model of inflammatory pain and in the skin inci-
sion model of postoperative pain (Dubé et al., 2005). Multiple

studies have also demonstrated the ASIC inhibitory potential
of NSAIDs such as flurbiprofen (72) and ibuprofen (73)
against ASIC1a (IC50 � 350 mM) whereas, salicylic acid
(74), aspirin (75) and diclofenac (76) against ASIC3 (IC50

90–260 mM) (Dorofeeva et al., 2008). The analgesic effects
of local anaesthetics (LAs) mainly due to voltage-gated
Na + ion channel inhibition is well known however, some evi-

dence for their ASIC inhibition activity was recently observed.
The peak current of ASIC3 can be blocked by tetracaine (77)
(IC50 10 mM) whereas, ASIC1a by lidocaine (78) (IC50-

� 12 mM) (Leng et al., 2013; Lin et al., 2011). Despite these
significant developments, ASICs modulators has not yet pro-
duced compounds that are suitable for clinical use (Baron

et al., 2015).

2.5. Piezo channel modulators

Scientists at the Scripps Research Institute, USA have charac-

terized a revolutionary mechanosensitive PIEZO ion channel
in a mouse neuroblastoma cell line. These are the family of
mechanotransducers composed by two nonselective cationic

channels known as Piezo1 and Piezo2 with a relatively homol-
channel modulators.
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ogous structure (Coste et al., 2010). Among the recently dis-
covered mechanically sensitive ion channels, Piezo2, has been
implicated in mediating proprioception and detecting light

touch on the skin, as well as mechanical allodynia in a model
of nerve injury. Studies have found that inflammatory signals
also enhance Piezo2-mediated mechanosensitive currents

in vitro and produces mechanical hyperalgesia (Dubin et al.,
2012). Till now, very few modulators such as Yoda1 (79), Jedi1
(80) and Jedi2 (81) have been identified through high-

throughput screening assays (Fig. 13). These small molecules
activators utilize the key mechanotransduction components
to activate Piezo1 (Wang et al., 2018).

2.6. P2X receptor ligands

Purinergic receptors are ion gated channels distributed in the
CNS and immune system. They are classified into two subfam-
Fig. 13 Human and mo

Fig. 14 Selective P2X3 receptor an
ilies: G-protein-coupled metabotropic (P2Y) and ligand-gated
ionotropic (P2X) receptors (Burnstock, 2012). Among these,
P2X which consists of seven members P2X1-7 have shown to

play significant roles in the pathogenesis of pain and accumu-
lating evidence indicates that activation of P2X3 receptors
mainly mediates this effect. P2X3 receptor channels are chiefly

expressed in sensory neurons and are activated by the extracel-
lular ATP and thus play significant roles in nociception and
sensory hypersensitization (Chen et al., 1995). Significant pro-

gress has been made to discover selective and more potent P2X
antagonists for the treatment of several diseases associated
with hypersensitive nerve fibres, including chronic pain, neuro-
genic inflammation, overactive bladder (OAB), and refractory

and/or unexplained chronic cough (RUCC), as evidenced by
the patents and publications. Several compounds belonging
to diverse classes such as nucleotide ATP analogues, and

non-nucleotide molecules comprising of diaminopyrimidines,
use Piezo1 activators.

tagonists under clinical studies.
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imidazo-pyridine, arylamides, pyrrolinones etc. have been
reported (Shieh et al, 2006). Many of these first generation
P2X3 antagonists had very poor drug-like properties with

unfavourable pharmacokinetic and pharmacodynamic charac-
teristics. Currently, only four small molecules viz. gefapixant
(82) (Merck), BLU-5937 (83) (Bellus Health), eliapixant (84)

(Bayer), and sivopixant (85) (Shionogi) are being evaluated
in different phases of clinical trials (Fig. 14). Gefapixant (82)
(AF-219/MK-7264) is a first-in-class, orally active P2X3 antag-

onist (IC50 0.03 lM), that is being evaluated by Afferent Phar-
maceuticals in phase II trials (NCT01554579) against patients
with moderate to severe pain associated with osteoarthritis
(OA) of the knee and cystitis/bladder pain syndrome

(Richards et al., 2019). Despite the report of its unpleasant side
effects including loss of taste, this small molecule has success-
fully progressed to Phase III trials for RUCC (NCT03449134).

