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Abstract The present review highlights the synthetic methods of monoamine oxidase inhibitors

(MAO) belonging to a group of nitrogen heterocycles such as pyrazoline, indole, xanthine, oxadi-

azole, benzimidazole, pyrrole, quinoxaline, thiazole and other related compounds (1990–2012).

Moreover, it emphasizes salient findings related to chemical structures and the bioactivities of these

heterocycles as MAO inhibitors. The aim of this review is to find out different methods for the syn-

thesis of nitrogen containing heterocycles and their bioactivity related aspects as MAO inhibitors.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
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1. Introduction

Monoamine oxidase (MAO) is an important flavoenzyme
present in the outer mitochondrial membrane of neuronal,
glial and many other cells and responsible for the oxidative

deamination of amines in the brain as well as peripheral tis-
sues, regulating their level (Binda et al., 2007; Youdim and
Bakhle, 2006; Novaroli et al., 2006). This reaction produces
the corresponding aldehyde and free amine, with the genera-

tion of hydrogen peroxide. It exists in two isoforms namely
MAO-A and MAO-B that have been identified based on their
amino acid sequences, three-dimensional structure, substrate

preference, and inhibitor selectivity (De Colibus et al., 2005;
Binda et al., 2003; Shih et al., 1999). Dopamine, tyramine,
and tryptamine are the substrates for both iso-forms of

MAO (Kalgutkar et al., 2001; Ma et al., 2004; Weyler
et al., 1990). MAO-A preferentially metabolizes serotonin
and noradrenaline and is inhibited by low concentrations of

clorgyline (Weyler et al., 1990). MAO-B acts preferentially
on 2-phenylethylamine and benzylamine and is inhibited by
selegiline (L-deprenyl) (Kalgutkar et al., 2001). Their regula-
tion determines the interest of the monoamine oxidase inhib-

itors (MAOI) as drugs used in the treatment of
neurodegenerative and neurological disorders. In particularly,
MAO-A inhibitors are effective in the treatment of depres-

sion (Cesura and Pletscher, 1992; Youdim et al., 2004). The
MAO-B inhibitors are useful in the management of
Parkinson’s disease (Guay, 2006; Riederer et al., 2004;

Harfenist et al., 1996), their applications were also studied
for Alzheimer’s disease (Wouters, 1998).

The structural diversity and biological importance of nitro-
gen containing heterocycles made them striking targets for syn-

thesis and maintained the interest of researchers through many
years of historical development of classical organic synthesis
(Valverde and Torroba, 2005). Almost many synthetic drugs

such as diazepam, benzodiazepines, barbiturates, methotrex-
ate, pesticides, herbicides and some dyes are nitrogen heterocy-
cles. These compounds are of great significance to life because

their structural subunits exist in many natural drugs such as
papaverine, theobromine, quinine, emetine, etc. (Chin et al.,
2006; Koehn and Carter, 2005; Cordell and Farnsworth,

2001; Hughes and Shanks, 2002). Vitamins in B group and
the key components of the deoxyribonucleic acid (DNA) mol-
ecules are also nitrogen-containing heterocycles (Watson and
Crick, 1953; Dahm, 2008).
The classical period of the MAO inhibitors started with

hydrazine derivatives. They were originally proposed as tuber-
culostatic agents, their prototype, iproniazid, was the first
modern antidepressant and was introduced into the market
under the trade name Marsilid (Cesura and Pletscher, 1992).

Subsequently, research has been directed towards the prepara-
tion of heterocyclic hydrazines and hydrazides and their poten-
tial use as therapeutic agents for the treatment of CNS

depression (Tipton, 1972; Mc Kenna et al., 1991; Yamada
et al., 1993). Literature survey revealed diversified nitrogen
heterocycles, synthesized since decades and tested for their

MAO inhibitory potentials. Therefore, the present review
emphasizes synthetic aspects of nitrogen heterocycles as
MAO inhibitors.

2. Discussion

2.1. Pyrazoline as MAO inhibitor

A series of pyrazoline derivatives 7 (Kelekci et al., 2009) have
been prepared starting from a quinazolinone ring (Scheme 1).

Methyl thioxo quinazolinone was prepared by the reaction of
anthranilic acid with methyl isothiocyanate which on further
treatment with hydrazine hydrate in 2-propanol (iPrOH) affor-

ded 2-hydrazino-3-methyl-quinazolinone. Substituted chal-
cones have been synthesized by the Claisen–Schmidt reaction
and consequently, they react with 4 and afforded 6, which were

refluxed in glacial acetic acid (AcOH) to result in pyrazoline
derivatives. Most of the synthesized compounds showed high
activity against MAO-A and MAO-B isoforms.

