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Abstract The release of persistent organic pollutants (POPs) into the environment is an issue of

global concern, as the chemicals are stable over a prolonged period resulting in their accumulation

in many animals and plants. Although POPs are banned in several countries, many chemicals have

been proposed as POP candidates to be added to the existing compounds as defined by the United

Nations Stockholm Convention committee. To address the safe disposal and clean-up of such

chemicals, new, and especially cost-effective, remediation technologies for POPs are urgently

required. This review focuses on existing POPs and the types of remediation processes available

for their removal. Particular attention is paid towards photocatalysis using nanocatalysts in this

review, due to their effectiveness towards POP degradation, technological feasibility, and energy

and cost-efficiency. The underlying principles and the key mechanisms of the photocatalysts based

on TiO2 based materials, metal oxides, light-assisted Fenton systems, framework materials e.g.

metal-organic frameworks and polyoxometalates, including metal-free and hybrid photocatalysts

for POPs cleanup are described for advance applications in solving the POPs contamination in
, metal-

BDEs,

rinated

valent
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the environment. The improvements of photocatalytic performance especially the POPs removal

mechanism using the conventional and modified process, the design and optimization of photore-

actors, and the integration technology are the critical challenges for the emerging pollutants and

require intensive research for the forthcoming future.

� 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Rapid economic growth, energy intensity, industrialization,

and urbanization in recent years have created enormous chal-
lenges for the environment, human health, and ecosystems (Al-
Mulali et al., 2015; Bakirtas and Akpolat, 2018). In particular,

the widespread production and utilization, of toxic and haz-
ardous persistent organic pollutants (POPs) have raised signif-
icant concerns owing to their environmental impact (Ashraf,
2017; El-Shahawi et al., 2010). A range of POPs, especially

organochlorine insecticides, polychlorinated biphenyl (PCBs),
polychlorinated dibenzodioxins (PCDDs), polychlorinated
dibenzofurans (PCDFs), and polybrominated diphenyl ethers

(PBDEs), etc. are mainly from anthropogenic activities and
have been widely used in array of products (Jones and de
Voogt, 1999; Mato et al., 2001). These POPs, which could

reach the environment through agricultural, industrial and
municipal activities, have been a threat to ecosystems
(Pariatamby and Kee, 2016). It has increased attention to the

overuse of pesticides through agricultural activities (Yadav,
2010). Such pesticides have high toxicity, as well as a bioaccu-
mulation potential and are widespread in the environment

causing massive contamination. Pesticides have been found
everywhere, including soil, water (for example, surface water,
groundwater, and drinking water), causing environmental dev-
astation (Katsoyiannis and Samara, 2004; Miranda-Garcı́a

et al., 2011; Pariatamby and Kee, 2016). Currently, many
physical, chemical, biological, or combination techniques have
been proposed for decomposition and mineralization of POPs.

However, conventional POP treatments such as adsorption
and coagulation-flocculation, with the sedimentation as the
post-treatment, are only solely fixating the toxic compounds

without complete removal (Padmanabhan et al., 2006). In
another approach, chemical oxidation and biotechnology tech-
niques also face many disadvantages, including high costs with
large chemical consumption, incomplete destruction, and pro-

longed overall treatment time (Dong et al., 2015). Preferential
effective techniques for eliminating POPs are those that offer
advantages such as highly efficient, ecologically friendly, and

technologically reliable techniques that have a relatively

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 Key chemical properties, toxicity and environmental degradation of the well-known POPs.

Name and Chemical

structure

Properties Sources Toxicity Environmental

Degradation

References

Endrin C12H8Cl6O Molecular Weight:

380.9 g/mol

Boiling Point: 245 �C
Melting Point: 473� F.
Solubility:

less than 1 mg/mL at

68� F
Density:1.7 at 68 �F
Vapor Pressure:

2e-07 mm Hg at 77 �F
Log Kow: 5.20

Henry’s Law constant:

6.4 � 10�6 atm-m3/mole

Insecticide,

rodenticide and

avicide.

Health Effects:

Acute toxicity,

short-term high-

risk effects,

reproductive

Hazards

Exposure Routes:

The substance can

be absorbed into

the body through

the skin and by

ingestion. The

substance can be

absorbed into the

body by

inhalation,

through the skin

and by ingestion.

Photodegradation

half-life is 7 days.

Volatilization half-life

is 63 days. It is no

mobility in soil with

half-life 4–8 years.

Volatilization from

moist soil surfaces is

expected to be an

important fate

process. If released

into water, endrin is

expected to adsorb to

suspended solids and

sediment in water.

Bioconcentration in

aquatic organisms is

very high.

(Budavari, 1996;

De Bruijn and

Hermens, 1991)

Heptachlor C10H5Cl7 Molecular Weight:

373.3 g/mol Boiling

Point: 293�F
Melting Point: 203 to

205 �F Solubility:

less than 1 mg/mL at

68� F
Density:1.66 at 68 �F
Vapor Pressure:

0.0003 mm Hg at 77 �F
Log Log Kow: 6.10

Henry’s Law Constant:

2.94 � 10�4 atm-

m3/mole

Termite control,

seed/seed furrow

treatment, and

wood treatment.

EPA: Probable

human

carcinogen. IARC:

Possibly

carcinogenic to

humans.

Exposure Routes:

Inhalation, skin

absorption,

ingestion, skin

and/or eye

contact.

It is stable to

daylight, air,

moisture, and

moderate heat (up to

160 �C). Field
dissipation half-lives

for heptachlor can

range from 40 days to

5.5 yrs. If released

into water, heptachlor

is expected to adsorb

to suspended solids

and sediment.

(Budavari, 1996;

Hansch and Leo,

1979; Lide, 2000;

Simpson et al.,

1995; Tomlin,

1994)

Hexachlorobenzene C6Cl6 Molecular Weight:

290.7 g/mol Boiling

Point:

612 �F at 760 mm Hg

Melting Point: 441 to

444 �F
Solubility:

less than 1 mg/mL at

68� F Water Solubility:

2.18 � 10�8 M

Density:2.044 at 75.2 �F
Vapor Pressure:

1 mm Hg at 237.9 �F
Log Kow: 5.73

Henrys Law Constant:

0.00 atm-m3/mole

Pesticide, chemical

industry, and

automotive

industry

Evidence for

Carcinogenicity:

EPA: Probable

human

carcinogen.

IARC: Possibly

carcinogenic to

humans.

Health Effects:

Nervous system,

long-term organ

toxicity,

respiratory system,

hematoLogic or

reproductive

system.

Hexachlorobenzene is

not expected to

volatilize from dry

soil surfaces based

upon its vapor

pressure. It is

persistent to either

abiotic or

biodegradation

processes in soil. If

released into water,

hexachlorobenzene is

expected to adsorb to

suspended solids and

sediment. The

volatilization half-life

from a model pond

(2 m deep) is

estimated as

approximately 5 years

if adsorption is

considered.

(O’Neil, 2006;

MacBean, 2008;

Hansch et al.,

1995; Hartley and

Kidd, 1983)

a-hexachloro cyclohexane

C6H6Cl6

Molecular Weight:

290.83 g/mol

Boiling point:

288 �C at 760 mmHg

Melting point:159–

160 �C
Density (g/cm3): 1.87 at

19 �C

Pesticide, medical

uses

Evidence for

Carcinogenicity:

IARC: Possibly

carcinogenic to

humans.

Health Effects:

Nervous system,

chronic

Half-life in air is

approximately

115 days. It is low

mobility in soil and

not volatilize from

dry soil surfaces. The

biodegradation half-

life was 90 days in

(Lide, 2000;

Schaefer et al.,

2015)

(continued on next page)
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Table 1 (continued)

Name and Chemical

structure

Properties Sources Toxicity Environmental

Degradation

References

Vapor pressure:

4.5 � 10�5 mmHg at

25 �C
Solubility:

Poor water solubility or

insoluble

Henry’s law constant:

6.86 � 10�6

Log Kow: 3.8

(cumulative)

toxicity.

moist soil, and

63 days in a soil

slurry.

b-hexachloro cyclohexane

C6H6Cl6

Molecular Weight:

290.83 g/mol

Boiling point:

60 �C at 0.5 mmHg

Melting point: 314–

315 �C
Density (g/cm3):1.89 at

19 �C
Vapor pressure:

3.6 � 10�7 at 20 �C
Solubility: Poor water

solubility or insoluble

Henry’s law constant:

4.5 � 10�7

Log Kow: 3.78

Pesticide Evidence for

Carcinogenicity:

possible human

carcinogen.

Health effects:

Nervous system,

chronic

(cumulative)

toxicity

Half-life in air is

estimated to be

28 days.

It is low to slight

mobility in soil and

not volatize from dry

soil surface. It is little

to no aerobic

biodegradation and

slightly anaerobic

degradation. If

released into water, it

is expected to adsorb

to suspended solids

and sediment.

(Lide, 2000;

USEPA, 2020)

c-hexachloro Cyclohexane

(or Lindane) C6H6Cl6

Molecular Weight:

290.83 g/mol

Boiling point: 323.4 �C
Melting point: 112.5 �C
Density (g/cm3):1.87 at

20 �C
Vapor pressure:

3.6 � 10�7 at 20 �C
Solubility: Poor water

solubility or insoluble

Log Kow: 3.72

Pesticide and

Pharmaceutical

use

Evidence for

Carcinogenicity:

possible human

carcinogen.

Health effects:

Skin irritation,

burning

sensations, itching,

dryness, and rash

It is resistant for

aerobic degradation

in the water and soil.

The biodegradation is

possible by anaerobic

pathway. The

biodegradation in soil

is depended on its

desorption from soil

particles. It can

bioaccumulate in

food chains.

(Lide, 2000;

USEPA, 2020)

Mirex C10Cl12 Boiling Point:

485 �C at 1 mm Hg

Melting Point: 485 �C
Solubility:

less than 1 mg/mL at

25 �C
Vapor Density:

3 � 10�7 mm Hg at

25 �C
Log Kow: 6.89

Henrys Law Constant:

8.11 � 10�4 atm-

m3/mole

Insecticide,

flame-retardant

additive in

thermoplastic,

thermosetting and

elastomeric resins,

paper, paint

rubber, electrical

adhesive and

textile products.

Evidence for

Carcinogenicity:

IARC: Possibly

carcinogenic to

humans.

Mirex is slowly

degraded by direct

photolysis reaction. It

is expected to be

immobile in soil and

may volatilize from

moist soil surfaces.

Mirex is very slow to

biodegrade in the

environment and is

expected to have

biodegradation half-

lives of one year or

more in most soils.

(ATSDR, 1995;

O’Neil, 2006;

Pentachlorobenzene

C6HCl5

Molecular Weight:

250.3 g/mol

Boiling Point:

277 �C at 760 mm Hg

Melting Point:86.0 �C
Solubility:0.831 mg/L at

25 �C
Density:1.8342

Vapor

Pressure:0.002 mm Hg at

Industrial

processes,

electrical

equipment, solid

waste incineration,

combustion of coal

and combustion of

various biomasses

Evidence for

Carcinogenicity:

not classifiable as

to human

carcinogenicity.

