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A B S T R A C T

In this study, for the first time a magnetically recoverable zeolitic imidazolate framework-8 (ZIF-8) / graphite
carbon nitride (g-C3N4)/ cooper ferrite (CuFe2O4) nanocomposite was prepared through a fast and simple wet
impregnation procedure. The magnetic behavior of the ZIF-8/g-C3N4/CuFe2O4 heterostructure was used for the
easy recovery of the nanocomposite by an external magnet. After studying the structural, crystallinity, magnetic,
and photophysical properties of the as-syntesized sample, its application was investigated for the enhanced
photodegradation of tetracycline under visible light illumination. The band gap energies for ZIF-8, g-C3N4, and
CuFe2O4 were obtained 5.1 eV, 2.8 eV, and 1.3 eV, respectively. After combination of ZIF-8, g-C3N4, and
CuFe2O4, the band gap energy was obtained to 2.4 eV, which indicate the improvement of photocatalytic activity
of ZIF-8/g-C3N4/CuFe2O4 nanocomposite. Among the as-synthesized photocatalyst samples, the ZIF-8/g-C3N4/
CuFe2O4 showed an excellent photocatalytic activity (99.15 %) for degradation of tetracycline within 65 min
irradiation of visible light, solution pH of 5 and photocatalyst dosage of 0.75 g/L. The rate constant of the ZIF-8/
g-C3N4/CuFe2O4 is almost 13.1, 9.9, and 15.6 times higher than that of ZIF-8, g-C3N4, and CuFe2O4, respectively.
The ZIF-8/g-C3N4/CuFe2O4 heterojunction showed the effective degradation activity for four consecutive cycles,
which exhibited its excellent reusability and stability. Moreover, the free radical quenching tests confirmed that
holes, and hydroxyl radicals were the main reaction species for degradation of tetracycline. Altogether the
preparation of novel ZIF-8/g-C3N4/CuFe2O4 provides an promise avenue for the development of high potential
magtenticaly photocatalytic systems for sustainable tetracycline production with remarkable efficiencies.

1. Introduction

Antibiotics have been admitted as one of the potential environmental
pollutants, which is a serious threat to ecological balance and human

health (Zhou et al., 2023; Chin et al., 2023). Antibiotics have been
applied in aquaculture, disease control, animal husbandry, agricultural
production and discharged into the environment from different sources
such as hospitals, sewage treatment plants, livestock breeding, and
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pharmaceutical plants agricultural land (Liu et al., 2024; Tang et al.,
2024; Sun et al., 2024). Most of the antibiotics cannot be completely
metabolized, so excreted by metabolites or prototypes and lead to
serious environmental pollution (Davies et al., 2021; Chen et al., 2021).
Especially, antibiotics lead to toxic effects such as increased drug
resistance, carcinogenicity associated with their accumulation, and
complexation with metals (Baaloudj et al., 2021; Wei et al., 2020).
Among the antibiotics, tetracycline (TC) is one of the broad-spectrum
antibiotics, which is not completely absorbed by the body and is not
completely eliminated by water treatment plants (Wu et al., 2023; Liu
et al., 2023). Therefore, developing efficient technologies to removal of
TC has aroused prior attention (Li et al., 2023; Zhou et al., 2022; Yuan
et al., 2023; Wang et al., 2021). Among various developed technologies,
photocatalytic degradation has been widely applied for eliminating
various organic TC (Li et al., 2021; Ding et al., 2023; Heris et al., 2023;
Luo et al., 2023). Therefore, the design and development of novel and
efficient photocatalysts is requisite for the removal of TC, thereby
declining the harm of TC.

Recently, zeolitic imidazolate framework − 8 (ZIF-8), which is a
research hot pot in the removal of water contaminants, has been
extensively used in photocatalytic systems due to large surface area,
thermal and chemical stability, and high porosity (Ammar et al., 2023;
Chen et al., 2023; Rabeie and Mahmoodi, 2023). Nevertheless, the
photocatalysis capability of the ZIF-8 is limited because of various
shortenings such as a large band gap (4.9–5.1 eV), weak responsivity to
visible light irradiation, poor electron discharge capacity, and unwanted
recombination of photo-induced electron hole pairs (Motora et al., 2023;
Hong et al., 2023; Mittal et al., 2023). The main disadvantages of the
ZIF-8 are dissolved using adopting different strategies, namely, hetero-
junction structures, doping, and co-doping (Hu et al., 2024; Xie et al.,
2022; Sun et al., 2020). To date, ZIF-8 nanocomposites have been suc-
cessfully fabricated with different materials such as metal oxides,
polymers, graphene, carbon nanotubes (CNTs), and so on (Li et al.,
2023; Qiu et al., 2023; Gowriboy et al., 2022). These nanocomposites
have attracted widespread attention because they show superior prop-
erties to pure samples via the collective behavior of each single phase.
Compared with individual ZIF-8, the combination of ZIF-8 with other
materials increases the photodegradation performance of ZIF-8, and also
broadens its application range. For instant, Li and coworkers have syn-
thesized the ZIF-8@TiO2 micron composite via the hydrothermal
method and used as a photocatalyst for the degradation of TC (Li et al.,
2020). The results showed that, the incorporation of ZIF-8 improved the
photocatalytic performance of the nanocomposite compared to pure
TiO2. In another study, Zhou et al. synthesized ZIF-8-doped Cu2O via an
in situ growth method. The as-prepared nanocomposite was shown su-
perior removal efficacy and good stability (Zhou et al., 2022).

