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A B S T R A C T

Gastrodia elata Bl (G. elata), a medicinal and edible homologous variety, has been artificially cultivated in 
different regions of China to meet the growing demands of human beings. In this study, attenuated total 
reflection/Fourier transform infrared spectroscopy (ATR/FTIR) combined with chemometrics [Principal 
component analysis (PCA), Partial least squares discrimination (PLS-DA), Support vector machines (SVM), 
and Data-driven soft independent modeling of class analogy (DD-SIMCA)] was used to differentiate between 
geographical indications and non-geographical indications of G. elata. PLS-DA, after the application of SNV+SD 
spectral preprocessing, achieved 100% accuracy on the training set and 88.89% on the test set, respectively. 
Under SG+SD conditions, SVM outperformed PLS-DA with 100% training set accuracy and 94.74% for the test 
set. A ResNet model that used synchronous 2DCOS data successfully distinguished G. elata from Yunnan and 
Guizhou, achieving 100% accuracy across training, test, and external validation sets. These findings support 
that ATR-FTIR and chemometrics can be utilized to effectively identify the geographical origin of G. elata, with 
potential applications for other medicinal and edible plants.
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1. Introduction

The dried tuber of the Gastrodia elata Bl (G. elata) is a kind of 
perennial parasitic plant widely distributed in China, Bhutan, Nepal, 
India, Japan, Korea, Siberia, and other countries, which possesses both 
high medicinal and edible value [1]. In traditional Chinese medicine 
(TCM), G elata calms wind, stops spasms, soothes liver-yang, dispels 
wind, clears collaterals, etc., and can be leveraged for children's 
convulsions, epilepsy, tetanus, headache, dizziness, paralysis of hands 
and feet, numbness of limbs, rheumatism, and arthralgia [2]. It has been 
found that the chemical composition of G. elata encompasses phenols 
(e.g. Gastrodin, 4-hydroxybenzenol and balisin), polysaccharides, 
sterols (e.g. Beta-sitosterol), and organic acids (e.g. Citric acid and 
succinic acid) [3,4]. Also, modern pharmacological studies have proven 
that G. elata has anti-inflammatory, anti-epileptic, anti-stroke, anti-
anxiety, and anti-depression pharmacological effects [5]. Beyond its 
role as one of the commonly used TCMs, G. elata is also a functional 
food. The Chinese government officially announced in 2019 that it can 
be applied as a “medicinal food homologous” plant [6]. In daily life, G. 
elata is employed to make various tonic diets, such as fish head soup, 
stewed chicken and ham, yam congee, etc., which indicates the valued 
and promoted trend in the field of TCM and food.

Geographical indication (GI) refers to products that grow in a 
certain geographical area, with a specific quality, reputation, or other 
characteristics, and are mainly determined by natural and human factors 
in the area. G. elata grows in Xiaocaoba Town, Yiliang County, Zhaotong 

City, Yunnan Province, and Dafang County, Bijie City, Guizhou Province. 
Lv et al. [7] proposed that it is necessary to distinguish between GI and 
non-GI G. elata since GI products may attract consumers and influence 
their purchasing decisions. Experts can distinguish between GI and 
non-GI G. elata through visual perception and sensory evaluation, while 
this analysis is highly subjective and lacks reproducibility due to the 
variability of individuals and samples [8]. The traditional identification 
method is to collect G. elata samples from different origins and harness 
instruments like high-performance liquid chromatography (HPLC), 
mass spectrometry (MS), gas chromatography-mass spectrometry (GC-
MS), etc., for analysis. After detecting the content of certain chemical 
components of G. elata, the equipment quantitatively uses it as a testing 
parameter to evaluate the quality level and category. Through using 
UPLC-ESI-QTOF-MS/MS and HPLC-UV, Su et  al. [9] determined the 
content of 7 components of G. elata. Instruments including HPLC and 
GC-MS can provide highly accurate analytical results and then aid in 
identifying the differences between G. elata samples of different origins 
and assess their quality, whereas HPLC and GC-MS are cumbersome 
to operate and use chemicals harmful to the environment and human 
health. Consequently, non-destructive testing technology possesses an 
important application prospect in the analysis of G. elata and other 
Chinese medicinal materials.

Spectroscopy is the most widely applied method in geographical 
origin classification, and attenuated total reflectance-Fourier transform 
infrared spectroscopy (ATR-FTIR) analysis is characterized by the 
advantages of simple operation, fast analysis speed, no damage to 
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samples, and requiring fewer samples and represents a pivotal technical 
approach widely used in various fields [10]. Spectroscopic techniques, 
especially ATR-FTIR, contribute much to the field of modern analytical 
chemistry and biomaterials. ATR-FTIR technology is used in basic 
chemical analysis and is also widely employed in exploring the 
homology of medicine and food and the quality identification of Chinese 
medicinal materials. ATR-FTIR has been utilized for the identification 
of G. elata origin [11,12], accurate identification of G. elata GIs [13], 
and the identification of Fritillaria species from various plant sources 
[14]. Being an efficient analytical method, ATR-FTIR can generate 
high-throughput, non-specific, and redundant data [15]. This feature 
can still bring some challenges in data analysis, even it is a significant 
advantage in data acquisition. With the development of chemometrics, 
an increasing number of efficient data processing methods have been 
proposed to tackle the complexity of infrared spectral data. Combined 
with Principal component analysis (PCA), Partial least squares 
discrimination (PLS-DA), Support vector machines (SVM), and other 
analysis methods, He et al. [16,17] used FT-NIR spectral data to identify 
the drying temperature of Amomum tsao-ko, and determined the quality 
grade of wine by ML model based on RF and K-Nearest Neighbors (KNN) 
algorithms. To address adulteration and abuse in the aboveground parts 
of herbal medicines, Song et al. constructed and evaluated ten different 
machine learning (ML) models based on ATR-FTIR spectroscopy [18]. 
Correspondingly, it is not difficult to find from the literature that 
the combination of ATR-FTIR and chemometrics gives full play to its 
advantages in identification.