Exposure Routes:

The substance can

be absorbed into

the body by

Half-life in air is

estimated to be

277 days. It can be

removed from the

atmosphere by wet

and dry deposition. It

is not expected to

volatilize from dry

soil surfaces. It

resistant to

(Hansch et al.,

1995; Shiu and

Ma, 2000; Bailey,

et al., 2009)
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Table 1 (continued)

Name and Chemical

structure

Properties Sources Toxicity Environmental

Degradation

References

25 �C
Log Kow: 5.18

Henry’s Law

Constant = 7.03e-

04 atm-m3/mole

inhalation and by

ingestion.

degradation in

laboratory soil tests

with half-lives of 194

and 345 days reported

in duplicate

experiments.

Pentachlorobenzene

is resistant to

biodegradation under

aerobic conditions.

Pentachlorophenol

C6Cl5OH or C6HCl5O
Molecular Weight:

266.3 g/mol

Boiling Point:

309 to 310 �C at 760 mm

Hg (with decomposition)

Melting Point:191 �C
Solubility:

less than 1 mg/mL at

25 �C
Density:1.978 g/mL

Vapor Pressure:

0.00011 mm Hg at 20 �C;
40 mm Hg at 211.22� C
Log Kow: 5.12

Henry’s Law Constant:

2.45 � 10�8 atm-

m3/mole

Product of fungus

metabolism, wood

preservative,

surface

disinfectant

Evidence for

Carcinogenicity:

EPA: Likely to be

carcinogenic to

humans.

IARC:

Carcinogenic to

humans

Health Effects:

Acute toxicity,

chronic

(cumulative)

toxicity, nervous

System,

disturbances,

reproductive

hazards

It is possibly

degraded in the

atmosphere by

reaction with

photochemically-

produced hydroxyl

radicals with the

estimated half-life

29 days. Half-life in

soil is approximately

weeks to months It

may photodegrade

rapidly in surface

water when exposed

to direct sun light.

Half-life in soil is

approximately weeks

to months.

(O’Neil, 2006;

Hansch and Leo,

1979; Ide et al.,

1972; Murthy

et al., 1979; Rao

and Davidson,

1982)

Perfluorooctanesulfonyl

fluoride C8F18O2S

Molecular Weight:

502.12 g/mol

Boiling Point: 154 �C
Solubility:In water:

1.41 � 10�4 mg/L at

25 �C
Density:1.824 g/mL at

25 �C
Vapor Pressure:

5.75 mm Hg at 25 �C
Log Kow: 7.84

surfactant, in

paper and

packaging

treatment, and

surface protectant

Evidence for

Carcinogenicity:

No data

Health Effects:

decreased HDL

cholesterol

It is not expected to

react with

photochemically-

produced hydroxyl

radicals or be

susceptible to direct

photolysis by

sunlight. It is no

mobility in soil. It can

volatilize form moist

soil surfaces If

released into water, it

is expected to adsorb

to suspended solids

and sediment.

(Haynes, 2010;

Olsen et al., 2004)

Perfluorooctane sulfonic

acid C8HF17O3S
Molecular Weight:

500.13 g/mol

Boiling Point:249 �C
Density:1.25 at 25 �C
Solubility:

3.2 � 10�3 mg/L at 25 �C
Vapor Pressure:

2.0 � 10�3 mm Hg at

25 �C
Log Kow:4.49

surface treatments,

paper protection,

and performance

chemicals

Health effects:

Causes severe skin

burns and eye

damage. May

cause respiratory

irritation

Half-life in air is

estimated to be

115 days. It is not

volatilize from dry

soil surfaces and it is

resistant to

biodegradation.

(Savu, 1999;

ATSDR, 2015,

OECD, 2002)

Toxaphene Boiling Point: 155 �C
Melting Point: 65 to

90 �C
Solubility:

less than 1 mg/mL at

19� C
Density:1.65

Vapor Pressure:

0.4 mm Hg at 25 �C

Insecticide

Evidence for

Carcinogenicity:

EPA: Probable

human

carcinogen.

IARC: Possibly

carcinogenic to

humans.

Health Effects:

Half-lives in aerobic

soil for the toxaphene

mixture range from 1

to 11 years. It is not

readily aerobic

biodegradation for

toxaphene

components with

more than 3 chlorine

(Esaac and

Matsumura,

1980; Rossberg

et al., 2006; Saleh,

1991; USEPA,

1998; U.S.

Environmental

Protection

Agency Report,

(continued on next page)
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Table 1 (continued)

Name and Chemical

structure

Properties Sources Toxicity Environmental

Degradation

References

Log Kow:5.90 Chronic

(cumulative)

toxicity

atoms. Aerobic

biodegradation does

not occur readily for

toxaphene

components with

more than 3 chlorine

atoms.

2020)

Hexabromobiphenyl

C12H4Br6

Molecular Weight:

627.6 g/mol

Boiling Point:72 �C
Melting Point:

246 to 250 �F
Solubility:

less than 1 mg/mL at

18� C
Vapor Pressure:

7.6 � 10�5 mm Hg at

90 �C
Log Kow: 6.39

Use as an additive

in flame retardants

primarily in

thermoplastics

Evidence for

Carcinogenicity:

EPA: Not

evaluated.

IARC: Probably

carcinogenic to

humans

Hexabromobiphenyl

is readily degraded in

UV light. It is little or

no mobility in soil

and can volatilize

from moist soil

surfaces. It is highly

persistent under

aerobic conditions,

but may biodegrade

slowly under

anaerobic conditions.

(ATSDR, 2004;

IARC, 1978;

Swann et al.,

1983)

Decabromodiphenyl ether

C12Br10O
Molecular Weight:

959.2 g/mol

Boiling Point:

530.0 �C
Melting Point:

295.0 �C
Solubility:

less than 1 mg/mL at

20 �C
Density:3.4

Vapor Pressure:

less than 1 mm Hg at

20 �C
Log Kow: 9.97

Use as an additive

flame retardant for

polymers,

electronics and

electrical

equipment.

Detected in flue

emissions from

municipal waste

incineration.

Evidence for

Carcinogenicity

EPA: Not

evaluated.

IARC: Probably

carcinogenic to

humans

Exposure Routes:

The substance can

be absorbed into

the body by

inhalation.

Decabromodiphenyl

ether

exist solely in the

particulate phase in

the atmosphere and

possibly be removed

from the atmosphere

by wet or dry

deposition.

Anaerobic

biodegradation of this

chemical is very slow.

In the absence of

sunlight, the

compound persists in

soils and sediments.

(O’Neil, 2013;

IARC, 1999;

Wyrzykowska-

Ceradini et al.,

2011)

Hexabromocyclododecane

C12H18Br6

Molecular Weight:

641.7 g/mol

Melting point:

179–181 �C a-HBCDD

170–172 �C b-HBCDD

207–209 �C c-HBCDD

Boiling point:

Decomposes

at > 190 �C
Vapour pressure:

6.3 � 10-5 Pa at

21 �C
Water solubility:

a -HBCDD:

48.8 ± 1.9 mg/L
b -HBCDD:

4.7 ± 0.5 mg/L
c -HBCDD:

2.1 ± 0.2 mg/L
Log Kow:5.625

Used as thermal

insulation in the

building industry,

upholstered

furniture,

automobile

interior textiles,

car cushions,

packaging

material, video

cassette recorder

housing and

electric and

electronic

equipment.

Evidence for

Carcinogenicity:

No data available

Health Effects:

The substance is

mildly irritating to

the eye and it is

not irritating to

skin.

Slow indirect

photochemical

degradation with

half-life of 3.2 days.

Photochemical

degradation half-life

of 51.2 h. Half-life in

aerobic soil is

approximately

63 days at 20 �C from

sandy loam soil

amended with sewage

sludge.

(ECHA, 2008)

Hexabromodiphenyl ether

C12H4Br6O
Molecular Weight:

643.6 g/mol

Melting Point:

Used as a flame

retardant in

flexible

Evidence for

Carcinogenicity:

No data available

Half-life in air is more

than 2 days or is

subject to

(UNEP, 2007;

CEPA, 1999)
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Table 1 (continued)

Name and Chemical

structure

Properties Sources Toxicity Environmental

Degradation

References

148–151 �C
Boiling Point:

477.4 ± 45.0 �C at

760 mmHg

Solubility:

4.08 � 10�6 mg/mL

Log Kow: 7.40

Vapour pressure:

6.59 � 10�6 Pa at 21 �C
Henry’s law constant:

10.6 Pa�m3/mol at 25 �C

polyurethane foam Health Effects:

chronic toxicity

atmospheric

transport from its

source to a remote

area. Half-life is more

than 182 days in

water, more than

365 days in sediment

and more than

182 days in soil.

Heptabromodiphenyl ether

C12H3Br7O
Molecular Weight:

722.5 g/mol

Melting Point:

70–150 �C
(decomposition)

Vapour pressure:

4.68 � 10�7 at 25 �C
Water solubility:

0.5 lg/L at 25 �C
Log Kow: 629

Henry’s law constant:

10.6 Pa�m3/mol at 25 �C

Use as flame

retardant in the

housings of

electrical and

electronic

equipment

Evidence for

Carcinogenicity:

No data available

Health Effects:

chronic toxicity

No data for

degradation.

(WHO, 1994,

Lyman, 1985;

EU, 2001)

Hexachlorobutadiene

C4Cl6 or

CCl2 = CClCCl = CCl2

Molecular Weight:

260.8 g/mol

Boiling Point:

215.0 �C at 760 mm Hg

Melting Point:

�21.0 �C
Solubility:

less than 0.1 mg/mL at

22� C
Density:1.675 at 15 �C
Vapor Pressure:

0.3 mm Hg at 25� C
Log Kow: 4.78

Henrys Law Constant:

0.01 atm-m3/mole

Use as a solvent

for elastomers,

heat transfer

liquid, transformer

and hydraulic fluid

Evidence for

Carcinogenicity

EPA: Possibly

carcinogenic to

humans.

IARC: Not

classifiable as to

carcinogenicity to

humans.

Health Effects:

irritation eyes,

skin, respiratory

system, kidney

damage.

It may biodegrade in

natural waters. The

estimated half-lives

are 3–30 days in river

water and 30–

300 days in lake and

ground waters.

(Hansch and Leo,

1995 IARC, 1979;

Tabak, et al.,

1981; Zoeteman

et al., 1980)

Polychlorinated biphenyls Boiling Point:

Most PCBs have boiling

point higher than 200 �C
Solubility:

Most PCBs have water

solubility less than

0.1 mg/mL

Log Kow: >4.53

Use as dielectric

and coolant fluids

in electrical

apparatus,

carbonless copy

paper and in heat

transfer fluids.

Evidence for

Carcinogenicity:

EPA:probable

human

carcinogens

The half-life in air is

during 3.5–7.6 days in

air for

monochlorobiphenyl

to 41.6–83.2 days for

pentachlorobiphenyl.

Photolysis appears to

be the only viable

chemical degradation

process in water.

Biodegradation

occurs under both

aerobic and anaerobic

conditions and is the

major degradation

process for PCBs in

soil and sediment.

(Rossberg et al.,

2006)

Perfluorooctanoic acid

C8HF15O2

Molecular Weight:

414.07 g/mol

Boiling Point:

189.0 �C
Melting Point:

55.0 �C
Solubility:

In water, 2290 mg/L at

24 �C

Used worldwide as

an industrial

surfactant in

Evidence for

Carcinogenicity:

EPA: Likely to be

Perfluorooctanoic

acid is tentative to be

resistant to

(Hansen et al.,

2001; Moody and

Field, 1999;

(continued on next page)
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Table 1 (continued)

Name and Chemical

structure

Properties Sources Toxicity Environmental

Degradation

References

Density:

1.792 g/mL at 20 �C
Vapor Pressure:

0.53 mmHg

Log Kow = 4.81

chemical processes

and as a material

feedstock.

carcinogenic to

humans.