The synthesis of N-substituted pyrazolines 11 and 12 has

been reported (Fioravanti et al., 2010). Synthesis of 10 was
achieved by the treatment of 3,3-dimethylallyl bromide with
2,4-dihydroxy-acetophenone. The N-acetyl-3-(20-hydroxy,40-

prenyloxy)-phenyl-5-phenyl-4,5-dihydro-(1H) pyrazole deriv-
atives had been synthesized by the reaction of chalcone with
hydrazine hydrate in ethanol (EtOH) while with thiosemicar-

bazide afforded N-thiocarbamoyl-3-(20-hydroxy,40-prenyl-
oxy)-phenyl-5-phenyl-4,5-dihydro-(1H) pyrazoles (Scheme 2).
Most of the derivatives synthesized, showed an interesting

inhibitory activity on MAO-B isoform with no efficacy to-
wards MAO-A.

Synthesis of 3,5-diaryl-1-carbothioamide-pyrazoline deriva-
tives (Scheme 3) has been accomplished with hydroxychal-

cones (Jayaprakash et al., 2008). Most of the compounds
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showed high selectivity against both MAO-A and MAO-B

isoforms. Hydroxy chalcones on condensation with hydrazine
hydrate (80%) afforded pyrazolines. The final compounds 18
were obtained by the reaction of pyrazoline derivatives with

phenyl/substituted phenyl isothiocyanates and compounds 17
were obtained by the reaction of chalcone with thiosemicarba-
zide in an alkali medium.

Synthesis of pyrazoline derivatives 21 bearing substituted

phenyl ring at position 5 carrying unsubstituted ring at 3 posi-
tions (Scheme 4a) is reported (Jagrat et al., 2011). Other mol-
ecules 23 were prepared without a ring at position 1 carrying

an unsubstituted ring at 3 positions (Scheme 4b). Presence of
a ring at 1 increases potency as well as selectivity towards
MAO-A; however, its absence decreases both potency and

selectivity towards MAO-A and MAO-B. The pyrazoline
thiocarboxamide derivatives were obtained by the reaction of
chalcones with phenyl-isothiocyanates while 23 have been

achieved by the condensation of chalcones with hydrazine
derivatives (semicarbazide hydrochloride/thiosemicarbazide/
amino guanidine bicarbonate).

The cyclization of chalcones 26 with thiosemicarbazides un-
der basic condition (Kelekci et al., 2007) led to the formation
of new 1-thiocarbamoyl-3-substituted phenyl-5-(2-pyrrolyl)-
4,5-dihydro-(1H) derivatives 27 (Scheme 5). Most of the

synthesized compounds showed high activity against both
MAO-A and MAO-B isoforms.

Few substituted 3-aryl-4,5-dihydropyrazoles-1-carbothioa-

mides have been investigated (Maccioni et al., 2010) from
substituted chalcones. All compounds showed a selective activ-
ity towards the B isoform of the enzyme, regardless of the sub-

stitution on the heterocyclic ring. The key step involves a
synthesis of Mannich bases followed by treatment with either
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thiosemicarbazide or methyl-thiosemicarbazide generated pyr-
azoline derivatives 31 (Scheme 6).

The treatment of chalcones with hydrazine hydrate in acetic
acid (Manna et al., 2002) resulted in the formation of 35

(Scheme 7). The synthesized compounds proved to be revers-

ible and non-competitive inhibitors of monoamine oxidases,
swine kidney oxidase, and bovine serum amine oxidase.
O
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Substituted pyrazoline analogues (Sahoo et al., 2010), have
been synthesized (Scheme 8). Few compounds from the series

were reversible and selective inhibitors of either MAO-A or
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p-toluene sulphonyl chloride with 37 in tetrahydrofuran
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(THF) yielded 39. Treatment of chalcone with thiosemicarba-
zide followed by reaction with methyl iodide and hydroxyl-

amine furnished 41.
An efficient method (Mishra and Sasmal, 2011) was docu-

mented regarding the synthesis of a new series of pyrazoline

derivatives 45 bearing an anthracene moiety according to the
protocol as shown in (Scheme 9). All the compounds were
found selective and reversible towards MAO-B.

The synthesis of N1-1-propanoyl-3,5,diphenyl-pyrazoline
derivatives 49 with MAO-A selectivity, (Scheme 10) has been
reported (Chimenti et al., 2008a), which were obtained via
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The functionally substituted pyrazole derivatives 56 have

been reported (Karuppasamy et al., 2010). The compounds
were found to be reversible and selective MAO-A inhibitors.
The 4-hydroxychalcones treated with excess hydrazine hydrate

furnished 55, which further (Scheme 12) reacts with respective
phenyl isothiocyanate and resulted in desired compounds.
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A novel series of 1-acetyl-3-(4-hydroxy and 2,4-dihydroxy-
phenyl)-5-phenyl-4,5-dihydro-(1H) pyrazole derivatives
(Chimenti et al., 2004) have been synthesized from chalcones

59 and 64 (Scheme 13). The 4-hydroxy chalcones are obtained
via the Claisen–Schmidt reaction. In the synthesis of 64, the
hydroxyl group was protected with 3,4-dihydro-a-pyran before
the condensation reaction. The protected acetophenone reacts

with the aldehyde to form the protected chalcone, which was
subsequently formed by hydrolysis. Chalcones then treated
with hydrazine hydrate to afford acetyl pyrazoline derivatives

66. The new synthesized compounds proved to be more revers-
ible, potent, and selective inhibitors of MAO-A than of MAO-
B.