Graphite carbon nitride (g-C3N4) is a metal-free organic polymer
semiconductor that has aroused growing interest in the field of water
pollutant removal due to its outstanding properties like nontoxicity, low
cost, facile synthesis, good stability, and visible-light absorption band-
gap (2.73 eV) (Khan et al., 2023; Palanivel et al., 2019; El Messaoudi
et al., 2023; Ranjithkumar et al., 2021). g-C3N4 can be easily synthesized
with a wide variety of procedures such as chemical vapor deposition
(Urakami et al., 2023), thermal polymerization (Song et al., 2024), and
solvothermal (Hu et al., 2017) in the various forms of nanosheets,
nanoparticles, nanotubes, and so on. However, the practical applications
of g-C3N4 have been limited by two main factors including fast electron-
hole recombination and low surface area (Pattanayak et al., 2023; Hayat
et al., 2023). These drawbacks can be overcome via material design
strategies such as morphological control, doping, surface modification,
defect engineering, and especially via the formation of nanocomposites
(da Silva et al., 2023). For example, g-C3N4/TiO2 heterojunction was
prepared by Zhang and co-workers, and it can be degrade about 99.04 %
tetracycline within 120 min (Zhang et al., 2022). It is expected that the
formation of g-C3N4/ZIF-8 nanocomposite leads to overcoming the
disadvantages of each of them.

In recent years, copper- and iron-based semiconductors have great
application potential in the photocatalysis field due to their economy,
and low toxicity. Among these materials, CuFe2O4 is an efficient pho-
tocatalyst due to good visible light response, stable structure, and unique
magnetic properties which assist the recycling of photocatalysts (Truong
et al., 2023; Rouibah et al., 2023). However, pure CuFe2O4 exhibits low
photocatalytic activity, due to a narrow band gap and fast recombina-
tion rate of photoinduced charges, and as a result, only a small amount
of charge carriers participate in the degradation reaction (Ramadevi
et al., 2023; Cai et al., 2021). On the other hand, the combination of
CuFe2O4 with other semiconductors is known to show excellent photo-
degradation performance under visible light illumination. In 2022,
CuO/CuFe2O4/g-C3N4 was synthesized by Lei’s group, and degraded
about 99 % tetracycline under simulated sunlight (Li et al., 2022).

There are various methods to address the limitations of semi-
conductors such as ZIF-8, g-C3N4, and CuFe2O4. Among these methods,
the formation of heterojunction structures has

has receivedmuch attention (Yue et al., 2024; Zhao et al., 2023; Zhao
et al., 2023; Zhao et al., 2023).To the best of our knowledge, the ternary
ZIF-8/g-C3N4/CuFe2O4 photocatalyst has not been reported for the
removal of TC. ZIF-8, g-C3N4, and CuFe2O4 are some of the most
promising materials for the removal of water pollutants via photo-
catalytic degradation. Therefore, it is expected that the combination of
these three semiconductors and construction of nanocomposite lead to
improved photocatalytic activity compared to their bare phases. In the
present study, the novel magnetic ZIF-8/g-C3N4/CuFe2O4 nano-
composite was prepared via wet impregnation procedure and after
characterization was used for photocatalytic degradation of TC under
visible light irradiation. Moreover, incorporation of ZIF-8 and CuFe2O4
into g-C3N4 further enhanced the removal efficiency of TC.

2. Experimental details

2.1. Materials and characterization

Iron (III) nitrate nonahydrate (Fe(NO3)3⋅9H2O), zinc nitrate hexa-
hydrate (Zn(NO3)2⋅6H2O, 99 %), copper nitrate trihydrate (Cu
(NO3)2⋅3H2O), 2-methylimidazole (99 %), Methanol (MeOH, 99.5 %),
Melamine, and sodium hydroxide (NaOH), were purchased from Sigma
Aldrich or Merck companies and used without any further purification.

Phase identification of as-synthesized samples was analyzed on
Bruker d8 Advance Diffractometer. FT-IR analysis was performed on a
Nicolet Avatar 370 spectrometer. MIRA3 TESCAN field emission scan-
ning electron microscopy (FESEM) equipped with an.

energy dispersive X-ray spectrometer (EDS) instrument was applied
for microstructural, and elemental characterization. Transmission elec-
tron microscopy (TEM) analyses were carried out on a G2F20S-TWI
(Tecnai, American) at 200 kV. The magnetic properties of the as-
synthesized samples were investigated on a VSM, 7400, Lakeshare.
UV–visible absorption spectra and diffuse reflectance spectra (DRS) of
the as-synthesized samples were obtained by Shimadzu UV-2550PC
UV–Vis Spectrophotometer. Zetasizer Nano-ZS was used to measure
the zeta potential of samples. Photoluminescence (PL) test was per-
formed on a LS55 spectrofluorometer. Electrochemical impedance
spectroscopy (EIS) were assessed by an electrochemical analyzer (Zah-
ner PP211). The amount of leached Fe and Cu elements was studied by
an atomic absorption spectrophotometer (AAS, Perkin Elmer 900S). The
total organic carbon (TOC) data were collected by a Shimadzu, TOC-
Vcph analyzer. Bruker A300 was used for electron spin resonance
(ESR) measurements of samples using 2,2,6,6-Tetramethylpiperidine
oxide (TEMPO), and 5,5-dimethyl-1-pyrroline oxide (DMPO) under
visible light and dark.