IARC:

Carcinogenic to

humans.

biodegradation under

aerobic or anaerobic

conditions. It is

possibly resistant to

hydrolysis and

photolysis. The

reported

photochemical half-

lifes in water were

256, >5000

and > 25,000 years

on the ocean surface,

open ocean mixing

layer and coastal

ocean, respectively.

Vaalgamaa et al.,

2011)

Pentabromodiphenyl ether

C12H5Br5O
Molecular Weight:

564.7 g/mol

Boiling Point:200–

300 �C
Melting Point: �5 �C
Solubility: Insoluble in

water Density:2.25–2.28

Vapor Pressure:

3.10 � 10�8 mmHg

Log Kow: 6.84

Use as an additive

in epoxy resins,

phenol resins,

polyesters and

polyurethane, and

textiles.

Evidence for

Carcinogenicity:

EPA: no studies of

cancer in humans

exposed

Health Effects:

Skin and eye

Irritation

Half-life for

pentabromodiphenyl

ether

in air is estimated to

be 29 days. It is no

mobility in soil and it

can volatilize from

moist soil surfaces No

degradation (as CO2

evolution) was seen

after 29 days. It is

expected to adsorb to

suspended solids and

sediment.

(WHO, 1994,

Lyman, 1985;

EU, 2001)

Polychlorinated

dibenzodioxins (PCDDs)

Boiling Point:

higher than 400 �C
Solubility:

less than 0.1 mg/mL

Log Kow: >6

PCDDS are the

by-products of

industrial and

combustion

processes.

Evidence for

Carcinogenicity:

IARC: not

classifiable as to its

carcinogenicity to

humans

Health effects:

diabetes,

neurotoxicity,

immunotoxicity

and chloracne.

PCDDs were

expected to have no

mobility in soil. It can

volatile from moist

soil surfaces If they

are released into

water, PCDDs tend

to adsorb to

suspended solids and

sediment. Currently,

there is insufficient

data for the

biodegradation of

PCDDs in the

environment.

(Hagenmaier

et al., 1992;

Zubair and

Adrees, 2019)

Polychlorinated

dibenzofurans (PCDFs)

Melting Point:

higher than 150 �C
Solubility:

less than 0.1 mg/mL

Log Kow: >6 PCDFs are the by-

products of

industrial and

combustion

processes.

Health effects:

diabetes,

neurotoxicity,

immunotoxicity

and chloracne.

PCDFs were expected

to have no mobility in

soil. It can volatile

from moist soil

surfaces If they are

released into water,

PCDFs tend to

adsorb to suspended

solids and sediment.

The biodegradation

of PCDFs in soil is

negligible.

(Hagenmaier

et al., 1992;

Zubair and

Adrees, 2019)
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low-cost. Thus, the most promising technologies that could
effectively degrade and completely mineralize POPs are photo-
catalysis (Chong et al., 2010).

In this study, a various of photocatalysts, including TiO2-
based, nano iron-based, metal-organic frameworks (MOFs),
porous organic polymer composite, etc., and photocatalytic

degradation systems have been favorably prepared and suc-
cessfully nominated with high-photocatalytic performance.
Moreover, reaction conditions, mechanisms, and kinetics for

the photodegradation of POPs are also profitably discussed.
Prospects and critical challenges related to photodegradation
of POPs are also highlighted.
2. Pops background

2.1. Categories of POPs

Persistent organic pollutants (POPs) are toxic organic chemi-
cals that require a very long period of time to degrade under
natural conditions in the environment and can accumulate in

living organism and ecosystem. POPs have raised significant
global concerns due to their persistence in the ecosystem, bio-
magnification and bioaccumulation in ecosystems, and their

significant harmful impacts on human health(Al-Mulali
et al., 2015; Bakirtas and Akpolat, 2018) (see Table 1). Conse-
quently, the reduction and elimination of the POPs releasing
became the urgent issue in calling the action for the global

community. Since 1970s, the use of POPs has been restricted
and the release of these compounds has been prohibited in
Europe and the USA. From May 2004, these chemicals were

listed in the Stockholm Convention with the purpose in termi-
nating or restricting the production and use of this toxic chem-
ical group (Xu et al., 2013). The listed POPs (Fig. 1) in this

convention can be placed into 3 categories:

� Pesticides - The majority of chemicals listed in this group

are the organochlorine pesticides that have been recognized
for their deleterious impacts on the human body and the
persistence in the nature. These chemicals are aldrin, chlor-
dane, chlordecone, dicofol, dieldrin, 1,10-(2,2,2-Trichloroe
thane-1,1-diyl)bis(4-chlorobenzene) (or DDT), endosulfan
and its related isomers, endrin, heptachlor, hexachloroben-
zene (HCB), a-hexachlorocyclohexane, b-hexachlorocyclo-
hexane, lindane (or c-hexachlorocyclohexane), mirex,
pentachlorobenzene, pentachlorophenol and its salts and
esters, perfluorooctane sulfonyl fluoride, perfluorooctane

sulfonic acid and its salts, and toxaphene.
� Industrial chemicals – The chemicals in this group are
decabromodiphenyl ether, hexabromobiphenyl, hexabro-
mocyclododecane, hexabromodiphenyl ether and heptabro-

modiphenyl ether, hexachlorobenzene,
hexachlorobutadiene, pentachlorobenzene, PCBs, polychlo-
rinated naphthalenes, perfluorooctanoic acid, its salts and

related compounds, short-chain chlorinated paraffins, tetra-
bromodiphenyl ether and pentabromodiphenyl ether, per-
fluorooctane sulfonic acid, its salts and perfluorooctane

sulfonyl fluoride. The POPs in this category are broadly
used in production and manufacturing in industrial pro-
cesses. For example, PCBs were the chemicals for industrial

lubricants and coolants in the production of transformers
and capacitors and other electrical products. Perfluorooc-

tanoic acid has been utilized in producing many consumer
goods that resist heat, grease, oil, stains, and water. The
release of these POPs was found as environmental contam-

ination in water, soil, and air, as reported in many previous
researches (Al-Mulali et al. 2015; Bakirtas and Akpolat 2018).

� Unintentional production: These chemicals are the
unwanted by-products derived from the chemical or com-

bustion processes that occur in the existence of chlorine
compounds. The well-known chemicals in this group are
PCBs, PCDDs, and PCDFs. Some other chemicals desig-

nated in this group are HCB, hexachlorobutadiene, pen-
tachlorobenzene, and polychlorinated naphthalene. These
chemicals should be measured to reduce the unintentional

releases to encourage a safe and sustainable environment
to the community and ecosystem.

Some listed chemicals such as HCB and pentachloroben-

zene were applied as both pesticides and industrial chemicals,
while the PCBs were industrial chemicals that were uninten-
tional released from the industrial process. Some new POP

chemicals under review by the POPs Review Committee are
perfluorohexane sulfonate, dechloran plus, and methoxychlor.
The recent emerging pollutants such as some antibiotics such

as norfloxacin, carbamazepine, diclofenac, and ibuprofen are
also considered as the persistent chemicals (Li et al., 2013;
Bu et al., 2016). Their persistent properties are in accordance

with the criterion for chemical persistence in water and soil
set by United Nations Environmental Program and Canadian
Environmental Protection Agency (Bu et al., 2016).

For the last decade, the most common POPs such as DDT,

PCBs, PCDDs, and PCDFs have been known for their high
toxicity, bioaccumulation potential and are present in massive
contamination of the environment (Katsoyiannis and Samara,

2004; Miranda-Garcı́a et al., 2011; Pariatamby and Kee, 2016).
POPs can evaporate into the air, bound to the soil surface, or
contaminate in water. However, as the water solubility of

POPs is minimal, they tend to gather on solid surfaces such
as dust, ash, soil, and sediments. Although POPs are com-
monly referred as the anthropogenic compounds, their appear-
ance in high concentrations in river and sediments are also

reported (Leong et al., 2007; Zakaria et al., 2003). Many pre-
vious works reported that the increased risk of cancer, endo-
crine disruption, neurobehavioral disorders, and reproductive

and immune dysfunction could be directed from the exposure
of POPs to the human body (Sweetman et al., 2005; Pauwels
et al., 2000). Currently, many attempts to remove POPs from

the environment using abiotic, biotic, or combination methods
have been proposed and reported.

2.2. Conventional methods in POP removal

Owing to a large amount of POPs that have contaminated the
environment, such as the air, soil and aquatic systems,
(Megharaj et al., 2011) and their toxic properties which can

cause a substantial harmful impact on the human health, many
research studies have applied several techniques to remove
POPs from the ecosystem. A biological process using a wide

range of microorganisms is one of the methods commonly used
for POP degradation. Due to the abundant nature of microor-
ganisms, and abilities to work in extreme conditions, as well as
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Fig. 1 Chemical structures of some common POPs listed in Stockholm Convention.
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having an effective catalytic mechanism and wide diversity, the
biological process including bioremediation is often selected

for the removal of POPs. Katsoyiannis and Samara (2005,
2004) applied the activated sludge biological process for POPs
degradation and investigated the number of POP chemicals in
treated wastewater and solid sludge. Additionally, they found

that 65–91% of POPs were degraded in this process depending
on the individual species and some POP chemicals could be
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Fig. 1 (continued)
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mainly destroyed by biodegradation or a biotransformation

process. However, 98% of dichlorodiphenyl dichloroethylene
was detected in waste sludge while 60% a-
hexachlorocyclohexane was remained in treated wastewater.

Clara et al. (2005) reported the performance of an activated
sludge wastewater treatment and a membrane bioreactor in
degrading eight pharmaceuticals, two polycyclic musk fra-

grances and nine endocrine disruptors. Results showed that
both processes did not degrade the antiepileptic drug carba-
mazepine compounds. In addition, there is an insignificant dif-
ference in pollutant removal performance between membrane

bioreactor and wastewater treatment processes. Száková
et al. (2019) confirmed the accumulation of POPs in sludge col-
lected from wastewater treatment. The contamination of POPs

in soil from sewage sludge application such as the polycyclic
aromatic hydrocarbons, PCBs, PBDEs, organochlorinated
pesticides, perfluorooctane sulfonate, and perfluorooctanoic

acid contents was found in the bulk soil. PBDEs, Perfluorooc-
tanoic acid, and Perfluorooctanesulfonic acid contents in soil
increased with sludge addition as fertilizer. Ren et al. (2018)
also confirmed that organochlorine pesticide, PBDEs, halohy-

drocarbon, and polycyclic aromatic hydrocarbons as POP
components were low degraded by bioremediation in soil
because of limitation of bioavailability of POPs. In addition,

Wang et al. (2016) studied the HCB biodegradation by using
Typha angustifolia (T. angustifolia) with Hoagland nutrient
solution in low (1 mg/L) and high (10 mg/L) concentrations

of HCB. The efficiency of HCB degradation showed only
about 20% in high concentration and 40% in low concentra-
tion for 22 days. The poor microbial capabilities led to the les-

ser bioavailability of contaminants and the lacking of bench-
mark values for the testing of bioremediation efficiency were
the limitations in using bioremediation in the POPs removal
(Megharaj et al., 2011).