This research aims to use ATR-FTIR technology, combined with 
chemometric methods, to quickly and accurately identify GI and non-
GI G. elata. First of all, a total of 248 G. elata samples from Yunnan 
and Guizhou were dried under the same conditions. Secondly, the 
effectiveness of G. elata sample classification for GI and non-GI was 
evaluated separately through PCA. Thirdly, after the implementation 
of 10 spectral preprocessing methods, PLS-DA, SVM, and Data-driven 
soft independent modeling of class analogy (DD-SIMCA) models were 
constructed to compare the adaptability of ATR-FTIR technology 
integrated with chemometrics in distinguishing GI from non-GI G. 
elata. Finally, a Resnet model was established based on G. elata 2DCOS 
data to distinguish the G. elata production areas in Yunnan Province 
and Guizhou Province. In this study, a reliable G. elata identification 
model was set up for GI and non-GI, which provided a scientific basis 
for analyzing the geographical sources of G. elata, exhibiting important 
application prospects in the medicinal and edible industries, quality 
control of medicinal materials, etc.

2. Materials and Methods

In 2023, fresh cultivated G. elata samples were collected in Yunnan 
Province (Zhaotong Xiaocaoba and Not xiaocaoba (Yongshan County 
and Zhenxiong County) and Guizhou Province (Dafang County and Not 
dafang County (Hezhang County and Jinsha County) in China, totaling 
248 samples (Table 1). They were identified by Professor Huang 
Hengyu of Yunnan University of Traditional Chinese Medicine. The 
relevant sample information has been shown in Figure 1. All tubers 
were washed, dried, crushed, and sieved through a 100-mesh sieve. 
The powder was stored in a plastic sealed bag at room temperature for 
further analysis.

2.1. Spectral collection

A Fourier transform infrared spectrometer (Perkin Elmer, USA) 
equipped with ZnSe attenuated total reflection attachment and OMNIC 
9.77 (Thermo Fisher Scientific, USA) software was used for spectral 
acquisition and analysis. G. elata powder was placed on ZnSe crystal 
material for spectral scanning. ATR-FTIR spectral data within the 
wavenumber range of 4000-400 cm-1 was recorded. Each sample was 
scanned 64 times with a resolution of 8 cm-1 and repeated 3 times under 
the same conditions to verify accuracy and obtain the average spectrum 
for further analysis.

2.2. Spectral data preprocessing

The collected sample spectra were converted into a dataset using 
SIMCA-P+14.1 software (Umetrics, Umea, Sweden). The original ATR-
FTIR spectrum was pre-processed to remove interference information, 
such as background, noise, and baseline drift. This study applied 
preprocessing methods, such as savitzky-golay smoothing (SG), second 
derivative (SD), multiple scattering correction (MSC), and standard 
normal variable (SNV) smoothing separately and in combination. 
SG smoothing is a commonly used spectral data smoothing method 
that smoothens curves by local polynomial fitting of spectral data, 
reduces the effect of noise, and maximizes the retention of the peak 
characteristics of the original spectral signal [19]. The SD can enhance 
the slope change of spectral data, extract fine features, and is often used 
for preprocessing to reduce random noise and improve signal frequency 
resolution [20]. The MSC corrects the scattering effect in the spectral 
data, making the spectral intensity more consistent between different 
samples and helping to improve the comparability of the data [21]. The 
SNV corrects the spectral baseline shift, eliminating differences due to 
equipment drift, sample placement, and particle size changes. It improves 
the ability of spectral comparison and understanding, highlights the 
main characteristics of the spectrum, and reduces the impact of scale 
differences between samples on the analysis results, helping to find 
small spectral changes [22]. SD with nine smoothing points is used to 
amplify FTIR and NIR spectral differences and eliminate baseline bias 
[23]. Chen et al. [12,24] performed SG smoothing pretreatment on the 
selected NIRS band, and applied SNV and MSC to NIRS and ATR-FTIR 
spectral pretreatment for honey adulteration.