A series of thiocarbamoyl pyrazoline derivatives 70 (Chim-
enti et al., 2005) were synthesized (Scheme 14). All the synthe-
sized compounds showed high activity against both MAO-A
and MAO-B isoforms. Chalcones were treated with thiosemic-

arbazides to afford the target derivatives.
Synthesis of pyrazoline derivatives (Chimenti et al., 2006)

has been accomplished through the reaction of chalcones with

hydrazine derivatives (Schemes 15a and 15b). Triphenyl 2-pyr-
azoline derivatives 74 were synthesized by the action of 4-chlo-
rophenyl hydrazine hydrochloride on chalcone while acetyl 2-

pyrazoline 75 was achieved through the reaction of hydrazine
hydrate with chalcones (Scheme 15a). Most of the new synthe-
sized compounds proved more reversible, potent, and selective

inhibitors of MAO-A than of MAO-B. The synthesis of 1,3-di-
phenyl-4,5-dihydro-(1H)-pyrazole derivatives 78 and 1-acetyl-
3-phenyl-4,5-dihydro-(1H)-pyrazole derivatives 79 involves
the cyclization of an intermediate Mannich base with phenyl

hydrazine and hydrazine hydrate respectively (Scheme 15b).

2.2. Indole as MAO inhibitor

The 3-indolylcoumarin derivatives 82 (Delogu et al., 2011)
have been prepared through the Perkin reaction of o-hydroxy-
benzaldehydes and acetic acids in dimethyl sulphoxide
(DMSO), using N,N’-dicyclohexylcarbodiimide (DCC) as
dehydrating agent (Scheme 16). The synthesized derivatives

were found to be selective MAO-B inhibitors.
The synthesis of 3 substituted indolyl amides 84 by the reac-

tion of indole-2-carboxylic acid with appropriate amines at
room temperature in the presence of (Benzotriazol-1-

yloxy)tris(dimethylamino)phosphonium-hexafluorophosphate
(BOP) had been studied (Regina et al., 2008). Several com-
pounds from the series were potent MAO-A as well as

MAO-B inhibitors. Few derivatives 85 have been achieved
by the alkylation of few derivatives 84b by means of iodometh-
ane through a phase-transfer reaction in the presence of tetra-

butylammonium hydrogen sulphate (TBAHS). The reduction
of some derivatives from the series with lithium aluminium hy-
dride (LiAl4) in tetrahydrofuran (THF), afforded amine deriv-
atives 86 (Scheme 17).

Beta–carboline derivatives 89 were synthesized from har-
mine (Scheme 18). The two-step procedure involves the
demethylation of harmine to the corresponding harmol (Re-

niers et al., 2011) followed by re-alkylation of harmol to the
corresponding carboline derivatives. The O-alkylated com-
pounds with lipophilic groups like cyclohexyl, phenyl and ali-

phatic chains increased the inhibition of MAO-A compared to
harmine.

Several indole derivatives 92 with selectivity towards MAO-

B have been synthesized (Prins et al., 2010) by reacting 5-ami-
no-2-methylindole with appropriate carboxylic acid in the
presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide)
(EDC) or DCC as a dehydrating agent (Scheme 19).

The methylated branched indole analogues were (Garcia
et al., 1992) obtained following the synthetic route
(Scheme 20a). Aldehyde was the key intermediate obtained from

ethyl 2-indolecarboxylate by the reduction with LiAl4 followed
by oxidation with manganese dioxide. Condensation of 94 with
sulphamide followed by methyllithium addition and hydrolysis
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yielded primary amine 97. Compounds 98 and 102 were ob-
tained by the reaction of aldehyde with the suitable amines, fol-

lowed by treatment of the analogues with organometallic
reagents. Most of the synthesized analogues were found to be
selective with the MAO-B inhibitors. (See Scheme 20b).
The amine was N-alkylated in the presence of t-butylamine
by the respective alkyl bromide to give the corresponding

amines 100.
TheCur–Gus reaction of acid with diphenylphosphoryl azide

(N3PO(OPh)2) and triethylamine (Et3N) gave the carbamate,
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which under catalytic hydrogenation yielded 106. On the other
hand, N-methylation of 105 with sodium hydride (NaH) and
methyl iodide gave 107 which were hydrogenated to 108.