Another molecule is an oral imidazopyridine based bisphos-
phonate known as minodronate (86) which is approved in
Japan for the oral treatment of osteoporosis (Kubo et al.,

2010). Recently, the analgesic effects of minodronate mediated
by the purinergic P2X2/3 receptor have been confirmed by its
ability to reduce low back pain in patients (Yoshioka et al.,

2013). BLU-5937 (83) is another small molecule of the imida-
zopyridine chemical class acting as a P2X3 antagonist with
high selectivity (>1500 fold) and no taste alteration adverse
effect (Garceau et al., 2019). The molecule has shown good

drug and pharmacokinetic properties in healthy volunteers
and currently being studied in phase II trial for the treatment
of chronic cough and chronic pruritus (NCT03979638). Eli-

apixant (84) (BAY-1817080) a P2X3 antagonist belonging to
arylamide class, is being developed by Bayer for the treatment
of persistent chronic cough, diabetic neuropathic pain in Phase

II trial (NCT04641273) and endometriosis-associated pelvic
pain in Phase II (NCT04614246). Sivopixant (85) (S-600918),
a dioxotriazine analgesic for the treatment of neuropathic pain

and cough is being developed by Shionogi. Compound 82 was
found to reduces chronic cough by selectively antagonizing the
P2X3 receptors (Kai et al., 2021; Dicpinigaitis et al., 2020).

3. Conclusion, authors comments and future perspective

Pain affects the physical and mental health of patients and has a

tremendous financial impact globally. Despite the strong consensus

that urgent pursuit required to combat the opioid crisis, there has been

insufficient development of analgesics in the past for treating acute

pains, such as trauma and surgery. Moreover, the global analgesics

market size is expected to reach $42.6 billion in the coming few years.

Therefore, the big pharma companies have now lately started focusing

on development of novel non-opioid pain killers. As a result, around

nine hundred preclinical analgesics in the pipeline are now rapidly

advancing towards the clinical trials. Among these, ion channels are

the second-largest target family, accounting >21% of the total drug

candidates. Ion channels offer great potential for developing analgesics

due to their high level of genomic diversity. Furthermore, technical

advancements in the protein crystallography, high throughput screen-

ing and structure-guided drug discovery efforts have identified several

classes of ion channels modulators. In several instances, these novel

pain relievers have demonstrated good efficacies in their early and late

stages of clinical trials. One such promising molecule is capsaicin from

pepper which holds great promise for the treatment of pain. Develop-

ment of its newer analogues may result not only in the discovery of

safer and effective analgesics but also in better understanding of pain
mechanisms. Similarly, toxins from spiders, snakes and cone snails

etc. are a treasure trove of ligands that may aid in the development

of new analgesics with potential therapeutic values. Moreover, several

clinically available drugs that have lately proven to be acting as ion

channels modulators (e.g. AEDs) can be repurposed to accelerate the

development of newer analgesics. Future research involving SCN9A

gene will potentially lead to entirely new avenues of novel antibody-

based drugs and gene therapy, as a significant number of therapeutic

opportunities are still unexplored.
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Dubé, G.R., Lehto, S.G., Breese, N.M., Baker, S.J., Wang, X.,

Matulenko, M.A., Honore, P., Stewart, A.O., Moreland, R.B.,

Brioni, J.D., 2005. Electrophysiological and in vivo characteriza-

tion of A-317567, a novel blocker of acid sensing ion channels. Pain

117, 88–96. https://doi.org/10.1016/j.pain.2005.05.021.

Dubin, A.E., Schmidt, M., Mathur, J., Petrus, M.J., Xiao, B., Coste,

B., Patapoutian, A., 2012. Inflammatory signals enhance piezo2-

mediated mechanosensitive currents. Cell. Rep. 2, 511–517. https://

doi.org/10.1016/j.celrep.2012.07.014.

Ellinor, P.T., Zhang, J.F., Horne, W.A., Tsien, R.W., 1994. Struc-

tural determinants of the blockade of N-type calcium channels by a

peptide neurotoxin. Nature 372, 272–275. https://doi.org/10.1038/

372272a0.
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