2.2. Preparation of ZIF-8

ZIF-8 was synthesized via ultrasound-assisted method. For this
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purpose, 1.25 mmol of Zn(NO3)2⋅6H2O and 10 mmol of 2-methylimida-
zole were added to 15 mL methanol separately. In the next step, the
solution of 2-methylimidazole was slowly added to the zinc nitrate so-
lution and ultrasonicated for 2 h. Then, the product was centrifuged and
washed five times with methanol. Finally, the white precipitation was
dried in a vacuum oven at 60 ◦C for 12 h.

2.3. Preparation of g-C3N4

In a typical synthesis, a certain amount of melamine was put into a
muffle furnace and heated to 550 ◦C for 4 h. Then, for the preparation of
g-C3N4 nanosheets, the yellow product was grounded to powder,
dispersed in methanol, and ultrasonicated for 2 h. The precipitate was
collected with centrifugation and washed several times with distilled
H2O. Finally, the yellow sample was dried at 70 ◦C in an oven.

2.4. Preparation of CuFe2O4

First, 5 mmol Fe(NO3)3⋅9H2O, and 2.5 mmol Cu(NO3)2⋅3H2O were
added to 100 mL distilled water and magnetically stirred. Subsequently,
NaOH solution (4 M) was slowly added into the solution and magneti-
cally stirred for 1 h. The resultant mixture was maintained in an oven at
90 ◦C for 2 h. The dark brown magnetic product was separated with an
external magnet. Finally, the sample was washed several times by
distilled H2O and dried in an oven at 70 ◦C.

2.5. ZIF-8/g-C3N4/CuFe2O4 nanocomposite

The ZIF-8/g-C3N4/CuFe2O4 nanocomposite was fabricated via an
ultrasonic-assisted wet impregnation procedure. A certain amount of g-
C3N4 (50 wt%) was added into a 50 mL ethanol/water mixture (1:1)
ratio and ultrasonicated for 1 h. Then certain amounts of ZIF-8 (30 wt%)
and CuFe2O4 (20 wt%) were added to the above solution and stirred for
24 h. Finally, the obtained nanocomposite was centrifuged and dried at
70 ◦C.

2.6. Photocatalytic activity test

Typically, a certain amount of as-synthesized photocatalyst was
added into 100 mL TC solution of the selected concentration. After 30
min of stirring in the dark (300 rpm), the suspension had been exposed
to visible light for a specific time, coming from 50 W LED lamps (λ >

420 nm). After every 15 min of reaction, 1.5 mL of suspension was
withdrawn, and exposed to the magnetic field at once and the liquid
lying above was moved into a quartz cell to measure the residual con-
centration of TC using the UV–vis spectrophotometer at λmax = 365 nm
(Shimadzu UV-2550PC UV–Vis Spectrophotometer, Japan). The opti-
mization of the parameters for the photodegradation of TC using ZIF-8/
g-C3N4/CuFe2O4 nanocomposite was carried out using catalyst loadings
in the range of 0.45–0.75 g/L, TC concentrations in the range of 15–45
ppm, initial solution pH values in the range of 3–9. The efficiency of TC
degradation (%D) was calculated by the formula of (%D) = (A0-A) / A0
× 100, where A0 is the absorbance intensity of TC solution before irra-
diation and A indicate the absorbance intensity of TC after irradiation
for a certain time (Govindan et al., 2017; Govindan et al., 2013).

3. Results and discussion

3.1. Characterization of photocatalyst

The crystallinity of the samples was studied by XRD analysis. As
exhibited in Fig. 1A, the XRD pattern of pure ZIF-8 is well matched with
the other samples reported in the literature. For this sample, the
diffraction peaks at 2θ = 7.37◦, 10.40◦, 12.73◦, 14.69◦, 16.45◦, 18.03◦,
22.12◦, 24.49◦ and 26.65◦ are related to (011), (002), (112), (022),
(013), (222), (114), (233) and (134) planes, respectively. These

reflections are in accordance with the sodalite (SOD)-type structure of
ZIF-8 (JCPDS No. 62–1030). The XRD pattern of g-C3N4 exhibited
diffraction peaks at 2θ = 13.05◦ and 27.70◦ with corresponding hkl
planes of (100), and (002) plans, respectively (JCPDS No. 87–1526).
For pure CuFe2O4, the characteristic diffraction peaks at 2θ = 18.52◦,
30.19◦, 35.78◦, 43.05◦, 57.02◦ and 62.78◦, which are assigned to (111),
(220), (311), (400), (511) and (440) hkl planes, respectively. Each

Fig. 1. XRD patterns (A), and FTIR spectra (B) of ZIF-8, CuFe2O4, g-C3N4, and
ZIF-8/g-C3N4/CuFe2O4 nanocomposite.
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diffraction peak of pristine CuFe2O4 is well matched with the spinel
cubic phase of CuFe2O4 (JCPDS No. 25–0283). The XRD pattern of the
ZIF-8/g-C3N4/CuFe2O4 nanocomposite reveals that the main distinct
peaks of ZIF-8, g-C3N4, and CuFe2O4 still coexist and no impurity
diffraction peaks were observed. This confirms that ZIF-8, and CuFe2O4
have been successfully incorporated on the surface of g-C3N4
nanosheets.