The amines 114 and 115 have been synthesized
(Scheme 20c). The Wittig reaction of the aldehyde with (meth-
oxycarbonylmethylene)-triphenyl phosphorane gave 110. Cat-

alytic hydrogenation followed by treatment with ammonia
and methylamine in methanol under potassium cyanide catal-
ysis afforded desired derivatives.

2.3. Xanthine as MAO inhibitor

Recently, a series of 8-substituted phenylxanthines (Schemes
21a and 21b) have been prepared (Song et al., 2012).
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Substituted benzamido benzoic acids were synthesized by a
base catalysed reaction of para or meta substituted aminoben-

zoic acid in dichloromethane with substituted benzoyl chloride
(Scheme 21a).
The key starting compound, 5,6-diamino-1,3-dimethyl ura-
cil 121 had been coupled with 118 followed by cyclization

using base EDCl, and furnished substituted 8-(benzamido)-
phenylxanthine which on methylation with iodomethane
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afforded 123 (Scheme 21b). All the synthesized compounds
were found to be selective MAO-B inhibitors.

An efficient method has been reported regarding the syn-
thesis of (E)-2-strylxanthine analogues (Petzer et al., 2003)
according to the protocol (Schemes 22a and 22b). The results

of this study demonstrated that the entire (E)-8-styrylxanthinyl
analogues had significant MAO-B inhibitory properties.
Amides have been accomplished by the acylation of 1, 3-

diethyl or 1,3-dimethyl-5,6-diaminouracil with substituted cin-
namic acid in the presence of EDAC, which on cyclization
afforded corresponding 1,3-disubstituted (E)-8-strylxanthinyl
derivatives. Methylation of 126 with iodomethane afforded

methyl analogues 127. Photochemical isomerisation of certain
(E)-strylxanthines yielded 128 derivatives (Scheme 2).

Several (E)-8-strylcaffenyl derivatives 132 (Scheme 23) have

been prepared (Berg et al., 2007). The key starting material 1,3-
dimethyl-5,6-diaminouracil was reacted with appropriate car-
boxylic acid in the presence of EDAC activating reagent.

The resulting amide underwent a ring closure reaction and fur-
nished 1,3-dimethyl-8-substituted-7H-xanthinyl analogues
131. Methylation of 131 with excess of iodomethane in potas-
sium carbonate resulted in the target derivatives. The results of

these studies have shown that all the synthesized analogues
exhibited significant MAO-B inhibitory properties.

The two series of 8-(substituted-styrol-formamido)-phenyl-

xanthine derivatives 144 (Suwen et al., 2012) were synthesized
(Scheme 24). All the synthesized derivatives exhibited signifi-
cant MAO-B inhibitory properties.

The amidyl intermediate formed underwent ring closure
when heated under reflux in aqueous sodium hydroxide to
yield corresponding 1,3-dimethyl-8-substituted-7H-xanthinyl
analogues 141 and 142 and were selectively 7 N methylated

with an excess of iodomethane and potassium carbonate to
yield 1,3,7-trimethyl-8-substituted xanthinyl derivatives. (See
Scheme 25).

2.4. Oxadiazole as MAO inhibitor

An interesting method has been reported (Ke et al., 2009) for

the synthesis of a series of 4H-1,3,4-oxadiazin-5(6H)-ones.
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Some of the compounds displayed moderate to good inhibi-
tory activities towards MAO. The condensation of hydrazides

and nonan-5-one followed by a selective reduction of nitriles
using sodium borohydride (NaBH4) led exclusively to the
key N alkylated intermediates, on the other hand N-alkylated
products 148 were obtained by the Michel addition of a, b-
unsaturated systems such as acrylonitrile and n-butyl acrylate.
Cyclization of 147 and 148 using chloroacetyl chloride gave
target compounds 149.

The monosubstituted and disubstituted aroylhydrazines
have been obtained by the Michael addition of the acrylonitrile
on the corresponding aroylhydrazines. Different 5-aryl-1,3,4-

oxadiazol-2(3H)-one derivatives (Mazouz et al., 1990) were
synthesized by the reaction of phosgene with appropriate mon-
osubstituted hydrazines (Scheme 26a), while 153 was generated

by treatment of the corresponding aroylhydrazines with thio-
phosgene. The most active compounds in the proposed series
acted preferentially against MAO-B while other derivatives
against MAO-A.

Several thiadiazolone analogues 160 were reported
(Scheme 26b). Treatment of 4-biphenylyldithiocarbonyloxy-
acetic with (2-cyanoethyl) hydrazine gave 1-(4- biphenylylthio-
carbonyl)-2-(2-cyanoethyl)-hydrazine. Subsequent reaction of
159 with phosgene or thiophosgene afforded the correspond-

ing substituted thiadiazolone and thiadiazolethione
derivatives.