As an alternative method besides the biological process, the
physico-chemical such as coagulation-flocculation, oxidation,
and adsorption have been widely applied to remove POPs

from environmental media (Aziz et al., 2007). Alum is a widely
chosen coagulant for hydrocarbon compound removal includ-
ing POPs due to its inexpensive price and easy availability

(Renault et al., 2009). However, the working condition with
alum is highly dependent on working parameters such as
mixing speed, pH, temperature, retention time, and dosage

of coagulant/ flocculants. Linares-Hernández et al. (2010)
combined electrocoagulation and electrooxidation processes
to treat POPs in industrial wastewater. This combined process

can decrease reaction time to less than 2 h, which is better than
the electrooxidation process alone that requires a reaction time
of more than 21 h. However, the major drawbacks of the coag-

ulation are due to the high price of the chemical coagulants
and the large amount of sludge generated from the
coagulation-flocculation process (Verma et al, 2012).

Adsorption process is one of the potential methods in POPs

removal. The Matérial Institut Lavoisier (MIL) is the most
widely used MOFs for this purpose. Phenol, nitro-phenol,
ibuprofen drug, trimethoprim, sulfamethoxazole, diclofenac

sodium, and aspirin were investigated for the removal effi-
ciency in adsorption process using magnetic porous carbon
prepared from MOFs which are Fe-MIL-53 (Tran et al.,

2020, 2019a, 2019b), Fe-MIL-88B (Tran et al., 2019c). In addi-
tion, tetracycline drug was experimented by using MOFs-
templated porous carbon (Tran et al., 2019d), while the chlo-
ramphenicol adsorption was applied by using mesoporous car-

bons preparing from the metal organic framework Fe3O
(BDC)3 coated with zero-valent iron particles (Tran et al.,
2019e). From the previous researches (Tran et al., 2020,

2019a, 2019b, 2019e), Fe-MIL-53 modified by the pyrolytic
process provided the higher adsorption capacity than original
MIL-53 more than 4 times for phenol and 5 times for nitro-

phenol. Fe-MIL-53 removed tetracycline in the water close
to 100% and adsorption capacity was about 224 mg/g, which
was the highest value compared with other adsorbents. The

recyclability of Fe3O(BDC)3 at least 4 times for chlorampheni-
col adsorption was confirmed, while Fe-MIL-53 was recycled
at least 5 times for ibuprofen and 4 times for trimethoprim
and sulfamethoxazole. However, the pollutant concentrations,

adsorbent doses and pH of solutions exerted the significant
effects on adsorption performances.

Membrane technology was also widely applied in water

desalination and wastewater treatment processes. Carbon nan-
otubes (CNTs) based composite membrane was used to filtrate
POPs such as triclosan, acetaminophen, and ibuprofen (Ma

et al., 2017). They reported that the efficiency (10–90%) was
depended on the number of aromatic rings. This process using
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CNTs-composite membrane was suitable for low concentra-
tions of POPs owing to the fact that no regeneration is
required and the working ability of the membrane in a long

period of separation time. Recently, the integration technology
of various technologies such as membrane bioreactor
(Navaratna et al., 2016), granular activated carbon

(Navaratna et al., 2016), the nano-catalysis such as Fe/Pd
(Vlotman et al., 2019) with the membrane has been focused.
Ametryn removal percentage of combined process between

membrane bioreactor and granular activated carbon was
about 64% after 12 h, whereas ametryn removal percentage
of only biological process was about 83% after 36 h. The cat-
alytic membrane degradation was investigated to remove hex-

achlorobiphenyl in term of dechlorination efficiency. The
observed reaction rate constants increased with increasing
the Fe/Pd contents, while the half-time (t1/2) of pollutant

removal decreased about 10 times compared with membrane
without Fe/Pd catalysts. However, the leaching of Fe and Pd
was occured. Lv et al. (Lv et al., 2016) reported the success

in destroying the polybrominated diphenyl ethers by sequential
methods using anaerobic debromination over nZVI/Pd under
nitrogen atmosphere, an oxidation Fenton-like process and

an aerobic biodegradation by using Pseudomonas putida. Both
anaerobic debromination over nZVI/Pd under nitrogen atmo-
sphere and an oxidation Fenton-like process can decompose
PBDEs to mono-phenyl-ring compounds and, consequently,

the biological process can continuously degrade the pollutants
to be CO2 confirmed by 90% total organic carbon removal for
24 h.

3. Removal of POPs using TiO2 photocatalysis

3.1. TiO2 and its modification photocatalysts

Offering many excellent properties, including chemical stabil-
ity, wide availability, inexpensive, and dependable structure-
electronic properties, TiO2-based photocatalysts are notably

considered as the most common materials to destruct POPs.
Basically, holes (h+) and electrons (e�) could be generated
on the surface of the photocatalytic materials (e.g., TiO2) upon

light irradiation (hv � Eg) (Do et al., 2020; Fu et al., 2019).

photocatalystþ hv ! e� þ hþ ð1Þ
Therefore, (h+) and (e�) may further proceed with water

(H2O) and oxygen (O2), respectively, to create different types
of reactive radicals (for example, hydroxyl radicals (OH�),
and active oxygen species (O2

��)).
Fig. 2 The general mechanism for photocatalytic removal of

persistent organic pollutants (POPs).
hþ þH2O ! OH� þH ð2Þ

e� þO2 ! O��
2 ð3Þ

Thus, (OH�) hydroxyl radicals will continuously react with
POPs for dehalogenation and shortening the chain (Cn ?
Cn�1), with the expected final products of H2O, carbon dioxide

(CO2) (seen in Fig. 2).
Many types of TiO2 with different surface properties and

crystal structures are widely studied (Tang et al., 2020). Never-

theless, TiO2 mostly absorbs and operates under the ultraviolet
(UV) wavelength region (comprise < 5% of solar terrestrial
radiation) because of wide bandgap (3.0–3.2 eV). From a prac-

tical perspective, many concepts, such as immobilized TiO2 on
different supports, metal/nonmetal-doping nanoparticles
(Choi et al., 1994; Ananpattarachai et al., 2016a;

Ananpattarachai et al., 2009; Ananpattarachai et al., 2016b;
Umebayashi et al., 2002), coupling with the semiconductor
materials (Li et al., 2014), hybridizing with the carbonaceous
nanomaterials (Fu et al., 2018; Song et al., 2012) and the addi-

tion of oxidants (Andersen et al., 2013), etc., are available that
could address improving the activity of TiO2-based photocat-
alysts. The summary of photodegradation of POPs over vari-

ous TiO2 and its modification photocatalysts is listed in
Table 2.

3.1.1. Modification of surface properties and crystal structures

Many researchers have modified the crystal structures and sur-
face properties of TiO2. Many types of commercial and
modified-TiO2 photocatalysts, including commercial Degussa

P25 (Dillert et al., 2007; Govindan et al., 2013; Lin and Lin,
2007; Lopes da Silva et al., 2017; Wang and Zhang, 2011),
sol-gel TiO2 (Khan et al., 2014) hydrophobic TiO2 nanotubes

(Tang et al., 2020), TiO2 nanotubes (Thomas and Chitra,
2014; Tian et al., 2017; Yu et al., 2015), are broadly investi-
gated for photocatalytic degradation by UV light. In most
cases, modifying the surface properties and crystal structures

of TiO2 would enhance the activity, compared with bulk
TiO2. For example, Tang et al. developed hydrophobic TiO2

nanotubes hydrophobic TiO2 nanotubes, which performed

an excellent nanoparticle photocatalyst (Tang et al., 2020).
They found that the initial adsorption rate over hydrophobic
TiO2 nanotubes was 4 times higher than that over bare TiO2

nanotubes, and the apparent rate constant of hydroxyl radicals
over hydrophobic TiO2 nanotubes was 1.8 times higher than
that of the hydrophilic TiO2 nanotubes, leading to the success-

ful selective degradation of pollutant. However, the reaction is
mainly performed under the UV region, which is not applica-
ble in practice.

3.1.2. Immobilized TiO2 on different supports

Several attempts have been made to prevent the numerous dis-
advantages of TiO2 in suspension system (such as recovering
the suspended TiO2 powders from the effluent stream, ready

for large scale-up photoreactor, etc.) by immobilizing TiO2

on different supports, including cotton, cotton flax and polye-
ster (Le Cunff et al., 2015), and glass fiber (Le Cunff et al.,

2015; Xia et al., 2005), stainless steel (Balasubramanian
et al., 2004), polyethylene terephthalate monoliths (Sánchez
et al., 2006), sepiolite plates (Suárez et al., 2008), silicate plate

(Hewer et al., 2009), glass spheres (Miranda-Garcı́a et al.,
2014), and glass slides (Yu et al., 2007). For example, Le Cunff



Table 2 Summary of the photodegradation of POPs over TiO2-based photocatalysts.

No. Categories Photocatalysts POPs Reaction conditions Decomposition

efficiency (%)

References

1 TiO2 modification of

surface properties and

crystal structures

Degussa P25 Perfluorooctanoic acid

(PFOA)

UVB (12 W�m�2); T = 25 ± 1 �C; catalyst dose = 1 g�L�1;

PFOA = 30 mg�L�1; t = 180 min

23% (Lopes da Silva

et al., 2017)

2 TiO2 TNTs Pentachlorophenol

(PCP)

500 W Xe lamp (100 mW�cm�2; k > 400 nm); catalyst

dose = 1 g�L�1; PCP = 10 mg�L�1; t = 160 min

59.4% (Yu et al., 2015)

3 Immobilized TiO2 on

different supports

Si/Ti-2 (two TiO2

layers coated on

sepiolite plates)

Trichloroethylene

(TCE)

UVA fluorescent lamps (365 nm, 4.4 mW�cm�2); the flow of TCE

and air gas mixture = 300 mL�min�1; TCE = 90 ppm;

90% (Hewer et al., 2009)

4 immobilized

TiO2/chitosan

terbuthylazine (TBA) TBA = 5 mg�L�1; T = 35 �C; N = 1000 rpm; k = 254 nm; pH 5;

t = 80 min;

100% (Le Cunff et al.,

2015)

5 TiO2-doped with the

metal/ nonmetal

nanoparticles

Ag/TiO2 TNTs PCP 500 W Xe lamp (100 mW�cm�2; k > 400 nm); catalyst

dose = 1 g�L�1; PCP = 10 mg�L�1; t = 160 min

99% (Yu et al., 2015)

6 W/TiO2 Paraquat sunny day (430 klx); paraquat = 25 ppm; pH 6.5; catalyst

dose = 1 g�L�1; t = 180 min

98% (Kaur et al., 2019)

7 N-F/TiO2 PCP Suntest XLS + apparatus (Xe lamp, 2.2 kW, 290 < k < 800 nm,

750 W�m�2); catalyst dose = 0.5 g�L�1; T = 25 �C;
PCP = 5 mg�L�1; pH 6.7; t = 120 min

100% (Antonopoulou

et al., 2015)

8 N/TiO2 1,1,1-trichloro-2,2-bis

(p-chlorophenyl) ethane

(p,p0-DDT)

150 W halogen lamp (k > 420 nm, 14.38 W�m�2); T = 25–31 �C;
Acetone: 0.4 wt% in solution; catalyst dose = 1 g�L�1; pH 7;

t = 45 min

100% (Ananpattarachai

and

Kajitvichyanukul,

2015)

9 Coupling with the

semiconductor materials

AgInS2/TiO2

heterojunction

composites

1,2-dichlorobenzene

(o-DCB)

500 W Xe lamp (k > 400 nm); catalyst dose = 0.23 g�L�1;

o-DCB = 38.5 mL�L�1; Room temperature;

50% (Liu et al., 2016)

10 Hybridizing with the

carbonaceous

nanomaterials

MWCNTs /TiO2

(1:10)

PFOA 300 W medium pressure Hg lamp (365 nm); catalyst

dose = 1.6 g�L�1; PFOA = 30 mg�L�1; T = 23 ± 3 �C; pH 5.0;

t = 8 h

94% (Song et al., 2012)

11 RGO/TiO2 NTs PCP 500 W Xe arc lamp (100 mW�cm�2); PCP = 10 mg�L�1; pH 8;

t = 120 min

76% (Zhang et al., 2013)

12 Hybridizing with the

addition of oxidants

TiO2 with

peroxymonosulfate

(PMS, Oxone�)

Atrazine 300 W Xenon lamp (47.1 mW�cm�2, AM 1.5G); T = 27 ± 3 �C; pH
5.8, 10 mM oxidant; t = 120 min,

80% (Andersen et al.,

2013)
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Fig. 3 The SEM micrographs of bulk support materials: (a) cotton/flax/polyester fabric (1500�), (b) glass fiber (1500�); and fresh

TiO2/chitosan layer supported on the support materials: (c) cotton/flax/polyester fabric (500�); (d) glass fiber with catalyst (1000�).