The functional groups of the samples were examined by FT-IR
analysis and the related spectra were exhibited in Fig. 1B. As pre-
sented in Fig. 1B, the absorption band at 422 cm− 1 is corresponded to
the stretching vibration of Zn-N bond which indicates that Zn was suc-
cessfully linked to the nitrogen atoms of 2-methylimidazole (Wang et al.,
2020). The absorption bands from 600 cm− 1 to 1500 cm− 1 are related to
the stretching and bending vibration of the imidazole ring, and also the
absorption peak at 1576 cm− 1 is assigned to C=N bonding stretching
vibration. In addition, the peaks located at 2929 cm− 1 and 3135 cm− 1

belonged to the aromatic ring and the aliphatic chain in 2-methylimida-
zole, respectively (Abdi, 2020). For pure g-C3N4, the peaks at 806 and
1640 cm− 1 are assigned to s-triazine ring units and C=N stretching vi-
bration, respectively. In addition, the peaks around 1240, 1320, 1410,
and 1570 cm− 1 are related to stretching vibration of aromatic C–N. As
for CuFe2O4, two peaks at around 450 and 590 cm− 1 are attributed to
stretching vibration of metal–oxygen at the tetrahedral and octahedral
sites in spinel structures, respectively. Moreover, after the combination
of ZIF-8, g-C3N4, and CuFe2O4 and the formation of ZIF-8/g-C3N4/
CuFe2O4 nanocomposite, the characteristic bands of ZIF-8, g-C3N4, and
CuFe2O4 coexisted in the FT-IR spectrum of the nanocomposite,
revealing the successful formation of the nanocomposite.

Imaging analysis was performed to study the morphology, and par-
ticle size of synthesized samples, by means of FE-SEM. Pure g-C3N4
(Fig. 2A) shows a tow dimensional nanosheet structure, confirming

successful formation of g-C3N4 from in bulk nature. As illustrated in
Fig. 2B, ZIF-8 was shown rhombohedral dodecahedronmorphology with
average particle sizes of around 90 nm. As can be seen in Fig. 2C,
CuFe2O4 displayed a spherical shape with a uniform particle size which
aggregated together. It is clear from Fig. 2D that ZIF-8 and CuFe2O4 were
well dispersed on the surface of the g-C3N4 nanosheets, which reveals
the successful corporation of ZIF-8 and CuFe2O4 on the surface of g-
C3N4. In addition, the elemental analysis of the as-synthesized ZIF-8/g-
C3N4/CuFe2O4 nanocomposite was examined by EDS analysis. As illus-
trated in Fig. 3A, six elements of Zn, N, C, Cu, Fe, and O exist in the
nanocomposite.

To observe the morphology of ZIF-8/g-C3N4/CuFe2O4 nano-
composite more clearly, the TEM analysis was also performed. The TEM
image of the ZIF-8/g-C3N4/CuFe2O4 in Fig. 3B shows that the rhombo-
hedra of ZIF-8 and nanoparticles of CuFe2O4 are distributed on the
surface of g-C3N4 nanosheet. These results was confirm the successful
synthesis of ZIF-8/g-C3N4/CuFe2O4 nanocomposite.

The magnetic properties of CuFe2O4 and ZIF-8/g-C3N4/CuFe2O4
nanocomposite were evaluated by VSM analysis. Fig. 4 shows the
magnetization curves of CuFe2O4 and ZIF-8/g-C3N4/CuFe2O4 nano-
composite. As can be seen, both the samples clearly shown ferromag-
netic behavior at room temperature. The saturation magnetism of the
pure CuFe2O4 (28 emu/g) is higher than that of nanocomposite (4 emu/
g) owing to the fact that the non-magnetic ZIF-8, g-C3N4 coating
declined the magnetic nature of CuFe2O4. The ZIF-8/g-C3N4/CuFe2O4
nanocomposite has excellent saturation magnetism and is efficiently
separated from aqueous solution with an external magnetic field.

The band gap of the ZIF-8, g-C3N4, CuFe2O4, and ZIF-8/g-C3N4/
CuFe2O4 nanocomposite has been specified by UV–Vis DRS analysis and
the obtained results were shown in Fig. 5A. Tauc plots (Fig. 5B) were
used to determine the band gap of the samples using the following

Fig. 2. FE-SEM images of g-C3N4 (A), ZIF-8 (B), CuFe2O4 (C), ZIF-8/g-C3N4/CuFe2O4 nanocomposite (D).
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equation:

(αhν)2 = A(hν − Eg)

Where, α and ν are the absorption coefficient and light frequency, A is a
constant, and Eg indicates the band gap energy. The band gap values for
ZIF-8, g-C3N4, CuFe2O4, and ZIF-8/g-C3N4/CuFe2O4 were calculated as
5.1 eV, 2.8 eV, 1.3 eV, and 2.4 eV, respectively. As a result, the con-
struction of the heterojunction between ZIF-8, g-C3N4, and CuFe2O4 can
enhance the absorption efficiency of visible light and also improve the
production of photoexcited charge carriers and photocatalytic
performance.