A series of 1,3,4-oxadiazole-3(2H)-carboxamide (Ke et al.,
2008) derivatives have been synthesized by direct hetero-cycli-

zation of substituted benzoylisocyanate with a variety of aro-
ylhydrazines (Scheme 27). The preliminary results showed
that most of the compounds have moderate inhibitory activi-

ties towards MAO. Substituted aroylhydrazones were pre-
pared by three-step reactions viz. esterification using
sulphuric acid followed by hydrazination via hydrazine hy-

drate and finally condensation with nonane-5-one. Substituted
benzoylisocyanate reacts with aroylhydrazone afforded 163

while the appropriate aroylhydrazone was refluxed in acetic

anhydride (Ac2O) and yielded 164.

Synthesis of 3-acetyl-2,5-diaryl-2,3-dihydro-1,3,4-oxadiaz-
ole derivatives 168 (Maccioni et al., 2011) have been accom-
plished through the reaction of N1-arylidenearylhydrazides

with acetic anhydride (Scheme 28). These 1,3,4-oxadiazoles
derivatives were found to be promising reversible and selective
MAO-B inhibitors.
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2.5. Quinoxaline as MAO inhibitor

A facile, microwave assisted synthesis (Hassan et al., 2006) of

aminoquinoxalines has been achieved by the reaction of 2-ben-
zyl-3-chloroquinoxaline and the primary amine (Scheme 29).
All the synthesized compounds showed more selective inhibi-

tory activity towards MAO-A than MAO-B.
A series of 2-benzyl-3-(2-arylidenehydrazinyl)-quinoxalines

substituted 1-aryl-[1,2,4] triazolo [4,3-a]-quinoxaline analogues

(Khattab et al., 2010) were synthesized (Scheme 30). Most of
the synthesized compounds have been found to be MAO-A
selective. Substituted carbonyl compound reacts with 172

and afforded the parallel Schiff bases. Annelation of 173 by

pyrolysis in aprotic polar solvent like DMF led to the forma-
tion of their corresponding 1-aryl-4-benzyl-[1,2,4]triazolo[4,3-
a]quinoxalines. On the other hand, 176 were obtained when

Schiff bases exposed to acylation with acetic anhydride in pyr-
idine. Alternatively, using copper (II) chloride in DMF as a
promoter for the annelation reaction via double oxidation pro-

cesses afforded compounds 175 with excellent yields.

2.6. Pyrrole as MAO inhibitor

Synthesis of 1-methyl-3-phenylpyrrole derivatives 179 as selec-
tive MAO-B inhibitors was reported (Ogunrombi et al., 2008)
and were obtained via the cyclization of 178 using sodium
methoxide in anhydrous pyridine (Scheme 31).

A series of N-methyl-2-phenylmaleimidyl analogues (King
et al., 2009) have been reported (Scheme 32). All the synthe-
sized derivatives were selective MAO-B inhibitors. Initially,

substituted aniline was diazotized and treated with N-meth-
ylmaleilide according to the modified Meerwein reaction. Fi-
nally, 183 were obtained by the dehydrohalogenation of

intermediate chloro succinimide in the presence of 2,6-lutidine.

2.7. Benzimidazole as MAO inhibitor

The (E)-2-strylbenzimidazole derivative 188 (Berg et al., 2007)
has been synthesized (Scheme 33). The results of these studies
showed that all synthesized compounds exhibited a significant
MAO-B inhibitory potency. The condensation of o-phenylene-
diamine with appropriately substituted cinnamic acid in the

presence of EDAC was carried out. Cyclization of intermedi-
ate 186 in the presence of hydrochloric acid followed by meth-
ylation with methyl iodide afforded strylbenzimidazole.

A series of (E)-2-strylbenzimidazole derivatives 193 (Petzer

et al., 2003) were synthesized according to the protocol
(Scheme 34). The key intermediate 2-methyl-1H-benzimidazole
was prepared according to Phillips by the condensation of o-

phenylenediamine with acetic acid. Consequently, it was trea-
ted with benzaldehydes to afford 192, which on treatment with
iodomethane yielded (E)-1-methyl-2-strylbenzimidazole ana-

logues. All the synthesized derivatives exhibited significant
MAO-B inhibitory properties.

2.8. Thiazole as MAO inhibitor

A large series of (hetero) arylidene-(4-substituted-thiazol-2-yl)
hydrazine derivatives 197 (Scheme 35) have been recently re-
ported (Daniela et al., 2012). Substituted carbonyl compounds

194 treated with thiosemicarbazide afforded semicarbazone
which on treatment with a-halo substituted acetophenone re-
sulted in desired derivatives.

The synthesis of compounds 202 has been achieved by the
reaction of cycloalkyl thiosemicarbazones 200 with x-bromo-
acetophenone 201 (Scheme 36). Similarly, aryl substituted thi-

azole derivatives were synthesized via the condensation of
arylthiosemicarbazones with a-haloketones (Chimenti et al.,
2007).