Adapted with permission from (Le Cunff et al., 2015). (e) The SEM micrograph of bulk and TiO2-coated silicate plate. Adapted with

permission from (Hewer et al., 2009).
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et al. successfully dispersed TiO2/chitosan on cotton, cotton

flax, polyester and glass fiber woven for photodegradation of
herbicide terbuthylazine (Le Cunff et al., 2015). As observed
in Fig. 3(a and b), the bulk supports have an even surface with-

out noticeable imperfections and irregularities. After coating,
the surface of supports could be entirely covered by photocat-
alyst, resulting in the skinny immobilized layer, as seen in

Fig. 3(c and d). In another example, the silicate plate was suc-
cessfully used as support and was fully covered by 4 layers of
TiO2 (as seen in Fig. 3(e)) (Hewer et al., 2009). Although sig-
nificant efforts have been made, it still requires improving

TiO2 coating layers to have more homogeneity and crys-
tallinity by exploring new methods/techniques.

3.1.3. TiO2-doped with the metal/nonmetal nanoparticles

The doping technique offers many advantages, including sup-
pressing the recombination of the electron-hole pair, extending
to the visible light absorption, which has been intensively

investigated. Fig. 4(a and b) illustrated that the metal doping
method can create a new donor level above the initial valence
band and new acceptor level beneath the initial conduction

band, respectively, to apprehend a charge carrier transfer in
the visible region (Chen et al., 2010). At the earlier stage of
the TiO2 doping technique, special attention was focused on

noble metals, such as Pt (Li et al., 2016), Au (Thomas and
Chitra, 2014), Ag (Li et al., 2016; Thomas et al., 2011; Tian
et al., 2017; Yu et al., 2015; Zhang et al., 2012), Pd (Li et al.,

2016). Following this, other transition metals, including Zn
(Sakee and Wanchanthuek, 2017), W (Byrappa et al., 2000;
Kaur et al., 2019), and Ni-Cu (Jing et al., 2006), have been
investigated for the photodegradation of POPs. After that,

other metal systems, including Pb (Chen et al., 2016), Bi2O3

(Su et al., 2012), have been of growing interest to researchers.
Clearly, bulk TiO2 exhibits lower activity for the photodegra-

dation of POPs than that of metal-doped candidates. The
intense research and development effort have also focused on
nonmetal doping, which could extend into the operating range

of visible-light-active region via the new valence band (see
Fig. 4(c)) (Chen et al., 2010). Hitherto, some studies have been
dedicated to this approach, including N-F (Antonopoulou
et al., 2015; Govindan et al., 2013; Samsudin et al., 2015), N

(Ananpattarachai and Kajitvichyanukul, 2015), P, F, P-F
(Khan et al., 2014), B (Su et al., 2012; Yola et al., 2014), S
(Liu et al., 2009). It can be seen that nonmetal-doping not only

promotes the stabilization of charge separation, and the effec-
tive formation rate of hydroxyl radicals (�OH) (Samsudin
et al., 2015), but also improves the TiO2 particle dispersion,

forbidding particle size agglomeration as well as retarding
phase transformation (Khan et al., 2014), leading to the
enhanced photodegradation of POPs. The summary of pho-
todegradation of POPs by doping technique is listed in

Table 3.

3.1.4. Coupling with the semiconductor materials

An intense effort has been focused on developing TiO2-based
photocatalysts by coupling with many candidate semiconduc-
tor materials, such as ternary chalcogenide (Cu, Ag)-(Al, In,
Ga)-(S, Se, Te), via many methods and techniques. For exam-

ple, the CuInS2 modified TiO2 heterostructure was produc-
tively synthesized by an ultrasonication-assisted cathodic
electrodeposition method (Li et al., 2014). Clearly, the pure

TiO2 nanotubes performed lower photo-activity for the pho-
todegradation of 2-chlorophenol than that of CuInS2/TiO2

nanotubes. In another study, Liu et al. developed AgInS2/

TiO2 composites by a hydrothermal technique (Liu et al.,
2016). The result showed that TiO2/AgInS2 heterojunctions
exhibited an excellent photocatalytic activity for the pho-

todegradation of 1,2-dichlorobenzene. Their mechanism,
which was based on the energy level and electronic traveling,
was proposed in Fig. 5 (Liu et al., 2016). Typically, Fig. 5(a)
showed the positions of conduction band (CB), valence band

(VB) and Fermi level of AgInS2 and TiO2, respectively. By fab-
ricating of heterojunction structure, the balanced state for
Fermi level of composites would be setup due to the system

equilibrium (Hu et al., 2011). Under light irradiation, the pho-
togenerated electrons (e�) of AgInS2 would be excited from
valence band to conduction band, then it will quickly transfer

to the conduction band of TiO2, as shown in Fig. 5(b). On the
one hand, the photogenerated holes (h+), which remained in
the valence band of AgInS2, could directly react with gaseous



Fig. 4 The metal doping: (a) Donor and (b) acceptor levels; (c) The nonmetal doping: new valence band. Adapted with permission from

(Chen et al., 2010); Copyright (2010) American Chemical Society.
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1,2-dichlorobenzene to generate different types of products.
On the other hand, (e�) would continually travel and reduce,

mineralize 1,2-dichlorobenzene to form other products. The
enhancement might be attributed to the depressing of the pho-
togenerated charges recombination in the TiO2/AgInS2 hetero-
junction composites.

3.1.5. Hybridizing with the carbonaceous nanomaterials

In another approach, successful attempts have been made to

the carbonaceous nanomaterials, including CNTs, multi-
walled carbon nanotubes (MWCNTs), fullerene, and graphene
nanosheets, etc. They have been dedicated as notable supports:
(a) long lifetime in term of electron-hole separation (Yao et al.,

2008), (b) outstanding adsorption of reactants (Velasco et al.,
2010), and (c) excellent physical properties (large BET surface
area, and high electron mobility) (Panchangam et al., 2018).

For example, TiO2/MWCNT photocatalysts, which were syn-
thesized by the sol-gel technique, displayed an excellent pho-
todegradation of perfluorooctanoic acid (Song et al., 2012),

dimethyl phthalate esters (Tan et al., 2018), 2,6-dinitro-p-
cresol (Wang et al., 2009). The presence of MWCNT in TiO2

promotes to facilitate the generation of reactive radicals via

transforming the photo-generated electrons into the TiO2 con-
duction band, leading to the enhancement of photocatalytic
degradation of POPs. In another approach, several TiO2-
graphene nanocomposites were also developed for the pho-
todegradation of aldicarb, and norfloxacin (Li et al., 2013),

perfluorooctanoic acid (Gomez-Ruiz et al., 2018;
Panchangam et al., 2018). They found that the combination
of reduced graphene oxide (rGO) and TiO2 (so called (rGO)-
TiO2) exhibited a superior photocatalytic performance, up to

99.2% of removal perfluorooctanoic acid efficiency for 8 h
by UV-C irradiation (8 W, 254 nm) (Panchangam et al.,
2018) and 93 ± 7% of removal perfluorooctanoic acid effi-

ciency for 12 h by UV–vis light (Hg lamp, 200–600 nm)
(Gomez-Ruiz et al., 2018). Zhang et al. found that rGO/
TiO2 NTs could reach to 76% in photodegradation of pen-

tachlorophenol (Zhang et al., 2012). In another example, the
combination of graphene oxide (GO) and other catalysts in
form of GO-TiO2-Sr(OH)2/SrCO3 material was prepared and

favored the photocatalytic degradation of phenanthrene (and
potentially other POPs) in complex water matrices using simu-
lated solar light (Fu et al., 2018). There are two factors, includ-
ing (a) hybrid coupling TiO2–Sr(OH)2/SrCO3 and (b) effective

electron transfer in graphene oxide sheets, could be attributed
to this enhancement.

3.1.6. Hybridizing with the addition of oxidants

There is another possible approach to extend range under visible
light, namely hybridizing with the addition of oxidants into the



Table 3 Summary of the photodegradation of POPs over TiO2-doped with the metal/nonmetal nanoparticles.

No. Photocatalysts POPs Reaction conditions Decomposition

efficiency (%)

References

1 Noble metals Pt/TiO2 Perfluorooctanoic acid

(PFOA)

125 W high-pressure Hg lamp (365 nm, light intensity 5.3 mW�cm�2); catalyst

dose = 0.5 g�L�1; PFOA = 60 mg�L�1; pH 3.0; air flow = 60 mL�min�1; t = 7 h

100% (Li et al., 2016)

2 Pd/TiO2 94.2%

3 Ag/TiO2 57.7%

4 Ag/TiO2 Pentachlorophenol (PCP) UV light (UV-A, 365 nm); catalyst dose = 0.125 g�L�1; PCP = 20 mg�L�1;

t = 160 min

98% (Zhang et al., 2012)

5 Ag/TiO2

TNTs

PCP 500 W Xe lamp (100 mW�cm�2; k > 400 nm); catalyst dose = 1 g�L�1;

PCP = 10 mg�L�1; t = 160 min

99% (Yu et al., 2015)

6 Transition

metals

Zn/TiO2 Paraquat 11 W UV lamp (8 lamps, 160 mA); catalyst dose = 4 g�L�1; paraquat = 400 ppm;

pH 7.0; t = 360 min

80% (Sakee and

Wanchanthuek, 2017)

7 W/TiO2 Paraquat sunny day (430 klx); paraquat = 25 ppm; pH 6.5; catalyst dose = 1 g�L�1;

t = 180 min

98% (Kaur et al., 2019)

8 Ni-Cu/

TiO2

PFOA 23 W low-pressure Hg lamp (254 nm); PFOA = 25 mg�L�1; t = 360 min 100% (Jing et al., 2006)

9 Other metals Pb/TiO2 PFOA 400 W UV lamp (254 nm); catalyst dose = 0.5 g�L�1; pH 5; 298 K;

PFOA = 50 mg�L�1; t = 12 h

99.9% (Chen et al., 2016)