2.3. Soft

ATR-FTIR transmittance was converted to absorbance using 
the OMNIC 9 software. Spectral data was preprocessed, and PLS-
DA modeling was performed using SIMCA 14.1 software. Origin 9.1 
software was used to draw. MATLAB 2023a software was used to 

Table 1. Gastrodia elata Bl. Sample information.
Origin Abbr. Total Train set Test set
Zhaotong 
city, 
Yunnan 
Province

Xiaocaoba town of yiliang county XCB 59 41 18
Yongshan county YS
Zhenxiong county ZX 60 42 18

Bijie city, 
guizhou 
Province

Dafang county DF 68 48 20
Hezhang County HZ
Jinsha County JS 61 43 18

Note: The geographical indication production areas are XCB and DF, while the non-
geographical indication production areas comprise YS, ZX, HZ, and JS, corresponding 
to NXCB (comprising YS and ZX) and NDF (comprising HZ and JS).

Figure 1. (a) Gastrodia elata Bl. Sample. (b) and (c) Sample site information.
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establish SVM and DD-SIMCA models, as well as acquire of 2DCOS 
images. ResNet was built in the Spyder (Anaconda 3) software.

2.4. Model construction

Before data modeling, the sample was randomly divided into 
70% training and 30% test sets by the Kennard-Stone algorithm, and 
stoichiometric analysis included multivariate statistical techniques, such 
as PCA, PLS-DA, SVM, and Random forests (RF). The performance of 
these classification algorithms on GI and non-GI spectral preprocessing 
data sets was compared.

Principal component analysis (PCA) is a kind of multivariate 
statistical method that transforms the collected data dimension and 
data of dimension reductions after further linear classification, a 
reduction in the number of features and complexity, while retaining 
most of the original data information [25]. Thus, the classification and 
differentiation of samples from different places can be realized, and the 
potential hidden characteristics and rules can be found.

PLS-DA is a method that combines Partial Least Squares Regression 
(PLS) and Discriminant Analysis (DA), commonly used for processing 
high-dimensional data with classification labels [26,27]. PLS-DA 
aims to find the component with the greatest covariance between the 
observed variable (X) and the response variable (Y) while achieving 
the best distinction between classes. PLS-DA is suitable for processing 
high-dimensional data with classification labels, helping to solve 
classification and prediction problems in data analysis while providing 
solutions for data reduction and feature selection.

Support vector machine (SVM) is a classical nonlinear supervised 
learning modeling method, which has outstanding advantages for the 
analysis and modeling of nonlinear relations of high-dimensional input 
variables. By finding an optimal hyperplane, the distance between 
sample points and this hyperplane is as far as possible [28]. The goal 
of SVM is to maximize the spacing to ensure better classification of 
different classes. This study employs the grid search algorithm (GS) to 
optimize the values of parameters c and g. To be specific, parameter 
c represents the degree of error acceptance of the model, in which 
too large or small c can bring poor generalization of the SVM model. 
Besides, the parameter g attached to the RBF function chosen as the 
kernel determines the distribution of the data set mapped to the high-
latitude factor space.

DD-SIMCA is a multi-variable data analysis method based on the 
soft independent modeling of class analogy (SIMCA) algorithm. First, 
the scoring distance (SD) and orthogonal distance (OD) of each sample 
in the training set were calculated. Then, the acceptance region of 
the target class was established based on different methods. The 
purpose of the acceptance region is to determine whether the test 
set is considered to belong to the target class. Finally, the non-target 
class samples were substituted into the trained model for classification 
prediction [29,30].

A residual network (ResNet) is a deep convolutional neural 
network structure. Compared with ordinary neural networks, ResNet 
does not need to learn the entire input and output process but only 
the difference between output and input (residual) to minimize the 
training difficulty [31]. By introducing residual blocks, the ResNet 
enables the network to learn residuals directly rather than the 
difference between the original input and output. In this way, the 
problems of gradient disappearance and explosion can be effectively 
alleviated, and the training efficiency and generalization ability of the 
network can be improved [32].

2.5. The acquisition of 2DCOS image dataset

The generalized 2DCOS algorithm can obtain and analyze a series 
of dynamic spectra by applying external interference to the sample 
and finally carry out correlation analysis to obtain the 2DCOS image. 
The argument changes from continuous time to v. t is the external 
disturbance, and m is the spectrum measured by m steps at the same 
disturbance time interval t, as shown in Eq. (1).
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The intensity of synchronous two-dimensional correlation between 
v1 and v2 is expressed as formula (Eq. 2).
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The strength of the asynchronous two-dimensional correlation 
between v1 and v2 is expressed as formula (Eq. 3).
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In formula (Eq. 4), where N is the Hilbert-Noda matrix.
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The comprehensive two-dimensional correlation spectrum between 
v1 and v2 is defined as formula (Eq. 5).
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2.6. Model performance evaluation parameters

In the model performance evaluation, the evaluation indicators 
such as RMSEE, RMSECV, RMSEP and accuracy (Acc) are selected, 
and their respective calculation methods are as the following formula  
(Eqs. 6-9).