A similar reaction sequence (Scheme 37) was used for the

synthesis of a series of 2-methylcyclohexylidene-(4-aryl-
thiazol-2-yl) hydrazones (Chimenti et al., 2008b). Compounds
203 reacted directly with thiosemicarbazide, resulted in forma-

tion of corresponding thiosemicarbazones which subsequently
on treatment with a-haloketones afforded 4-substituted thia-
zole derivatives 206.

A huge series of (4-aryl-thiazol-2-yl) hydrazones have
been reported (Chimenti et al., 2010b). Appropriately
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substituted carbonyl reacted directly with thiosemicarbazide,
and the obtained thiosemicarbazones were subsequently

converted into required derivatives 211 by the Hantzsch
reaction with 2 or 2, 4-substituted a-bromoacetophenones
(Scheme 38).

Synthesis of 2, 4-disubstituted thiazole compounds 216

(Scheme 39) has been reported (Chimenti et al., 2009). The hy-
brid derivatives of coumarin-thiazole were achieved by the
Hantzsch reaction of appropriate thiosemicarbazones and 3-

a-bromoacetyl coumarin.
An immense series of (4,5-substituted-thiazol-2-yl) hydra-

zone compounds (Scheme 40) has been reported (Chimenti

et al., 2010c).
Few novel 1-(4-arylthiazol-2-yl)-2-(3-methylcyclohexylid-

ene) hydrazine (Scheme 41) derivatives had been synthesized
(Chimenti et al., 2010d). The thiosemicarbazones of 3-methyl-

cyclohexanone condensed with substituted a-haloacetophe-
none and afforded corresponding thiazole derivatives 229 via
the Hantzsch reaction.

Recently, halogenated derivatives of 1-aryliden-2-(4-phen-
ylthiazol-2-yl) hydrazines (Scheme 42) have been appeared
(Distinto et al., 2012). The appropriate aryl aldehydes 230 re-
act with thiosemicarbazide 231 and the obtained thiosemicar-

bazones treated with halogen substituted acetophenone 233

gave desired derivatives 234.
A new series of [4-(3-methoxyphenyl)-thiazol-2-yl] hydra-

zine derivatives 238 (Chimenti et al., 2010e) were synthesized
(Scheme 43). Nucleophilic addition of thiosemicarbazide with
different carbonyl compounds formed thiosemicarbazones

and were subsequently converted into thiazolyl hydrazines by
3-methoxyphenyl acyl bromide in DMF. Synthesis of 240

has been achieved by halogenations of 3-methoxy acetophe-
none with bromine in chloroform. Most of the compounds

were found to be selective towards MAO-B enzyme.
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3. Other nitrogen heterocycles as MAO inhibitor

3.1. Piperine

A series of piperine derivatives (Mu et al., 2012) have been pre-

pared (Schemes 44a and 44b). It was worth to note that most
of the small amine moieties substituted on the piperidine ring
proved to be potent and selective inhibitors of MAO-B rather
than of MAO-A. Piperinic acid was obtained by alkaline

hydrolysis of piperine. The amides 243 were obtained from
the corresponding carboxylic acids through acyl chloride for-
mation with appropriate amines. The diacetyl phenyl contain-

ing analogue 249 was prepared by the reaction of piperine with
boron tribromide (BBr3) and acetic anhydride, while 250 was
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obtained by the reduction of piperine using NaBH4 in THF.
The compounds 251 were subjected to hydrogenation yielded
corresponding saturated analogues 252.

3.2. Morpholine

Synthesis of (±) 2-aryl thiomorpholine and (±) -2-aryl-

thiomorpholine-5-one (Luhr et al., 2010) has been
accomplished (Scheme 45). Condensation of appropriately
substituted aromatic aldehydes with nitromethane by Henry–
Knovenagel condensation followed by Michael addition of

methyl thioglycolate to the nitro styrenes afforded correspond-
ing nitro esters. Finally, compounds 256 were synthesized by a
nucleophilic attack on the ester group of the amine obtained

by the reduction of a nitro group with zinc. Reduction of the
lactum with diisobutylaluminium hydride (DIBAL-H) yielded
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desired thiomorpholine derivative 257. All the synthesized

compounds were found to be selective MAO-B inhibitors.

3.3. Imidazoline

A facile, ultrasound mediated synthesis (Anna et al., 2009) of
2-imidazoline derivatives 260 in water has been achieved by
the condensation of aldehydes and ethylenediamine in the
presence of N-bromosuccinimide (NBS) (Scheme 46). Some

of them showed potent and selective MAO inhibitory activity,
especially for the MAO-B isoform.