10 Bi2O3/

TiO2

PCP a 500 W tungsten halogen lamp (k > 420 nm); PCP = 10 mg�L�1; catalyst

dose = 1 g�L�1; t = 5 h

10% (Su et al., 2012)

11 Nonmetals N-F/TiO2 Atrazine (ATR) UV lamp (6–20 W, k = 350 nm); catalyst dose = 0.5 g�L�1; ATR = 2 mg�L�1;

t = 360 min

46% (Samsudin et al., 2015)

12 N-F/TiO2 PCP Suntest XLS + apparatus (Xe lamp, 2.2 kW, 290 < k < 800 nm, 750 W�m�2);

catalyst dose = 0.5 g�L�1; T = 25 �C; PCP = 5 mg�L�1; pH 6.7; t = 120 min

100% (Antonopoulou et al.,

2015)

13 N/TiO2 1,1,1-trichloro-2,2-bis(p-

chlorophenyl)ethane (p,p0-
DDT)

150 W halogen lamp (k > 420 nm, 14.38 W�m�2); T = 25–31 �C; Acetone: 0.4 wt

% in solution; catalyst dose = 1 g�L�1; pH 7; t = 45 min

100% (Ananpattarachai and

Kajitvichyanukul,

2015)

14 P/TiO2 ATR 15 W fluorescent lamp (2 lamps, 315–700 nm, 0.095 mW�cm�2); ATR = 2.32 mM
(0.5 mg�L�1); pH 3; catalyst dose = 0.5 g�L�1; t = 6 h

71% (Khan et al., 2014)

15 F/TiO2 49%

16 P-F/TiO2 81%

17 B/TiO2

(TiO2-

BEW)

ATR 400 W UV lamp (k = 250–570 nm); ATR = 10 mg�L�1; catalyst

dose = 1.5 g�L�1; t = 70 min

83% (Yola et al., 2014)

18 TiO2–xBx PCP a 500 W tungsten halogen lamp (k > 420 nm); PCP = 10 mg�L�1; catalyst

dose = 1 g�L�1; t = 5 h

40% (Su et al., 2012)

19 S/TiO2 ATR Solar light (experiment time was at 11:10–11:40 every day, 16 mW�cm�2);

ATR = 50 mg�L�1; t = 30 min

68.6% (Liu et al., 2009)

20 Metal-nonmetal

hybrids and

other

La-B/

TiO2

PCP Solar light (experiment time was at 14:00–16:00 in May, 27.5–39.0 mW�cm�2);

PCP = 0.0181 mM; catalyst dose = 0.4 g�L�1; pH 5.7 ± 0.1; t = 120 min

81% (Liu et al., 2011)

21 CdS/TiO2 1,2,4-trichlorobenzene

(1,2,4-TCB)

240 W Hg-quartz lamp (k = 240–320 nm); T = 34 ± 1 �C; 1,2,4-
TCB = 0.1 mol�L�1; air flow = 2.5 L�min�1; 50 mL MeOH; t = 100 h

97.3% (Kozhevnikova et al.,

2019)

22 ZnSe/

TiO2

PCP 300 W Xe lamp (100 mW�cm�2 AM 1.5G); PCP = 10 mg�L�1; catalyst

dose = 1 g�L�1; pH 5; t = 120 min

71% (ThanhThuy et al.,

2013)

8
3
2
4

V
.-H

.
N
g
u
y
en

et
a
l.



Fig. 5 Proposed energy level and possible electronic traveling for (a) before contact: single nanostructure of TiO2 and AgInS2, and (b)

after contact: heterojunction nanostructure of AgInS2/TiO2 (Liu et al., 2016).
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system. In a previous study, peroxymonosulfate and persulfate
are suggested to be the most promising candidates (Andersen
et al., 2013). They could provide effectively sufficient irradiance

(UV and/or heat), which leads to generating reactive radical spe-
cies. As expected, Andersen et al. observed synergic effects by
combining TiO2 with oxidants (such as peroxymonosulfate
and persulfate) to generate a significant number of reactive rad-

icals, leading to an enhanced photodegradation rate.

3.2. Operating conditions, kinetics, and performance in POP
removal using TiO2 photocatalyst

3.2.1. Effect of POP properties and concentration on the
photocatalytic degradation

Generally, the pollutant degradation in environmental media
such as water and soil is mainly relied on their properties

and the ability of treatment process. POPs are commonly
semi-volatile and slowly evaporate in the air, but can travel
in long distance in the atmosphere. With water-immiscible

property but high lipid solubility, POPs are not frequently
found as water contaminant, but they are easily found in fat
and oils. Some types of POPs such as PBDE209 are well dis-

perse as nano-scale particles in atmosphere (Zhang et al.,
2016) and easily dissolve in organic solvents such as methanol
and tetrahydrofuran (Hardy, 2002; Bastos et al., 2009;
Eriksson et al., 2004; Zhao et al., 2009; Bastos et al., 2008).

Zhang et al. (2016) reported that degradation of decabro-
modiphenyl ether in water is possible using photocatalytic pro-
cess. In water, the degradation of decabromodiphenyl ether in

photocatalytic process followed first order kinetics. However,
in tetrahydrofuran organic solvent, the decabromodiphenyl
ether photocatalytic kinetics followed second-order pattern

(Zhang et al., 2016). The rate of decabromodiphenyl ether
degradation in tetrahydrofuran was comparatively high with
less than 50% of the final debromination which is much lower

than that in the pure water. The degradation performance of
POPs using photocatalytic degradation is largely reliant on
the characteristics of that compound.

The number of chlorine atoms in POPs also plays as a crit-

ical factor in photocatalytic removal using TiO2. The decreas-
ing in degradation rate of POPs such as PCDDs and PCDFs
was inversely proportional to the increasing of chlorines in
their molecular structure. Muto et al. (2001) reported that

the degradation efficiencies of PCDDs and PCDFs were more
than 70% after 24 h in photocatalytic system with the half lives
of both compounds in the range 7.92 � 10�2–0.1 d. The degra-
dation rate of both POPs was largely depended on the chlori-

nation level of PCDDs and PCDFs. Wu et al. (2005) also
found that approximately 99% conversion of 1,2,3,6,7,8-hexa
chlorodibenzo-P-dioxin and 2,3,7,8-tetrachlorodibenzodioxin

were detected when the photocatalytic degradation rate of
PCDDs and PCDFs decreased and the chlorination level
increased. Moreover, no 2,3,7,8-substituted congener derived

from the process were detected. Friesen et al. (1996) and Wu
and Ng (2008) reported that the low chlorinated PCDDs and
PCDFs was slower degraded than the high chlorinated ones

due to the sequential photocatalytic dechlorination of highly
chlorinated congeners of POPs. Choi et al. (2000) found that
the photocatalysis of PCDDs were followed the first-order
kinetics and the degradation rates decreased with the increas-

ing of chlorine atom numbers. The rates also increased with
the increasing of light intensity and TiO2 coating mass. In sum-
mary, the photocatalytic degradation rate of POPs was greatly

decreased by the chlorination level of the congeners (Kim and
O’Keefe, 2000; Choi et al., 2000).

The initial concentration of POPs is also a major factor that

affected the degradation performance in photocatalytic process.
With the high concentration of POPs, the TiO2 active sites were
shileded with the pollutant compounds and the distance of pho-
tons crossing the solution for photocatalytic reaction decreased.

In contrast, at low concentrations, the number of charge carri-
ers (e� and h+) developed on the TiO2 surface increased and,
consequently, the high amount of the generated hydroxyl radi-

cals can react and remove the POPs in the photocatalytic sys-
tem. For example, it was reported (Ananpattarachai and
Kajitvichyanukul, 2015) that the reaction rate of the parent

molecule, r, and the apparent first-order rate constant, kobs, at
low concentration of p,p0-DDT was higher than that obtained
at a high concentration owing to the increasing of the hydroxyl

radicals attacking the investigated pollutants.
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3.2.2. Effect of UV or visible light irradiation

The influence of UV irradiation on photocatalysis degradation

of the POPs using TiO2 has been widely investigated and
reported. The photolysis (irradiation without TiO2) or photo-
chemical degradation of POPs was relatively negligible com-

pared to their photocatalytic degradation. For example, Doll
and Frimmel (2003) reported that TiO2 degradation rate con-
stant (k) using Hombikat UV100 was approximately 500 times

of that using UV light. Yu et al. (2007) conducted the photo-
catalytic oxidation of organochlorine pesticides such as cyper-
methrin, dicofol, benzene hexachloride, and the whole
efficiency in POPs removal using photocatalysis is much higher

than the direct photolysis under the same conditions. Within
10 min irradiation, less than 50% of a-benzene hexachloride,
b-benzene hexachloride, d-benzene hexachloride, and dicofol

were remained in the presence of TiO2, but more than 90%
of those corresponding chemicals in the absence of TiO2 were
detected. Apparently, the irradiation is the major factor for the

degradation of POPs in photocatalysis system.
The types of irradiation and intensity has a strong impact

on the efficiency of POP removal (Zhao et al., 2004;

Ananpattarachai and Kajitvichyanukul, 2015).
Ananpattarachai and Kajitvichyanukul (2015) applied differ-
ent types of lights including UV light, visible light, and simu-
lated solar light for photocatalytic degradation of p,p0-DDT

using interstitial N-doped TiO2. By enhancing UV intensity,
more e� and h+ can be generated and, consequently, a higher
amount of p,p0-DDT compounds could be promptly degraded.

Using the visible light, the reaction rate enhancement in the
degradation of DDT under the visible light irradiation was
nearly five fold higher than that under the UV light irradiation.

Comparatively, the simulated solar light gave the highest oxi-
dation rate, corresponded the pseudo-first-order pattern, with
the oxidation rate (r) of the DDT as 0.859 mg/L-min and the

rate constant, kobs, as 0.1565 min�1 (Ananpattarachai and
Kajitvichyanukul, 2015). Apparently, the light intension and
the light source selection can greatly enhance the reaction rate
and performance for POPs degradation.

3.2.3. Effect of catalyst and catalyst loading

The selection of a catalyst is a basis aspect in photocatalysis to
obtain a high efficiency in degradation of the toxic compounds
including POPs. Wu et al. (2004) investigated the degradation
of 1,2,3,6,7,8-hexachlorodibenzo-P-dioxin and octachlorodi-
benzodioxin under photocatalysis process using UV light in

the combination with three different catalysts, TiO2, ZnO
and SnO2, immobilized on quartz. It was found that the
UV/TiO2 provided the highest rate constants among the

immobilized catalyst in the photodegradation of POPs, while
the UV/SnO2 exerted the lowest rate values. With high
efficiency in photocatalytic degradation, TiO2 is usually the

chosen catalyst for POPs removal.
Wang et al (2019) reported the effectiveness of the metal

doped TiO2 systems (i.e., Ag/TiO2, Pt/TiO2, Pd/TiO2, and
Cu/TiO2) in the photocatalytic of PBDEs under UV light.