−==
−

∑ 2

1
( ˆ )

m

i ii
y y

RMSEE
m N

(6)

( )
=

= −
− ∑

2

1
ˆ1

1
m

i ii
RMSECV y y

m
(7)

−== ∑ 2

1
ˆ( )

m

i ii
y y

RMSEP
m

(8)

Acc
TP TN

TP TN FP FN
�

�
� � �

(9)

y
i
 is the measured value, y

i
  is the predicted value, m  is the sample 

size, and N  is the number of variables considered in the model.
TP: Number of true positive
TN: Number of true negatives
FP: Number of false positives
FN: Number of false negative

3. Results and Discussion

3.1. ATR-FTIR analysis

The original and average mid-infrared spectra of GI and non-GI G. 
elata in Yunnan and Guizhou have been presented in Figure 2. Although 
artificially cultivated G. elata comes from different production areas 
in Yunnan and Guizhou, the spectra of different regions usually 
show similar trends. However, absorption intensity presents certain 
differences, which suggests that G. elata may differ slightly in the 
chemical composition of different regions.
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The strong broad band centered on 3278.8 cm-1 may correspond 
to hydroxyl (-OH) stretching vibrations of phenolic compounds in G. 
elata, including hydroxyl absorption in phenolic compounds [33]. 
The presence of 2927.7 cm-1 may be the symmetric and asymmetric 
stretching vibrations of C-H in aliphatic hydrocarbons in terpenoids 
[34]. Phenolic compounds in G. elata or other compounds containing 
carbonyl (C=O), including carbonyl absorption in phenolic compounds, 
are likely to be present at 1628.6 cm-1, and 1412.6 cm-1 usually 
corresponds to the methyl (CH3) functional group, which indicates 
compounds containing methyl functional groups in G. elata. It is 
possible that C=O, thioether bond (S-S, S-C, and C-S) correspond to 
1336.9, 1234.3, 1147.9, and 929.1 cm-1, respectively [35,36]. What’s 
more, 1075.1 cm-1 may demonstrate compounds that contain hydroxyl 
functional groups in G. elata. The peaks corresponding to 856.2 cm-1 
and 759 cm-1 are associated with C-H bending vibrations in aromatic 
compounds. Due to the very similar metabolic composition of G. elata, 
it is challenging to distinguish the original spectrum, and more sensitive 
machine-learning techniques must be employed to identify GI and non-
GI G. elata.

3.2. Exploratory PCA analysis

In order to explore the similarities and differences between GI-
producing areas and non-GI-producing areas, the principal component 
analysis was conducted to reduce the infrared spectral data of GI and 
non-GI G. elata. The results of PCA (Figure 3) showed the distribution 
of samples from Yunnan and Guizhou provinces in the principal 
component space, which facilitates the realization of GI and non-GI G. 
elata identification. PC1 and PC2, the first two principal components of 
the PCA score plot (Figure 3a), accounted for 88.4% and 9.0% of the 
total variance, respectively. Taken together, there is a high cumulative 
variance contribution of these two principal components, indicating 
that they contain most of the data variability. However, for the original 
ATR-FTIR of the samples, there was a classification overlap of the 
two types of samples in the score map, meaning that less difference 
existed in chemical composition between the GI and non-GI regions 
within the space constructed by the first two principal components. 
Figure 3(b) depicts the PCA results of different regions in Guizhou. The 

first two principal components account for over 90.0% of the variance 
explanation rate, with PC1 contributing 90.8% and PC2 contributing 
6.7%, which implies that these two principal components not only more 
effectively explain the variance of the original data but also possess 
strong information preservation ability.

Although PCA can effectively explain the variance of the original data, 
there remains an overlap in the classification of GI and non-GI G. elata in 
Yunnan and Guizhou. Certain GI areas and non-GI areas probably exhibit 
similarities or differences. Due to the high similarity of data features 
and the uneven distribution of data, overlap of GIS and non-GI G. elata 
samples in principal component space in different provinces may be 
caused. It was identified that PCA does not well describe the differences 
between samples, which is consistent with geo-traceable studies of 
porcini, green tea, and canola oil [37-39]. Hence, the establishment of 
supervised machine learning models plays a necessary role in attaining 
more accurate traceability, including PLS-DA, SVM, and ResNet.

3.3. Chemometrics

3.3.1. PLS-DA results

Spectral preprocessing aims to improve data quality, highlight 
useful information, and eliminate interference factors, which can 
provide a reliable basis for subsequent data analysis and model. 
As can be seen from Table 2, the spectral data of G. elata in Yunnan 
Province obtained poor results without preprocessing, which still has 
room for improvement. After employing single or combined spectral 
preprocessing, improvement was witnessed in PLS-DA model R2 and 
Q2 compared with the original spectra, while a slight decrease was 
seen in the values of RMSEE, RMSECV, and RMSEP. SD is often used 
in spectral preprocessing to enhance peak value, improve signal-to-
noise ratio, and correct baseline drift. The results of the preprocessing 
methods in Table 2 demonstrated that when harnessing SD alone, 
its R2 and Q2 values were the highest compared with the other four 
spectral preprocessing methods, implying that SD is a more suitable 
spectral preprocessing method for Yunnan G. elata in specific datasets 
and models. After SG smoothing pretreatment, the equivalent values 
of R2, Q2, RMSEE, RMSECV, and RMSEP were close to those of the 

Figure 2. ATR-FTIR spectrum. (a) The original spectra (Left: Yunnan, Right: Guizhou). (b, c) Average spectrogram.
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original spectrum. SG smoothing pretreatment lacks in improving the 
stability and reliability of modeling, though it aids in reducing noise 
and fluctuations in the spectrum. There is the largest R2 (0.903) and Q2 

(0.653) in SNV combined with SD. SD can excel at the subtle features 
and changes in the spectral data, while SNV can eliminate the scale 
effect in the data, which enables the data to be more consistent with 
the normal distribution and further verifies that the combined spectral 
pretreatment can better enhance the model performance (Figure 3c). In 
summary, both single and combined spectral preprocessing exhibited 
improved PLS-DA prediction ability, albeit to different degrees of 
improvement.