3.4. Heterocyclic substituted propargylamines

Recently, a series of hetero cyclic substituted alkyl and cyclo al-
kyl propargylamines (Schemes 47a and 47b) have been prepared
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with MAO-B inhibitory activity (Samadi et al., 2012). Initially,
2-(prop-2-yn-1-yl)-1,2,3,4-tetrahydrobenzo-[1,6]-naphthyridine-

10-amine 262 was synthesized from 2-aminobenzonitrile
(Friedlander type reaction) and 1-(prop-2-yn-1-yl)-piperidine-
4-one. Similarly, the compounds 264 (Scheme 47b) were pre-

pared from 2-aminopyridine-3-carbonitriles.
3.5. Indeno pyridazine

Synthesis of 3,8-disubstituted-5H-indeno [1,2-c]-pyridazin-5-
one derivatives 270 (Reniers et al., 2011a,b) has been achieved

(Scheme 48). All compounds showed higher activity and selec-
tivity against MAO-B enzyme. Initially, 5-hydroxy-1-indenone
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reacted with 1-tosyl-4,4,4-trifluorobutane afforded 266 which
on oxidation with selenium dioxide (SiO2) followed by Aldol
formation; by the reaction between 267 and (trifluoromethyl)
acetophenone in acetic acid. Subsequently, 269 reacted with

hydrazine hydrate in acetic acid and afforded desired
derivatives.

3.6. Quinoline

Recently (Chaurasiya et al., 2012), 5-phenoxy analogues of
primaquine as potential MAO-A inhibitors have been
synthesized according to protocol (Scheme 49). Appropriate
halogenated phenol was coupled with N-(5-chloro-4-meth-
oxy-2-nitrophenyl) acetamide to afford diphenyl ethers which
on hydrolysis produces aniline hydrochlorides, which were

condensed with methyl vinyl ketone to give nitro quinoline
intermediates. Catalytic hydrogenation of the nitro quinoline
and subsequent attachment of a side chain 4-oxo-1-phthala-

mide-opentane, afforded primary amine protected 8-amino-
quinolines. Deprotection of the terminal amine and
treatment of the resulting amines with the succinic acid gave

compounds 279.
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3.7. Pteridine

Synthesis of pteridine-2,4-dione derivatives 283 has been
achieved (Prins et al., 2009). The key starting material, 1,3-di-
methyl-5,6-diaminouracil was reacted with the appropriate
aldehyde to yield the pyrimidines. The pyrimidines were cy-

clized by the addition of triethyl ortho formate, yielded pteri-
dine-2,4-diones (Scheme 50). The compounds were found to
have a promising MAO-B activity.

4. Conclusion

Salient findings related to chemical structures and the bioactiv-

ities of Nitrogen Heterocycles as MAO inhibitors are,

� Substitution of phenyl, acetyl and thiocarbamoyl at N1 of

pyrazoline leads to selectivity towards MAO inhibition
and elongation of the N1 chain decreases the activity
against MAO-B than acetyl due to the formation of unsta-

ble complex.
� Presence of a ring at nitrogen of amide, thioamide and
semicarbazide in pyrazoline series, increases potency as well
as selectivity towards MAO-A, however, its absence equally

decreases potency and selectivity towards MAO-A and
MAO-B.
� Substitution of toluene sulphonyl derivative at N1 position

with 2-hydroxyphenyl at C3 and 2,4-dihydroxyphenyl ring
at C5 of pyrazoline provides the most active and selective
MAO-A inhibitor.
� Compounds, 3, 5-diphenyl pyrazoline with an anthracene

moiety at C3 and substitution of methoxy or nitro group
at the para position of phenyl at C5 increase activity and
selectivity towards MAO-B.
� In 3,5-diaryl-1-carboxamide pyrazoline series substitution

of the 4-hydroxy group on a phenyl at C3 increases the
potency towards MAO. At the same time replacement of
aryl at C5 by a five-member hetero aromatic ring also

increases the potency towards MAO. In the same series
derivatives with a 4-chlorophenyl substituent at C5 position
shows high activity against both MAO-A and MAO-B but

with opposite selectivity, i.e. a derivative with methyl and
fluoro group at para position of C4 phenyl showed selectiv-
ity towards MAO-A and MAO-B respectively.

� In the prenylated series of pyrazolines bearing acetyl or car-
bazide at N1 position the compounds with benzyloxy group
and chlorine at para position at C5 increases MAO-B
potency while methyl and methoxy groups in the same posi-

tion decreases MAO-B inhibition.
� Substitution at C8 of caffeine with an electron deficient
group (styryl) produces higher affinity towards MAO-B

and it was supported by the fact that saturation of double
bond of styryl resulted in a decrease in MAO inhibitory
activity. The E isomers of styryl xanthine as well as styryl

benzimidazole derivatives were active inhibitors than Z
isomers.
� In the case of styryl xanthinyl series, caffeine was found to
be a very weak inhibitor of MAO-B while 8 substituted

analogues were potent MAO-B inhibitors. Replacement of
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1, 3-dimethyl groups of the xanthinyl moiety with ethyl

groups decreases the potency of MAO-B inhibition. Simi-
larly 7-N-methylxanthine compounds were more potent
inhibitors than the corresponding 7H-xanthine analogues.
� The introduction of a styrol-formamide group in 8-phenyl

xanthine at position 3 may enhance activity and selectivity
on MAO-B inhibition and substitution of fluoro on the
same compounds increases the selectivity towards MAO-B.
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� In 8-(benzamido)-phenyl linked to xanthine ring, com-
pounds with smaller groups were more potent MAO-B
inhibitors. The diaryl amide in comparison with styrenes
can enhance MAO-B inhibition.