PL spectroscopy was used to study the migration and separation of
electron-hole pairs in as-synthesized samples and the results show in
Fig. 6A. As can be seen, ZIF-8 was shown the lowest PL peak intensity,
indicating the lower rate of photogenerated charge carriers recombi-
nation, while CuFe2O4 and g-C3N4 have the high PL intensity. Further-
more, the peak intensity of ZIF-8/g-C3N4/CuFe2O4 is lower than that of
pristine CuFe2O4 and g-C3N4, which signifies the coupling ZIF-8, g-C3N4,
and CuFe2O4 inhibits recombination of photogenerated electron-hole
pairs and improves the photocatalyst activity.

EIS technique was used to further study the transfer and separation of
photogenerated charge carriers, and also charge transfer resistance
properties of samples. EIS Nyquist plots was shown in Fig. 6B and it is

Fig. 3. EDS spectrum (A), and TEM image of ZIF-8/g-C3N4/CuFe2O4 nanocomposite (B).
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clear that ZIF-8/g-C3N4/CuFe2O4 has the smaller arc radius than ZIF-8,
g-C3N4, and CuFe2O4, indicating the lower charge transfer resistance
and as a result the photocatalytic activity is improved.

3.2. Evaluations of photocatalytic activity

The photocatalytic activity of the as-synthesized samples was
examined by removal of TC under visible light. Fig. 7A shows the pho-
todegradation of TC in the presence of ZIF-8, g-C3N4, CuFe2O4, ZIF-8/g-
C3N4, ZIF-8/CuFe2O4, g-C3N4/CuFe2O4, and ZIF-8/g-C3N4/CuFe2O4
nanocomposite. As can be seen, for all samples the irradiation of visible
light increases the TC degradation efficiency as compared to dark con-
ditions. Therefore, visible light has an important role in the removal of
TC from aqueous solution. On the other hand, after 65 min visible light
irradiation, 25.09 %, 31.10 %, 21.23 %, 63.12 %, 49.03 %, 53.36 %,
and, 94.71 % removal efficiencies were achieved for ZIF-8, g-C3N4,
CuFe2O4, ZIF-8/g-C3N4, ZIF-8/CuFe2O4, g-C3N4/CuFe2O4, and ZIF-8/g-
C3N4/CuFe2O4 nanocomposite, respectively. According to these results,
the ZIF-8/g-C3N4/CuFe2O4 nanocomposite was shown excellent photo-
catalytic performance compared to other samples, which revealed a
potent synergistic effect within the nanocomposite. In fact, the formed
heterojunctions between ZIF-8, g-C3N4, and CuFe2O4 led to a decline in
the rate of recombination of photo-induced electron-hole pairs and
therefore, the photocatalytic activity improved.

In order to study the TC photodegradation rate by ZIF-8/g-C3N4/
CuFe2O4 nanocomposite, a pseudo-first-order kinetic model was

Fig. 4. Magnetic hysteresis loops of CuFe2O4, and ZIF-8/g-C3N4/CuFe2O4
nanocomposite (B).

Fig. 5. Uv–Visible DRS spectra (A), and Tauc’s plots (B), of ZIF-8, CuFe2O4, g-
C3N4, and ZIF-8/g-C3N4/CuFe2O4 nanocomposite.

Fig. 6. PL spectra (A), and EIS Nyquist plots (B) of ZIF-8, g-C3N4, CuFe2O4, and
ZIF-8/g-C3N4/CuFe2O4.

A. Kumar et al.
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applied: ln (C0/Ct) = kt, where C0 refers to the initial concentration of
TC, Ct is the TC concentration after t time of visible light irradiation, and
k is the rate constant (Subash et al., 2023). Fig. 7B shows the kinetic
fitting curves of TC photodegradation which were obtained using plot-
ting ln (C0/Ct) versus time. The results show a good linear relationship,
therefore, the TC photodegradation follows from the pseudo-first-order
kinetic model. The values of k for ZIF-8, g-C3N4, CuFe2O4, ZIF-8/g-C3N4,
ZIF-8/CuFe2O4, g-C3N4/CuFe2O4 and ZIF-8/g-C3N4/CuFe2O4 nano-
composite were obtained 0.0037, 0.0049, 0.0031, 0.0134, 0.0098,
0.0109, and 0.0484 min− 1, respectively. Remarkably, ZIF-8/g-C3N4/
CuFe2O4 nanocomposite has a maximum value of k, which is approxi-
mately 13.1, 9.9, 15.6, 3.6, 4.9, and 4.4 times higher than ZIF-8, g-C3N4,
CuFe2O4, ZIF-8/g-C3N4, ZIF-8/CuFe2O4, and g-C3N4/CuFe2O4. The ob-
tained results revealed that the photocatalytic activity of ZIF-8/g-C3N4/
CuFe2O4 nanocomposite is remarkably increased.