Table 3 shows the spectral preprocessing results of GI and non-
GI G. elata in Guizhou. The results obtained by a single method are 
consistent with those in Yunnan, in which excellent findings are 
presented by SD. The spectral pretreatment of MSC+SNV, MSC+SG, and 
SNV+SG indicates close equivalent values of R2, Q2, RMSEE, RMSECV, 
and RMSEP. The results imply that SG+SD serves as the best spectral 
preprocessing method to obtain the maximum accuracy of the training 

set and the test set (Figure 3d). Consequently, suitable pretreatment 
methods should be selected according to their characteristics and 
data performance for different spectral data sets, which can therefore 
improve data quality, underline sample characteristics, and provide a 
reliable basis for subsequent analysis and model. Hence, it is essential 
to flexibly select the best pretreatment when processing spectral data. 
The results imply that the accuracy of both of them in the training 
set is 100% (Table 2, Table 3), whereas the accuracy of Yunnan in 
the test set is 88.89% (Table 2), which is lower than the 94.74% of 
the Guizhou test set (Table 3), and the confusion matrix is shown in 
Figure 4. Some differences are likely to be exhibited by the sample 
data of Yunnan Province and Guizhou Province, including the growth 
environment, climate, soil, and other factors, potentially resulting in 
some differences in the spectral data of G. elata in different regions, 
which enables the established model to perform differently on the test 
set in different regions.

On the basis of the best pretreatment spectral data, the PLS-DA 
model was established, and a good classification was demonstrated by 
G. elata in GI-producing areas and non-GI-producing areas in Yunnan 
Province (Figure 5a). The cumulative variance explanation rate of the 
first two principal components in PLS-DA score chart accounted for 
17.5% of the total variance, of which PC1 explained 13.8% and PC2 
explained 3.7%, respectively. The cumulative variance explanation 
rate is an important indicator to evaluate the degree of variation of 
the model's interpretation data, in which the higher value indicates 
the stronger interpretation ability of the model to the data. Under 
such circumstances, the explanatory power of PC1 is significantly 
higher than that of PC2 despite the relatively low cumulative variance 
interpretation rate, indicating that PC1 plays a more significant role in 
distinguishing samples. However, the PLS-DA scoring plot (Figure 5b) 
clearly reveals the distribution differences of G. elata samples in the 
principal component space of DF and non-GI regions. PC1 and PC2 
explained 20.5% and 6.2%, respectively, of the variables in the spectral 
data, which may also mean that it is difficult to distinguish G. elata 
samples from GI and non-GI regions of these two principal components.

Regarding G. elata from GI and non-GI production areas in Yunnan 
Province and G. elata from Guizhou Province, the importance of 
substitution is leveraged to evaluate the fitting degree of the model. 
The phenomenon that the corresponding model training set has better 

Table 2. Parameters of PLS-DA model based on ATR-FTIR (Yunnan).
Pretreatment R2 Q2 RMSEE RMSECV RMSEP Train set 

Acc (%)
Test set 
Acc (%)

Raw 0.0473 0.0178 0.494 0.4955 0.5072 60.24 61.11
MSC 0.521 0.278 0.3568 0.445 0.487 87.95 58.33
SNV 0.522 0.277 0.3565 0.447 0.4876 89.16 55.56
SG 0.145 0.06 O.4940 0.4955 0.5072 60.24 61.11
SD 0.857 0.609 0.1941 0.3122 0.3291 94.96 83.33
MSC+SNV 0.522 0.278 0.3567 0.4453 0.4871 87.95 58.33
MSC+SG 0.589 0.252 0.3329 0.4514 0.5058 91.57 61.11
SNV+SG 0.521 0.277 0.3568 0.4462 0.4896 86.75 55.56
MSC+SD 0.806 0.571 0.2242 0.3316 0.3999 97.59 75.00
SNV+SD 0.903 0.653 0.1595 0.3058 0.3205 100.00 88.89
SG+SD 0.854 0.603 0.1957 0.3149 0.3278 100.00 83.33

Note: R2: Explains the ability of the model to fit the data; Q2: Indicates the prediction 
ability of the model to new data; RMSEE: Root mean square error of estimation; 
RMSECV: Root mean square error of cross-validation; RMSEP: Root mean square error 
of prediction; Acc: Accuracy. The bold text indicates the optimal preprocessing method. 