The degradation of 2,20,40,40-tetrabromodiphenyl ether can
achieve high perfermance with the application of the noble
metal doped TiO2. The hydrogenation experiment from

Wang’s group suggested that the photocatalytic mechanism
of 2,20,40,40-tetrabromodiphenyl ether in Pd/TiO2 and Pt/
TiO2 systems was a direct H-atom transfer, while the elec-

tron transfer is a key mechanism in Ag/TiO2 and Cu/TiO2

systems. Thus, different types of catalyst can lead to a dif-
ferent mechanism in POP removal by photocatalytic

process.
Besides the type of the catalyst, the TiO2 loading is also the

important factor affecting photocatalytic removal perfor-
mance using suspended TiO2. Shaban et al. (2016) stated that

the multiplying of catalyst to the photocatalytic system from
0.25 to 0.5 g/L led to the generating of higher amount of
hydroxyl radicals that can enhance the PCB degradation rate

in an aqueous solution. However, the increasing catalyst load-
ing also directed to the agglomeration of catalysts in addition
to the light shielding by the suspension causing a reduction of

the pollutant degradation rate in pollutant removal (Wang
et al., 2019).

3.2.4. Photocatalytic degradation pathway of POPs

Photocatalytic degradation of hexachlorobenzene was
depicted into two pathways, reductive and oxidative dechlori-
nation followed by oxidative ring-opening reactions to give

small organic acids and alcohols which are, later, mineralized
to CO2 and H2O.

Reductive dechlorination:
ð4Þ
Oxidative dechlorination:
ð5Þ
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The reductive dechlorination (hydrodechlorination)
occurred in the presence of electron donors (hole scavengers)
such as water, alcohol in the media (Choi and Hoffmann,

1995; Xia et al., 2015).
Similarly, degradation of DDT under photocatalytic treat-

ments underwent in two major initial pathways, reduction and

oxidation (Llompart et al., 2003; Zaleska et al., 2000). The
intermediates and degradation pathway for DDT is given as
follows.

Reductive dechlorination:

ð6Þ

Oxidative dechlorination:

ð7Þ

Intermediates:

ð8Þ

ð9Þ

ð10Þ
Further detoxification of intermediate species occurred

through oxidative ring-opening reactions generally resulted
in mineralization.

4. Removal of POPs using Fenton and photo-Fenton reactions

4.1. Removal of POP using Fenton reagent and performance of
the system

In 1894, H.J.H. Fenton discovered that hydrogen peroxide

reacted with ferrous ions generating hydroxyl radicals which
then oxidized with organic contaminants and became known
as the Fenton reaction. The Fenton reaction is widely accepted

as having high efficiency and a short reaction time to degrade
organic pollutants, which affect the microorganism in the bio-
logical degradation process. The hydroxyl radical is formed by
a reaction between ferrous ions (Fe2+) and hydrogen peroxide

(H2O2) following Eqs. (11) and (12)

Fe2þ þH2O2 ! Fe3þ þOH� þOH� ð11Þ

Fe3þ þH2O2 ! Fe2þ þOOH� þHþ ð12Þ
Hydroxyl radicals can oxidize with various organic com-
pounds because these radicals have a strong oxidizing potential
(E� = 2.8 V) to decompose organic compounds to small

molecules.
Borba et al. (2018) examined the treatment of tannery efflu-

ent (TE) by using the conventional Fenton process. The effects

of initial pH of the solution from acid to neutral, as well as, the
H2O2 and Fe2+ concentrations to the performance of Fenton
processes are described. The results presented that a decreased

initial solution pH and an increased H2O2 concentration pro-
moted higher activity of chemical oxygen demand removal.
However, the excess of H2O2 and Fe2+ concentrations beyond
the above mentioned can significantly reduce the number of

hydroxyl radicals, which might be due to the excessive H2O2

and Fe2+ ions, as shown in Eqs. (13) and (14).

Fe2þ þOH� ! Fe3þ þOH� þOH� ð13Þ

OH� þH2O2 ! H2OþHO�
2 ð14Þ

The initial solution pH is also crucial factor and the suitable

condition of the initial pH should be below 4.0. The prohibi-
tion of hydroxyl radicals can be observed at a pH solution
higher than 4.0 because H2O2 can be transformed to H3O2

+

following Eq. (15)

H2O2 þHþ ! H3O
þ
2 ð15Þ

Ma et al. (2020) studied 2,2,5-trichlorodiphenyl degrada-
tion using the Fenton process by examining the effects of var-

ious independent parameters i.e. the pH of the solution,
reaction temperature, and inorganic ions on 2,2,5-
trichlorodiphenyl decomposition. They found that the addi-
tion of 50 mM of isopropanol used as a scavenger in Fenton

reaction at pH 5.0 inhibited the performance of 2,2,5-
trichlorodiphenyl degradation, whereas adding 5 mM of chlo-
roform did not affect the efficiency of 2,2,5-trichlorodiphenyl

decomposition. Additionally, Kahoush et al. (2018) studied
the H2O2 generation by using the enzyme glucose oxidase, as
shown in Eq. (16).

C6H12O6 þH2OþO2 ! C6H12O7 þH2O2 ð16Þ
Due to the presence of Fe2+ ions, the reaction between

Fe2+ ions and H2O2, was obvious, thus called bio-Fenton,
and has been used to degrade many kinds of POPs such as dyes

and herbicide. They confirmed that, to achieve a high perfor-
mance in using the bio-Fenton process, the significant operat-
ing variables are the initial solution pH, reaction temperature,
initial pollutant concentration and biocatalyst.

4.2. Removal of POPs using Fenton-like reaction

Nowadays, the persulfate oxidant compound has also been

used as a precursor of radicals in Fenton-like reactions in some
reports (Avetta et al., 2015; Deng et al., 2014; Li et al., 2015).
Wang and Wang (2018) studied trimethoprim degradation by

the comparison of efficiency with Fenton and Fe2+-activated
persulfate processes. The conventional Fenton process showed
higher degradation than the Fe2+-activated persulfate process.

On the contrary, the total organic carbons had higher removal
by using persulfate than hydrogen peroxide. The efficiency of
Fenton-like reactions by using iron in a solid form relied on
the initial solution pH. Therefore, the couples between iron
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and a photocatalyst can enhance the performance of a Fenton-
like reaction by the high production of radicals and the reac-
tion can take place in a neutral pH solution as shown in

Eqs. (17)–(20) (Guo et al., 2020; Yang et al., 2020).

Fe� photocatalystþ ht ! hþ þ e� ð17Þ

Fe3þ þ e� ! Fe2þ ð18Þ

hþ þH2O ! Hþ þOH� ð19Þ

H2O2 þ e� ! OH� þOH� ð20Þ
Recently, copper (Cu) has been used to improve the profi-

ciency of iron in the Fenton-like process to degrade p-cresol
pollutants (Wantala et al., 2019). It has been demonstrated

that the demineralization of p-cresol showed about 80%

removal. The reaction between the solid Cu (� Cuþ;� Cu2þÞ
and iron with oxidants is displayed in Eqs. (21)–(26).

Fe3þ �OHþH2O2 ! Fe3þ �OH �H2O2 ð21Þ

Fe3þ �OH �H2O2 ! Fe2þ þH2OþOH�
2 ð22Þ

Cuþ þH2O2 ! Cu2þ �OHþOH� ð23Þ

Cu2þ �OHþH2O2 ! Cu2þ �OH �H2O2 ð24Þ

Cu2þ �OH �H2O2 ! Cuþ þH2OþO2 ð25Þ

Cuþ þ Fe3þ ! Cu2þ þ Fe2þ ð26Þ
The radicals produced by a Fenton reaction can continu-

ously react with POP chemicals to destroy to small molecules

and then to CO2 and water called green products following
Eq. (27).

POPsþOH� ! intermediats ! CO2 þH2Oþ others ð27Þ
Currently, many researchers are interested to solve both

problems by using iron catalysts in a solid form in a Fenton-
like reaction process such as Fe3+ impregnated N doped-
TiO2 (Abdelhaleem and Chu, 2020), FeOOH/Bi2WO6 (Guo

et al., 2020), Fe3+-doped BiOBr (Liu et al., 2020), iron-
containing RH-MCM-41 (Wantala et al., 2015) and Fe-Cu/
NaP1 (Wantala et al., 2019) to degrade organic pollutants (car-

bofuran, methylene blue, rhodamine B, tetracycline hydrochlo-
ride, p-nitrophenol, reactive red 3 and p-cresol). They
confirmed that the Fenton-like process was enhanced by pho-
tolysis called the photo-Fenton-like process (Abdelhaleem and

Chu, 2020; Guo et al., 2020; Liu et al., 2020; Wantala et al.,
2015; Yang et al., 2020). The reaction mechanism is exhibited
in Eq. (28).

Fe3þ þH2O2 þ ht ! Fe2þ þOH� þHþ ð28Þ
Accordingly, ferrous reacts with oxidants (H2O2) to pro-

duce hydroxyl radicals and lead to the oxidation reaction in
degrading the pollutant.

4.3. Removal of POPs using Photo-Fenton reactions

Many researchers modified the process to transform Fe3+ to
Fe2+ form by photolysis called photo-Fenton reaction
(Davididou et al., 2019; Tarkwa et al., 2019; Vergura et al.,
2019). The reduction reaction of Fe3+ to Fe2+ form is previ-
ously presented in Eq. (28).

The POPs were used as pollutants in the photo-Fenton pro-

cess such as pentachlorophenol (Vergura et al., 2019), and
Orange G dye (Tarkwa et al., 2019). They reported that a suit-
able pH solution was at about 2.8. Garcia-Segura et al.

(Garcia-Segura et al., 2017) studied o-toluidine degradation
by the electro-assisted photo-Fenton process. They found that
the ratio of H2O2:Fe

2+ (5:1) in the electro-assisted photo-

Fenton process was lower than the conventional Fenton pro-
cess (20:1) because a faster electro-regeneration of the iron cat-
alyst occurred following Eq. (29).

Fe3þ þ e� ! Fe2þ ð29Þ
Furthermore, H2O2 was generated by oxygen reduction at

the cathode (Eq. (30)) and oxidation at the anode (Eq. (31)),

respectively, in an acidic condition of electro-Fenton reaction.

O2 þ 4Hþ þ 4e� ! 2H2O ð30Þ

H2O2 ! 2Hþ þO2 þ 2e� ð31Þ
However, using the homogenous Fenton, electro-Fenton

and photo-Fenton reactions to degrade POPs have to be set
in acid conditions (pH 2–4), which is the main disadvantage
of the process. Additionally, the formations of iron sludge

after the reaction is a weakness of this process as well.
Katsumata et al. (2006) also reported degradation of

PCDDs. PCDDs, including tetra- to octa-chlorinated
dibenzo-p-dioxin were dissolved in water and degraded by

photo-Fenton process. Under optimum Fe2+ and H2O2 con-
centrations, the complete removal of 2,3,7,8-tetra-chlorinated
dibenzo-p-dioxin was achieved after 20 min. The tetra-

chlorinated dibenzo-p-dioxin, penta-chlorinated dibenzo-p-
dioxin and hexa-chlorinated dibenzo-p-dioxin were completely
degraded in 120 min. However, hepta-chlorinated dibenzo-p-

dioxin and octa-chlorinated dibenzo-p-dioxin were still
detected even after 300 min. The degradation rates of the POPs
decreased as the chlorine substituents increased as reported by

Kim and O’Keefe (2000).

4.4. Removal of POPs using zero valent irons (ZVI)

Zero valent irons (ZVI) and nano zero-valent irons (nZVI)

were used as iron sources in the Fenton reaction (Correia de
Velosa and Pupo Nogueira, 2013; Deng et al., 2014; Graça
et al., 2018; Tian et al., 2020). The oxidation of ZVI and nZVI

was converted to Fe2+, as shown in Eq. (32) and Fe3+ was
recycled back to Fe2+ following Eq. (33).