3.3. Effect of operational parameters

The effect of three most important factors on the photodegradation
efficiency including photocatalyst dosage, initial concentration of TC,
and pH of solution were shown in Fig. 8A, B, and C. Various

photocatalyst amounts of 0.45, 0.55, 0.67, and 0.75 g/L were applied to
study the influence of photocatalyst dosage. As can be seen in Fig. 8A, by
increasing the dosage of photocatalyst from 0.45 to 0.75 g/L, the pho-
todegradation efficiency was enhanced due to an increase in the active
site and amount of radical species. Therefore, the highest TC removal
was achieved within 65 min reaction time using 0.75 g/L of ZIF-8/g-
C3N4/CuFe2O4 nanocomposite. Fig. 8B reveals that if the initial con-
centration of TC increases from 15 to 45 ppm, the photocatalyst effi-
ciency is decreased, because with increasing TC concentration, more
active radicals are needed, while the amount of these radicals is constant
due to the constant amount of photocatalyst. Also, by increasing initial
TC concentration, the ratio between photocatalyst and TC molecules is
decreased and as a result the ratio between the active sites on photo-
catalyst and TC molecules is decreased. On the other hand, in high
concentrations of TC, the TC molecules cover the surface of nano-
composite and prevent the reaching of light to thephotocatalyst
(Abinaya et al., 2023; Murugalakshmi et al., 2023; Govindan et al.,
2019). Therefore, as a result, the photocatalytic performance was
diminished. The effect of and solution pH were depicted in Fig. 8C.
Based on zeta potential data (Fig. 8D), the pHzpc of ZIF-8/g-C3N4/
CuFe2O4 nanocomposite is 5.2, therefore the surface charge of nano-
composite is positive at pH values below 5.2 and negative at pH values
above 5.2. On the other hand, TC has various chemical structures at
different pHs. TC species are neutral in the pH range of 3.3 to 7.7, so
there is no adsorption resistance between ZIF-8/g-C3N4/CuFe2O4
nanocomposite and TC, and the photocatalyst activity was improved. At
the pH solution above 7.7, TC species were present as TCH- and TC2-, and
due to electrostatic repulsion between TC and ZIF-8/g-C3N4/CuFe2O4
nanocomposite, the photocatalyst performance was decreased. There-
fore, according to the results, pH 5 was selected as the optimum pH for
TC removal.

3.4. Effect of interference

One of the important organic materials that found in municipal
wastewater treatment plants is humic acid. During chlorine disinfection,
humic acid can react with chlorine and form toxic byproducts. Fig. 9A
was shown the effect of humic acid on the photocatalytic performance of
ZIF-8/g-C3N4/CuFe2O4 for the degradation of TC. As can be seen in
Figure, with the increase in the amount of humic acid the degradation
efficiency of TC was decreased. In fact, by adding the humic acid the
turbidity of the solution and affected the light transmittance was
increased, and also humic acid competed with TC for surface sites of
nanocomposite and active free radicals during the process. Therefore, as
a result the degradation efficiency of TC was decreased. However, the
photodegradation efficiencies for TC still reached 87.2 %, 83.01 %, and
75.5 % within 65 min, which reveal that the ZIF-8/g-C3N4/CuFe2O4 has
great potential for the removal of TC in wastewater containing humic
acid.

There are different ions occurring in wastewater, which can prevent
the photocatalytic reaction because ions can quench the free radicals as
well as occupy the active sites on the surface of the photocatalyst, and as
a result affect the photodegradation efficiency. Therefore, different ions
with concentrations of 10 mM were applied to investigate their in-
fluences on the photocatalytic process. As can be seen in Fig. 9B, various
anions had a little effect on photocatalytic degradation efficiency, con-
firming that the photocatalyst has good tolerance for the ions in water.

3.5. Stability tests

The stability of the ZIF-8/g-C3N4/CuFe2O4 nanocomposite was
evaluated, and the photodegradation efficiency for recycling was
investigated under the same conditions. For this aim, after each run, ZIF-
8/g-C3N4/CuFe2O4 photocatalyst was centrifuged, washed, and dried
for the next runs. As exhibited in Fig. 10A, a small decrease in degra-
dation efficiency was observed, which is probably due to the loss of trace

Fig. 7. Photocatalytic activities of ZIF-8, g-C3N4, CuFe2O4, ZIF-8/g-C3N4, ZIF-
8/CuFe2O4, g-C3N4/CuFe2O4, and ZIF-8/g-C3N4/CuFe2O4 nanocomposite,
under visible light irradiation (A), the corresponding kinetics of TC degradation
(B) at constant amount of CTC=15 ppm, CPhotocatalyst = 0.75 g/L, and natural pH.
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amount of nanocomposite during its separation and also deposition of
by-products or intermediates on the surface of photocatalyst (Kumar
et al., 2021). Therefore, the proposed photocatalyst shows excellent
recyclability for degradation of TC and seems to be an economical
photocatalyst for TC removal from wastewater.

The amount of leached Fe and Cu elements from ZIF-8/g-C3N4/
CuFe2O4 was studied for 4 cycles. The results (Table 1) exhibited that the
leached Fe and Cu elements was insignificant, indicating a high physi-
cochemical stability for ZIF-8/g-C3N4/CuFe2O4 in photocatalyst process.

To further confirm the stability of ZIF-8/g-C3N4/CuFe2O4 during the
photocatalyst process, the XRD pattern of ZIF-8/g-C3N4/CuFe2O4
nanocomposite was recorded after four cycles. As exhibited in Fig. 10B,
crystal structure of ZIF-8/g-C3N4/CuFe2O4 nanocomposite has no sig-
nificant changes, which indicate its excellent stability.