(c)

(a)

(d)

(b)

Figure 3. The establishment of PCA model to analyze the PCA results of geographical indication production areas and non-geographical indication 
production areas. (a) Yunnan (XCB, NXCB); (b) Guizhou (DF, NDF). Best Spectral Preprocessing Image. (c) Yunnan SNV+SD; (d) Guizhou SG+SD.
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predictive performance and poorer validation for unknown external 
samples is explained. For the PLS-DA model, the Q2 and R2 values 
generated by each iteration are lower than the Q2 and R2 values in the 
upper right corner. All the above results demonstrate that the model is 
not overfitted for each category of discrimination (Figure 5c and 5d).

3.3.2. Analysis of DD-SIMCA results

To improve the prediction accuracy of the model, DD-SIMCA 
attempted to directly distinguish between geographical indications 
and non-geographical indications in Yunnan Province and Guizhou 
Province and investigate the impact of different spectral data processing 
techniques on the performance of the model. The DD-SIMCA model is 
a modeling method that can be used to analyse and identify anomalies, 
which primarily focuses on anomaly detection and classification in 
dynamic data processes. The acceptance area (the area within the 
green curve), outlier limitation (the red curve), rule samples (the green 
dots), extremum (the yellow square), and outliers (the red square) 
for the samples used in model construction have been provided in 
the acceptance graph of TrainSet. In Figure 6, sub-figures Figure 6(a) 
and  6(c), it can be seen that under the best preprocessing method, 

the G. elata spectral data from Yunnan and Guizhou possess 1 and 2 
samples located in the “extreme region” (yellow dots), respectively, and 
no samples located in the “abnormal region” (above the red threshold). 
When ATR-FIR is leveraged for data, all models cannot achieve 100% 
sensitivity regardless of preprocessing techniques, revealing that non-
geographical indications G. elata in Yunnan and Guizhou cannot be 
correctly identified. However, the highest number of correctly classified 
non-GI G. elata using SD was 33 for G. elata from Yunnan, in which 
27 out of 60 samples were projected to the geographical indication 
G. elata area. Consequently, the SD/D-SIMCA model obtained the best 
results, with a sensitivity of 96.67% and specificity of 55.00% for non-
target classes (Figure 6b). By using the SG/D-SIMCA model, 52.46% of 
Guizhou's non-geographical indication G. elata was correctly classified, 
in which 29 samples were misclassified and the sensitivity was 93.44% 
for non-target categories (Figure 6d).

In summary, the model cannot identify all non-geographical 
indication G. elata samples from Yunnan and Guizhou as non-target 
classes, which reveals that it cannot be harnessed to reject non-
geographical indication samples. The possible reasons for this are as 
follows. First of all, the DD-SIMCA model relies on the characteristics 
of the input data. The model may not be able to effectively distinguish 
them if the geographical indication production areas and non-
geographical indication production areas possess a high similarity or 
overlap in data features, including close distances between production 
areas. Secondly, the DD-SIMCA model requires a large amount of data 
for effective training and modeling. In case of insufficient sample data 
ON Yunnan and Guizhou, the model may not be able to capture the 
small differences between them. Being a linear model-based method 
that may have limitations in handling nonlinear features, DD-SIMCA 
can cause lower classification performance compared to PLS-DA and 
SVM models. SEN represents the model's ability to correctly classify 
target classes (regular samples), while SPE serves as the model's ability 
to correctly classify non-target classes (foreign samples).

3.3.3. SVM analysis

SVM refers to a classical model commonly utilized to solve nonlinear 
problems. As a two-classification model, its basic model is a linear 
classifier that establishes the maximum interval in the feature space to 

Figure 4. Confusion matrix results of PLS-DA model training set and test set. (a, b) Yunnan; (c, d) Guizhou.

(a) (b)

(c) (d)

Table 3. Parameters of PLS-DA model based on ATR-FTIR (Guizhou).
Pretreatment R2 Q2 RMSEE RMSECV RMSEP Train set 

Acc (%)
Test set 
Acc (%)

Raw 0.46 0.304 0.3775 0.45 0.331 81.32 86.84
SD 0.949 0.837 0.1165 0.2171 0.2442 100.00 94.74
MSC 0.444 0.32 0.3842 0.4125 0.3357 78.02 86.84
SNV 0.307 0.245 0.4203 0.4339 0.3981 79.12 84.21
SG 0.485 0.388 0.4751 0.4779 0.4655 67.03 57.89
MSC+SNV 0.427 0.32 0.3842 0.4125 0.3357 78.02 86.84
MSC+SD 0.888 0.694 0.1702 0.2779 0.2589 98.9 94.74
MSC+SG 0.428 0.321 0.3839 0.4121 0.3357 78.02 86.84
SNV+SD 0.96 0.736 0.1033 0.2661 0.2361 100.00 94.74
SNV+SG 0.428 0.321 0.3839 0.4122 0.3351 76.92 86.84
SG+SD 0.945 0.828 0.12 0.222 0.2469 100.00 94.74

The bold text indicates the optimal preprocessing method.
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Figure 5. PLS-DA score plot and permutation test result plot. (a, c) Yunnan; (b, d) Guizhou.

Figure 6. The DD-SIMCA results. Acceptance maps for training sets (a) Yunnan and (c) Guizhou; (b) Yunnan and (d) Guizhou are the predicted 
results of the test set.