2Fe0 þO2 þ 2H2O ! 2Fe2þ þ 4OH� ð32Þ

2Fe3þ þ Fe0 ! 3Fe2þ ð33Þ
Then, Fe2+ reacted with H2O2 to produce hydroxyl radi-

cals following Eq. (11).

Besides the nZVI, the stabilized iron sulfide FeS nanoparti-
cles also expressed excellence in POPs degradation. It can
degrade the lindane herbicide in its hexane extract with an effi-

ciency higher than 94%. The 1,2,4-trichlorobenzene was a
main intermediate of the degradation pathway of lindane.
Comparatively, the non-stabilized FeS nanoparticles can
degrade lindane only 25% which is much lower than the



Fig. 6 The intermediates and degradation pathway for DDT using persulfate activation by nZVI.
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efficiency obtained from the stabilized FeS. It is obviously indi-
cated that these FeS nanoparticles rapidly catalyzed a reduc-

tive dehalogenation reaction (Assaf-Anid and Kun-Yu, 2002;
Paknikar et al., 2005). In addition, effective DDT abatement
can be achieved by using persulfate activation by nZVI with
the proposed degradation pathway described as shown in

Fig. 6 (Zhu et al., 2016).
5. Removal of POP using other photocatalysts

As previously described, metal oxide based materials, espe-
cially TiO2, are dominated photocatalysts for the degradation
of water pollutants. This section aims to cover comprehensive

details of less conventional photocatalysts involved in POP
degradation. UV light responsive nanostructured ZnS
catalysts were employed in the reductive dehalogenation of

hexafluorobenzene (Yin et al., 2001) and of 2,20,4,40,5,50-hexa
chlorobiphenyl (He et al., 2013). Notably, CdS is an efficient
photocatalyst in reductive dechlorination of hexachloroben-

zene under visible light irradiation after 6 h treatment (Yin
et al., 2001).

Limited numbers of polyoxometalates (POMs) were
reported as photocatalysts in the degradation of POPs, includ-

ing polyoxotungstates (Antonaraki et al., 2010), heteropoly-
oxoanions [SiW12O40]

4� and [ PW12O40]
4� (Youssef et al.,

2019), and amine-functionalized mesoporous silica impreg-

nated with transition-metal-monosubstituted POMs (Li
et al., 2006). Bearing metal oxide polyanionic clusters, POMs
are generally applied in both acid and redox catalytic pro-

cesses. It was reported that, [SiW12O40]
4� was a superior pho-

tocatalyst in the degradation of dieldrin, a highly toxic
insecticide, under UV light irradiation in comparison to
[ PW12O40]

4� (Youssef et al., 2019). Comparable photocat-

alytic activity of amine-modified MCM-48 attached with
K5[M(H2O)PW11O39], where M = Co or Ni in the dechlorina-
tion of hexachlorobenzene under UV light irradiation was
reported by Li and coworkers (Li et al., 2006). Note that, in
the presence of H3PW12O40, catalytic degradation of lindane

(hexachlorocyclohexane) under UV–Vis light irradiation,
resulted in chlorobenzenes and chlorophenol byproducts, sim-
ilar to that found in POMs/TiO2 photocatalytic systems
(Antonaraki et al., 2010; Chen et al., 2004).

Furthermore, Chen and coworker (Chen et al., 2018)
reported utilizing graphite oxide/Ag3PO4 as a heterojunction
photocatalyst accelerated debromination of decabro-

modiphenyl ether diluted in tetrahydrofuran and water under
visible light irradiation and N2 atmosphere. The graphite oxide
2D material acts as protective sheets for Ag3PO4 particles, pro-

moting electron-hole pair separation and electron transfer at
the graphite oxide and Ag3PO4 interface to accelerate decabro-
modiphenyl ether degradation. Notably, graphite oxide/Ag3-
PO4 composite shows a much lower photocatalytic activity

(ca. 10 folds) at a slower rate in the debromination of decabro-
modiphenyl ether soluble in tetrahydrofuran/methanol mix-
ture, compared with that of g-C3N4/Fe2O3 system, in which

the electron hole pair recombination was suppressed by g-
C3N4 nanosheets (Shao et al., 2018).

Porous materials have advantages as catalysts generally

containing a large number of active sites on both the external
and internal surfaces of the materials. MOFs (Wang et al.,
2020), coordination complexes of metal ions or cluster and

organic ligands, are classified as a porous crystalline solids gen-
erally having a high surface area. The pore structure and
energy bandgap of MOFs are tunable depending on the selec-
tions of metal ion clusters and organic linkers (Choi et al.,

2009; Lin et al., 2012; Pham et al., 2014). Consequently, high
specific surface area MOFs with varied bandgap energy are
extensively applied as catalysts in controlled photochemical

organic synthesis (Pascanu et al., 2019), and the remediation
of versatile toxic, non-biodegradable water pollutants e.g.
dyes, pesticides, pharmaceuticals and personal care product

related pollutants (Pi et al., 2018; Wang et al., 2020). Neverthe-
less, a very small number of MOFs were reported as efficient
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photocatalysts in the degradation of POPs (Stockholm’s list)
and their derivatives. The dechlorination of 1,1-bis(4-chloro
phenyl)-2,2,2-trichloroethane under visible light irradiation

catalyzed by B12–Ru@MOF for 4 h resulted in 99% and
63% yields of or DDT to 1,1-bis(4-chlorophenyl)-2,2-dichlor
oethane in the 1st and 3rd cycles, respectively. The reactions

were performed under N2 atmosphere with the addition of tri-
ethanolamine hole scavenger (Xu et al., 2015). Some recent
work (Peng et al., 2020) reported on the utilization of ammine

functionalized MIL-125(Ti) as a visible light responsive cata-
lyst in the reductive debromination of decabromodiphenyl
ether with triethanolamine addition. With added scavengers,
the debromination of decabromodiphenyl ether was achievable

via the pathway involved electrons stored on the conduction
band (or lowest unoccupied molecular orbitals) in MOFs.

In the past few decades, metal-free photocatalysts have

attracted a great attention due to their unique characteristics
i.e. tunable structures, excellent stability, favorable thermal
and electrical conductivity, strong interactions with substrates,

and abundant supply for potential large-scale applications
(Nikokavoura and Trapalis, 2017). Graphitic carbon nitride
(g-C3N4), obtained from the thermal polycondensation of

dicyandiamide, was reported as a UV responsive catalyst in
the debromination of decabrominated diphenyl ethers in
methanol, resulting in the formation of hexa- and pentabromi-
nated byproducts after 8 h (Sun et al., 2012).

In addition, polymeric photosensitizers and antenna poly-
electrolytes are photocatalysts applicable in the detoxification
of POPs, and several non-biodegradable water pollutants

(Nowakowska and Szczubiałka, 2017). The polymers are pho-
toresponsive, absorb light to induce photochemical reactions,
as they may contain aromatic chromophore covalently

attached on the polymeric chains, adsorbed or encapsulated
in the polymer matrix. Additionally, they are amphiphilic, thus
assist in the solubilization of poorly water-soluble organic

compounds through the formation of micelle like complexes
(Nowakowska and Guillet, 1991; Sustar et al., 1992). Car-
bazole (Nowakowska and Szczubiałka, 1999) and naphthalene
(Nowakowska et al., 1991; Sustar et al., 1992) functionalized

polymers were used in detoxification of polluted water contain-
ing hexachlorobenzene and polychlorinated, respectively. Sol-
ubilization and photosensitized dechlorination of the

polychlorinated pollutants resulted in the formation of degra-
dation products with less chlorinated congeners.

Moreover, recently developed metal-free photocatalysts for

environmental applications are microporous organic polymers
(MOPs), also known as polymers of intrinsic microporousity,
covalent organic framework, hypercroolinked polymers, and
conjugated microporous polymers. One of the advantages of

MOPs over inorganic semiconductors that has been pro-
nounced is that their optical and electronic properties are tun-
able by varying aromatic building blocks with a range of

functional groups (Lan et al., 2018; Wang et al., 2018). The
average pore dimension, volume, pore size distribution, and
specific surface area of MOPs also can be finely tuned by con-

trolled polymerization processes (Xiao et al., 2019). Although,
up to now, the photocatalyst activity of MOPs was reported as
being efficient in the degradation of several organic dyes (Tang

et al., 2019; Xiao et al., 2019) and chemical warfare agents (Ma
et al., 2019), these materials could have a high potentials in
highly persistent water pollutants including POPs.
6. Concluding remarks and perspectives

In this review, we have collected and highlighted a series of
potential photocatalysts, such as TiO2-based, ZnS, CdS,

POMs, MOFs, MOPs, polymeric photosensitizers, etc., with
the high-performance to eliminate POPs completely. Among
candidates, TiO2-based photocatalysts for POP photocatalytic

removal have attracted considerable interest. In addition, var-
ious technologies, reaction conditions, mechanisms, and kinet-
ics for the photocatalytic degradation of POPs have been
profitably proposed and discussed by many groups:

1. TiO2-based photocatalysts: to immobilize semiconductor
photocatalysts on different supports could neglect the

numerous disadvantages correlated with the suspension
system (such as recovering the suspended TiO2 powders
from the effluent stream, ready for sizeable scale-up

photoreactor, etc.). However, it has been suggested to
improve photocatalyst coating layers to achieve more
homogeneity and crystallinity by exploring new methods/

techniques. Additionally, another approach is doping with
the metal/nonmetal nanoparticles, coupling with the semi-
conductor materials, or hybridizing with the addition of
oxidants for widening into the visible light absorption are

also proposed.
2. Other types of photocatalysts: many photocatalyst systems

have been successfully evaluated for the photocatalytic

removal of POPs, such as ZnS, CdS, POMs, MOFs, MOPs,
polymeric photosensitizers, etc. These candidates also show
a high potential in photo-removal of POPs in the future.

3. Reaction conditions: to optimize the reaction parameters
and reactor configurations for typical types of POPs, such
as catalyst dosage, light sources (wavelength, intensity, light

distribution, and utilization, etc.), POPs properties and its
feed ratio, etc.

4. Fenton reactions: In addition to photocatalysis, Fenton,
Fenton-like, and photo-Fenton reactions have been studied

to evaluate the removal performance of POPs. The idea
final products of these reactions are CO2 and water, which
are friendly to the environment. The disadvantages of this

concept are the reactions require to be set up at acid condi-
tions (pH = 2–4), and the generated iron sludge after the
reaction.

To further improve the photocatalytic performance, some
critical points could be considered as follows:
1. Photocatalysts: to simplify the current synthesis methods,

and to continue improving light-harvesting, promoting
charge carrier separation, inhibiting the recombination of
electrons and holes, offering more active sites, etc.

2. Mechanisms, reaction pathways: to disclose and figure out
the photocatalytic mechanisms, reaction pathways, kinetics
for the photocatalytic removal of POPs from molecular

insights to large-scale applications.
3. Photo-reactors: to design and propose a new reactor system

with optimizing operation parameters which have consid-

ered many factors, including mass transfer; photon trans-
fer, distribution, and utilization, etc. Importantly, it
should be ready and available for large-scale applications.
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Langer, E., Rassaerts, H., Kleinschmidt, P., Strack, H., Cook, R.,

Beck, U., Lipper, K.-A., Torkelson, T.R., Löser, E., Beutel, K.K.,
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