3.6. TOC analysis

In order to confirm the mineralization of TC on ZIF-8/g-C3N4/
CuFe2O4 nanocomposite under visible light irradiation, the change of
total organic carbon content (TOC) was monitored. As illustrated in
Fig. 11A, with the progress of the photodegradation process, the TOC
value of the reaction solution declines gradually. The measured initial

TOC (TOC0) was obtained 39.82 mg/L, and after 65 min of photo-
degradation reaction TOC was measured 17.12 mg/L with a minerali-
zation degree of 55.75 %, revealing that ZIF-8/g-C3N4/CuFe2O4
nanocomposite can efficiently mineralize TC.

3.7. Photocatalytic mechanism

To detect the active species in the process of TC photodegradation,
trapping experiments were performed using benzoquinone (BQ), iso-
propanol (IPA), and disodium ethylenediaminetetraacetic acid (EDTA-
2Na), as scavengers for superoxide ions (.O2

–), hydroxyl radicals (.OH),
and holes (h+). BQ is a good scavenger for.O2

–, and it can react with.O2
– at

a constant rate of 9× 108 M− 1 S-1 (Sargazi et al., 2019). After addition of
BQ the constant rate of photocatalytic degradation was decreased from
0.0484 min− 1 to 0.0245 min− 1. Also, as a scavenger, IPA can react
with.OH at a constant rate of 1.9× 109 M− 1 S-1 (Makama et al., 2020). In
the presence of IPA, the reaction rate decreased to 0.0102 min− 1. EDTA-
2Na usually assumed as an effective quencher holes and it can be decreas
the reaction rate to 0.006 min− 1 from a high constant rate of 0.0484
min− 1. As illustrated in Fig. 11B, the photocatalytic activity of ZIF-8/g-
C3N4/CuFe2O4 nanocomposite was inhibited greatly by the addition of
EDTA-2Na and IPA, while the addition of the BQ had less impact on the

Fig. 8. Photodegradation of TC under visible light by ZIF-8/g-C3N4/CuFe2O4 at various photocatalyst dosages with constant amount of CTC=15 ppm, and natural pH
(A), various initial TC concentration with constant amount of CPhotocatalyst = 0.75 g/L, and natural pH (B), at various pH with constant amount of CPhotocatalyst = 0.75
g/L, and CTC=15 ppm (C),and zeta potential of ZIF-8/g-C3N4/CuFe2O4 (D) at different solution pHs.
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photocatalytic performance. Therefore, h+ and.OH are the primary
active species, and.O2

– plays a smaller role in the TC photodegradation
process.

ESR was used to further confirm the effect of active species. To
quenching h+, TEMPO was applied as well as to quenching.O2

– and ⋅OH,
DMPO was used. As shown in Fig. 12A, after turn on the light, the signal
peak of h+ weakened because h+ reacted with TEMPO and produce a
spin adduct (TEMPO- h+); this result reveals that h+ was involved in the
photodegradation reaction as an active free radical. Also, as can be seen
in Fig. 12B, the ESR spectrum of ZIF-8/g-C3N4/CuFe2O4 nanocomposite
in DMPO solution under visible light irradiation displays four

characteristic peaks with an intensity ratio of 1:2:2:1, which is a typical
peak of DMPO-⋅OH. In addition, Fig. 12C displayes a quartet-line ESR
signal related to.O2

– for ZIF-8/g-C3N4/CuFe2O4 nanocomposite, where
the intensity ratio was 1:1:1:1. Moreover, as can be seen in Fig. 12B and
C, in the absence of light, no characteristic DMPO-.O2

– and DMPO-⋅OH
signals was detected, revealing that the.O2

– radicals and ⋅OH radicals can
only be produced under visible-light irradiation. Also, we note that the
signal intensity of the characteristic peak •OH was more notable, indi-
cating that more •OH generated and played amore significant role in the
photocatalytic degradation of TC. This result was consistent with the
results of the free radical trapping experiments.

The potentials of the conduction band (ECB), and valence band (EVB)
of semiconductors were calculated according to the empirical formula as
follows (Long et al., 2006):

EVB = χ − Ee +0.5Eg

ECB = EVB − Eg

Where, Ee and χ denote the potential of standard hydrogen electrode
(~4.5 eV), and the absolute electronegativity of the semiconductor. Eg is
the energy of the band gap of each semiconductor. The calculated values
EVB for ZIF-8, g-C3N4, CuFe2O4 are 4.22 eV, 1.57 and 1.96 eV,

Fig. 9. Effect of humic acid (A), and ions (B) on the photodegradation effi-
ciency of TC by ZIF-8/g-C3N4/CuFe2O4 (CPhotocatalyst = 0.75 g/L, CTC=15 ppm,
and pH=5).

Table 1
Cu and Fe leaching from the first use to fourth run.