(a) (b)

(c)

(c)

(a)

(d)

(d)

(b)

reduce overfitting. The larger the g is, the higher the mapping dimension 
is, the better the training result is, whereas the more likely it is to cause 
overfit. In Table 4, the optimization results of the important parameters 
and the accuracy of the training and test sets have been shown. Prior 
to building the SVM model, the raw spectral data were preprocessed 
in 10 different ways. The optimal values of penalty factor c and kernel 

parameter g were obtained by the grid search method, and the SVM 
model was also constructed. The model results have been shown in 
Table 4. However, it is essential to specify the reasonable range of the 
two parameters of SVM according to the situation since the places of G. 
elata exhibit some differences. After undergoing MSC+SD and SNV+SD 
spectral preprocessing, the original spectra of G. elata from Yunnan 
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showed excellent performance, yielding consistent c and g values of 
2 and 0.0039062, respectively (Figure 7a), which indicates that the 
parameter adjustment effect of the model is good and can better fit the 
data. At the same time, the accuracy of the training set reached 93.98% 
(Figure 7b), and the results of the confusion matrix demonstrated 
classification errors (Figure 7c). Nevertheless, the accuracy of the test 
set reached 91.67%, which implies that the model not only possesses 
good generalization capability to a certain extent but also achieves a 
relatively considerable accuracy on the test data.

Being a supervised learning algorithm with classification and 
regression capabilities, SVM constructs hyperplanes in K-dimensional 
feature spaces to maximize the spacing between adjacent classes [10]. 
After the model parameters are adjusted, it can better align with the 
data characteristics, and under the best spectral preprocessing, the best 
c and g obtained are 5.6569 and 0.0013811, respectively (Figure 7d). 
In the ATR-FTIR model, the accuracy of the training set in the SVM 
model was as high as 100.00% (Table 5), and the accuracy of the test 
set was 94.74% (Figure 7e). The two type 2 samples in the test set 
were incorrectly set up (Figure 7f). Generally speaking, the SVM model 
both presents robust explanatory power and is capable of effectively 
distinguishing G. elata samples from GI-producing areas and non-GI-
producing areas in Yunnan and Guizhou.

3.4. Deep learning

3.4.1. The 2DCOS spectra dataset

Two-dimensional correlation infrared (2D-IR) spectroscopy was first 
developed by Dr.IsaoNoda and subsequently extended to other analytical 
methods, and the concept of generalized 2DCOS was further proposed. 
To identify G. elata samples from different producing areas in Yunnan 
and Guizhou, this research compared three kinds of 2DCOS images, 
namely synchronous, asynchronous, and integrated 2DCOS (i2DCOS). 
By mapping one-dimensional (1D) information to two-dimensional 
space, 2DCOS improves spectral resolution and effectively solves the 
problem of overlapping absorption peaks of the same functional group 
in one-dimensional spectra. The mathematical methods were conducted 
to obtain the synchronous, asynchronous, and i2DCOS images (128×128 
pixels) of G. elata in different production areas. Figure 8 shows the 
representative synchronous (Figure 8a(A1-A6)), asynchronous 
(Figure 8b(B1-B6)), and i2DCOS (Figure 8c(C1-C6)) of the six producing 
areas. In 2DCOS, the characteristic peaks are primarily divided into 
automatic peaks and cross peaks. Specifically, automatic peaks usually 
appear on the diagonal of the spectrum and, therefore, are also called 
diagonal peaks. In the area of the automatic peak in the spectrum, the 
degree of spectral intensity change under this wave number is reflected. 
The automatic peak is always positive, which means that the trend of 
increasing or decreasing spectral intensity is consistent at that wave 
number. There are usually cross peaks on both sides of the diagonal, 
and both positive and negative peaks appear simultaneously, indicating 
the type of autocorrelation (positive or negative correlation) of the 
spectral intensity change. Nevertheless, it may be subjective to identify 
G. elata from different origins in Yunnan and Guizhou provinces by 
two-dimensional spectrograms alone, as spectrograms can only provide 

Table 5. SVM modeling results based on different preprocessing methods 
(Guizhou).
Data set Best c Best g Training set Acc (%) Test set Acc(%)
Raw 262144 2.1579×10-5 93.41 94.74
SD 5.6569 0.0013811 97.80 94.74
MSC 8192 4.3158×10-5 94.51 92.11
SNV 16384 2.1579×10-5 94.51 92.11
SG 741455.2002 1.079×10-5 92.31 94.74
MSC+SNV 5.6569 0.0013811 100.00 94.74
MSC+SG 23170.475 1.5259×10-5 94.51 89.47
MSC+SD 5.6569 0.0013811 100.00 94.74
SNV+SD 16 0.00097656 98.90 52.63
SNV+SG 32768 1.079×10-5 94.51 89.47
SG+SD 5.6569 0.0013811 97.80 94.74

Table 4. SVM modeling results based on different preprocessing methods 
(Yunnan).
Data set Best c Best g Training set Acc (%) Test set Acc (%)
Raw 524288 1.079×10-5 91.57 69.44
MSC 32768 1.079×10-5 91.57 75.00
SG 262144 2.1579×10-5 91.57 69.44
SNV 23170.475 1.5259×10-5 91.57 75.00
MSC+SG 46340.95 7.6294×10-6 91.57 75.00
MSC+SNV 32768 1.079×10-5 91.57 75.00
SNV+SG 32768 1.079×10-5 91.57 75.00
SD 45.2548 0.00024414 92.77 88.89
MSC+SD 2 0.0039062 93.98 91.67
SG+SD 5.6569 0.0013811 90.36 88.89
SNV+SD 2 0.0039062 93.98 91.67

Figure 7. SVM results. SVM parameter selection results, test set accuracy, and confusion matrices. (a-c) Yunnan Province; (d-f) Guizhou Province.