� In styryl benzimidazole series (E)-1-methyl-styrylbenzimi-
dazole analogues were more potent MAO inhibitors than
their corresponding 1H analogues and substitution of 3-Cl

and 3-F on the same, leads to more potent compounds.
Moreover, 3,4-dichlorostyryl caffeine was most potent than
others from the series.

� Compounds 3-benzoyl-2-substituted quinoxalines were
found to be selective MAO-A inhibitors.
� In 5-aryl-1,3,4-oxadiazol-2(3H)one series with cyanoethyl

group present at 3 position, substitution of electron donat-
ing group at the para position of aryl (H, Me, OMe) ring
increases selectivity towards MAO-A whereas electron
withdrawing group (NO2) or a hydrophobic biphenyl group

increases the selectivity towards MAO-B.
� A cyanoethyl group in all the mentioned series of oxadiaz-
ole was essential for MAO inhibition; because decrease in
activity and selectivity of inhibitors towards MAO were
observed with the increase of the length of the cyano alkyl

chain in 3 position. Oxadiazolones were found to be more
active and selective than oxadiazinones.
� In 1,3,4-oxadiazin -5-(6H)one derivatives containing hydro-

phobic group at the position C2 and long chain at position
N4 resulted in potent and selective compounds against
MAO.

� The derivatives with 3-acetyl-2,5-diaryl-2,3-dihydro-1,3,4-
oxadiazole were considered as a promising scaffold for
the design of selective MAO-B inhibitor. The R enantiomer

of these compounds was significantly active and selective in
comparison to racemic mixture, while S enantiomer was
inactive. The introduction of 4-chlorophenyl on position 2
of dihydro-1,3,4-oxadiazole increases activity and selectiv-

ity towards MAO-B.
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� In a series of halogenated indolylimidazolidin-4-one deriva-
tives, multiple N-methylations of the imidazolidinone moi-
ety, one of which should be the methylation of N2 in
addition to either N3 or N4 along with bromination at posi-
tion 5 or 6 are important for MAO-A potency and
selectivity.
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� Introduction of a bulky substituent (benzyloxy) at position

5 of indole increases potency and selectivity for the MAO-B
isoform. In 5-benzamidoindolyl series substitution of Cl at
the para position of phenyl ring at C5 position of indole

enhances both MAO-A and MAO-B inhibition potencies,
since the unsubstituted compounds were less potent MAO
inhibitor.
� In the mentioned series of 1-(4-substituted-thiazol-2-yl)-2-

(alkyl/cycloalkyl/aryl)-hydrazines, the best substituent on
the aromatic ring at position 4 of the thiazole nucleus was
electron withdrawing groups (NO2, Cl, CN, F) while the

introduction of more steric hindered naphthalene or cou-
marin rings at the same position of thiazole nucleus or
the presence of methyl at C5 led to decreased MAO inhib-

itory activity. The R enantiomer was the most selective
MAO inhibitor from the series.
� In the (thiazol-2-yl)-hydrazine compounds, presence of
smaller heterocyclic moieties on the N1 hydrazine was

important for MAO activity and selectivity because a bulk-
ier substitution including aryl ring at N1 resulted in the loss
of MAO inhibitory activity and selectivity. Replacement of

hydrogen by methyl group at a-carbon to the N1 hydrazine
moiety increases the ability of compounds to inhibit MAO-
B.

� A compound bearing naphthalene moiety on C4 of the scaf-
fold (4,5-substituted-thiazol-2-yl)-hydrazones possessed a
greater inhibitory activity on MAO-A and MAO-B than

the compound bearing less substituent at C4 of thiazole,
and a CH3 group on C5 and is probably because of the ste-
ric hindrance of methyl group on C5 of the thiazole.
� Elongation of the alkyl chain on hydrazone nitrogen (C2 of

thiazole nucleus) produces a slight reduction in MAO inhi-
bition but increases selectivity. On the other hand, carbocy-
clic derivatives showed loss of MAO inhibition activity

when the ring dimension was increased.
� In 1-(4-arylthiazol-2-yl)-2-(3-methylcyclohexylidene)-
hydrazines, it was observed that racemic compounds with

4-Cl, 4-CH3, and 4-OCH3 substituted phenyl group or an
unsubstituted C4 position of thiazole ring displays MAO
inhibitory activity with selectivity towards MAO-B.
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