Element Number of cycles/Cu or Fe leaching (mg/L)

1 2 3 4

Cu 0.20 0.09 0.05 0.001
Fe 0.28 0.12 0.08 0.03

Fig. 10. Recycling tests for photodegradation of TC over ZIF-8/g-C3N4/
CuFe2O4 at constant amount of CTC=15 ppm, CPhotocatalyst = 0.75 g/L, and
pH=5 (A), and comparison XRD pattern of ZIF-8/g-C3N4/CuFe2O4 before and
after photocatalyst process.
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respectively. Also, the ECB for ZIF-8, g-C3N4, and CuFe2O4 were esti-
mated to be − 0.88 eV, − 1.11 eV, and 0.66 eV, respectively. Fig. 13
exhibited the band distribution of the ZIF-8, g-C3N4, and CuFe2O4.
Under visible light irradiation, the electrons were excited in g-C3N4, and
CuFe2O4. Therefore, the CBs and VBs of g-C3N4, and CuFe2O4 were
repositioned the electron-rich and hole-rich, respectively. However, ZIF-
8 cannot excited by visible light irradiation due to the wide band gap
energy therefore, the electron-hole pairs are impossible to form. The CB
of ZIF-8, g-C3N4, and CuFe2O4 are more negative than the standard
redox potential of O2/H2O2 which is 0.685 eV vs. NHE. Therefore, the
electrons in the CB of the semiconductors react with the O2 and generate
H2O2 and then electrons combine with H2O2 to form.OH with strong
oxidation ability. The CB of ZIF-8 and g-C3N4 are more negative than the
standard redox potential of O2/.O2

– which is − 0.33 eV vs. NHE. There-
fore, O2 can reduced to.O2

–, which is in agreement with the scavengers
experiment results. Furthermore, the holes in the VB of ZIF-8 can
participate directly in the photodegradation process due to their strong
oxidizing power.

According to the above results, the progress of tTC degradation
under visible light is as follows (Yue et al., 2024; Subash et al., 2023):

ZIF-8/g-C3N4/CuFe2O4 + hν (visible light) → ZIF-8/g-C3N4/CuFe2O4
(e-CB, h+VB)

ZIF-8/g-C3N4/CuFe2O4 (h+VB) + H2O→OH– +.OH

ZIF-8/g-C3N4/CuFe2O4 (h+VB) + OH– →.OH

ZIF-8/g-C3N4/CuFe2O4 (e-CB)+ ½ O2 + H+ → H2O2

ZIF-8/g-C3N4/CuFe2O4 (e-CB) + H2O2 → OH– +.OH

ZIF-8/g-C3N4/CuFe2O4 (e-CB) + O2 →.O2
–

.OH, ZIF-8/g-C3N4/CuFe2O4 (h+VB) + TC→Degradation products

3.8. Comparison with other photocatalyst

The efficiency of the as-synthesized ZIF-8/g-C3N4/CuFe2O4 as a

Fig. 11. Change of TOC during TC photodegradation (A), and effect of various
scavengers on TC photodegradation over ZIF-8/g-C3N4/CuFe2O4 with constant
amount of CPhotocatalyst = 0.75 g/L, CTC=15 ppm, and pH=5 (B).

Fig. 12. ESR spectra of TEMPO-h+ (A), DMPO-.OH (B), and DMPO-.O2
–(C).
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photocatalyst was compared with other reported photocatalysts listed in
Table 2. The comparison show that, ZIF-8/g-C3N4/CuFe2O4 has higher
photocatalytic activity, and k value other reported photocatalysts. These
results reveal the great potential of new ZIF-8/g-C3N4/CuFe2O4 photo-
catalyst for removal of TC from aqueous solution.

4. Conclusion

The novel ZIF-8/g-C3N4/CuFe2O4 nanocomposite was prepared by a
facile and low-cost impregnation method. The photocatalytic activities
of the as-synthesized samples were examined by photodegradation of TC
under visible light irradiation. Results exhibit that the ZIF-8/g-C3N4/
CuFe2O4 heterostructures showed higher photocatalytic activity than
pristine ZIF-8, g-C3N4, and CuFe2O4. The removal efficiency of ZIF-8/g-
C3N4/CuFe2O4 nanocomposite increased by up to 99.15 %, after 65 min
visible light irradiation. The results of the recycling test show that the
used photocatalyst could be magnetically separated from solutions for
the next run. The used nanocomposite still has reasonable photocatalytic
activity. The results of recycling tests exhibit that magnetically sepa-
rable ZIF-8/g-C3N4/CuFe2O4 photocatalysts have good reusability and
stability. The formation of the ZIF-8/g-C3N4/CuFe2O4 in the nano-
composite can improve the absorption of solar light and promote the
separation of charge carriers, which remarkably increases its photo-
catalytic performances under solar irradiation.
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Fig. 13. Proposed photocatalytic mechanism of TC over the ZIF-8/g-C3N4/CuFe2O4.

Table 2
Comparison between ZIF-8/g-C3N4/CuFe2O4 photocatalyst and other materials
for the degradation of TC.

Potocatalyst Dosage
(g/L)

TC
conc.
(ppm)

Time
(min)

%D Rate
constant
(min- 1)

References

WO3/g-
C3N4/
Bi2O3

1 10 60 80.2 0.0236 (Jiang
et al.,
2018)

B-TiO2/
BiVO4

0.5 20 120 89.30 0.0484 (Wu et al.,
2023)

MgAl-LDH/
(BiO)2CO3

1 15 105 97.2 0.02059 (Sun et al.,
2022)

TiO2/
Ti3C2Tx/
AgI

1 20 180 97 0.017 (Wu et al.,
2022)

CFs/g-C3N4/
BiOBr

3 20 120 86.1 0.015 (Shi et al.,
2020)

Ag/Ag2CO3/
BiVO4

1 20 150 94.9 0.0186 (Liu et al.,
2018)

h-BN/g-
C3N4

1 10 60 79.7 0.0277 (Xia et al.,
2019)

ZIF-8/g-
C3N4/
CuFe2O4

0.75 15 65 99.15 0.0484 This work
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