(e) (f)

(a)

(d)

(b) (c)
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limited information, and deep learning techniques like ResNet can be 
used to more accurately identify the origin.

3.4.2. ResNet model analysis

The RseNet model, based on synchronous, asynchronous, and 
i2DCOS, was established since it is inaccurate to distinguish between 
GI production areas and non-GI production areas of G. elata solely 
based on the difference in 2DCOS recognized by the naked eye. Under 
the same number of iterations (200 epochs) and learning rate (0.01), 
Figure 9(a-c) reveals the accuracy curves of the training set and the 
test set of the three ResNet models with 2DCOS, with significant 
differences in the cross-entropy loss function curve and the confusion 
matrix of the external verification set. An accuracy curve is utilized 
to assess the model's recognition ability, and a cross-entropy loss 
function is employed to demonstrate the model's convergence effect. 
The closer the loss value is to 0, the closer the accuracy is to 100.00%, 
and the stronger the recognition ability of the model is. In Table 6, 
the detailed parameters of the ResNet model (number of iterations, 
loss value, accuracy of training set, test set and external validation set) 
were summarized. After 200 epochs, the accuracy of the ResNet model 
based on the 2DCOS spectral images of the training set and the test 
set was 100.00%, the loss value converged to 0.019, and the accuracy 
of the external validation set reached 100.00%. It is speculated that 
the ResNet model based on synchronous 2DCOS images not only 
extracted the most feature variables but also presented the strongest 
recognition ability, which holds the potential to quickly trace the 
geographical origin of G. elata. As the number of iterations increases, 
the accuracy of the training set of the ResNet model for synchronizing 
and i2DCOS images established under the same number of iterations 
can reach 100%, with different loss values and accuracy of the test 
set, which are 0.769, 25.00% and 0.272, 23.00%, respectively. In the 
results, there was the poorest external validation accuracy of ResNet 
based on i2DCOS, with DF G. elata misclassified to YS and JS G. elata 
not accurately identified. The model is unable to accurately distinguish 
G. elata from different places since the i2DCOS images may not fully 
extract the key differences in the appearance characteristics of DF, YS, 
and JS G. elata.

To sum up, the ResNet model training set of synchronous 2DCOS 
images attained 100% accuracy. It is hypothesized that asynchronous 

and i2DCOS images may have more noise, changes, and complex 
features and, therefore, make the model more difficult to learn and 
recognize. In contrast, synchronous 2DCOS images are likely to have 
more regular and simple features, which are relatively clear and 
stable, and the model can more easily understand and capture key 
feature information, thus achieving better accuracy on the training 
set.

4. Conclusions

In this study, the application effect of several models in the 
identification of G. elata GIS and non-GIS in Yunnan and Guizhou 
was systematically evaluated. ATR-FTIR has the advantage of non-
destructive testing to realize rapid sample analysis while requiring 
high stability of results. DD-SIMCA performs well in category 
recognition but is prone to recognition errors. In addition, PLS-
DA shows strong capability in processing high-dimensional data, 
whereas overfitting should be prevented. Relatively speaking, 
SVM performs well in small samples and high-dimensional space 
and can effectively tackle sample imbalance and identify G. elata 
geographical indication and non-geographical indication production 
areas. Regarding the proposed methods, the synchronous 2DCOS 
spectral ResNet model exhibited obvious advantages in the 
identification of G. elata from 6 production areas in Yunnan and 
Guizhou, both outperforming other models and achieving 100% 
classification accuracy, which can effectively capture the small 
differences between samples and reduce the loss value and is 
suitable for application in a complex background. In this study, the 
combination of chemometrics and deep learning can aid in further 
improving the accuracy and stability of geographical indication 
identification, and the results can generally provide crucial guidance 

Figure 8. (a) Synchronous (A1-A6), (b) Asynchronous (B1-B6), and (c) Integrated (C1-C6) two-dimensional correlation spectra.

Table 6. Parameters of ResNet model based on 2DCOS.
Data (2DCOS) Epoch Loss 

value
Train set 
Acc (%)

Test set 
Acc (%)

External validation 
Acc (%)

Synchronous 200 0.019 100.00 100.00 100.00
Asynchronous 200 0.769 98.00 25.00 100.00
Asys 200 0.272 100.00 23.00 87.50

(c)

(a)

(b)
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and reference for the future application of non-destructive testing of 
medicinal and edible homologous plants.
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