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Abstract Indisputable importance of drug solubility in various industrial perspectives has moti-

vated the scientists to evaluate different techniques to improve it. Fenoprofen is a significant non-

steroidal anti-inflammatory drug (NSAID), that is the orally administered to relieve mild to

moderate pain and the unfavorable symptoms of osteoarthritis and rheumatoid arthritis (i.e.,

inflammation and stiffness). Supercritical fluids (SCFs) belong to a certain type of fluids, in which

their temperature and pressure are higher than the critical point. This property allows the CO2SCF

to simultaneously possess the characteristics of both a liquid and a gas. The prominent target of this

paper is to mathematically develop three predictive models via machine learning (ML) technique to

optimize the solubility of Fenoprofen in CO2SCF. In this study, we have 32 data vectors in each

dataset, including two input features of pressure and temperature. The output target is solubility,

which we are going to model and analyze. Models are constructed through the use of Modular

ANN (MANN), Gaussian processes regression (GPR), and the K-Nearest Neighbor technique

(KNN) in this body of work. The glowworm swarm optimization (GSO) swarm-based method is

utilized in order to carry out the process of model optimization. The root mean squared error

(RMSE) rates for GSO-KNN, GSO-MANN, and GSO-GPR are respectively 5.25E-04, 5.46E-

04, and 3.01E-05. The aforementioned models were also judged according to a number of other cri-

teria, and since the GSO-GPR model was found to be the most effective according to all of these

standards, it is being treated as the conclusive model of this investigation. In addition, the maximum
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error has been brought down to 5.02E-05 with the help of this model, which has an R2-score of

0.999.

� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Table 1 Input and output.

No. Temperature (K) Pressure (MPa) Solubility

1 308 12 8.54E-05

2 308 16 1.63E-04

3 308 20 2.49E-04

4 308 24 3.01E-04

5 308 28 3.95E-04

6 308 32 4.44E-04

7 308 36 5.12E-04

8 308 40 5.87E-04

9 318 12 5.63E-05

10 318 16 1.98E-04

11 318 20 3.55E-04

12 318 24 5.32E-04

13 318 28 7.21E-04

14 318 32 8.56E-04

15 318 36 9.88E-04

16 318 40 1.10E-03

17 328 12 4.15E-05

18 328 16 1.88E-04

19 328 20 4.66E-04

20 328 24 8.11E-04

21 328 28 1.01E-03

22 328 32 1.33E-03

23 328 36 1.84E-03

24 328 40 2.22E-03

25 338 12 2.01E-05

26 338 16 1.66E-04

27 338 20 5.51E-04

28 338 24 1.11E-03

29 338 28 1.74E-03

30 338 32 2.50E-03

31 338 36 3.34E-03

32 338 40 4.20E-03
1. Introduction

Optimization of efficacious and cost-effective medicines for the treat-

ment of disparate types of acute/chronic illnesses is still a big challenge

in pharmacology (Ganesan and Barakat, 2017). Solubility is an impor-

tant operational parameter in pharmaceutical industry, which its pre-

cise measurement is of great importance in drug discovery and

development process to improve the pharmacokinetic/therapeutic

effects of novel therapeutic agents. Appropriate solubility of an

orally-administered drug seems to be significantly vital for enhancing

its bioavailability and absorption into the blood circulation (Thapa

et al., 2017; Williams et al., 2013). Based on a report, approximately

40 % of innovated drugs in the past and nearly 90 % of the therapeutic

medicines in optimization suffer from poor solubility (Kanikkannan,

2018). Therefore, progression of different techniques to optimize and

increase the solubility of drugs is a significant activity in drug industry.

Fenoprofen can be considered as a significant orally-administered

nonsteroidal anti-inflammatory drug (NSAID), that can be considered

as alleviation of inflammation, pain and fever in patients suffering

from chronic Musculoskeletal-related disorders like rheumatoid arthri-

tis and osteoarthritis (Traa et al., 2011). Despite some unfavorable side

effects like serious kidney failure, this NSAID shows its positive ther-

apeutic properties by the inhibition of cyclooxygenase activity and

prostaglandin synthesis (Rajput et al., 2021; Narwariya et al., n.d.;

Ridolfo et al., 1979).

In recent decades, disparate approaches like micronization,

nanosuspension, spray drying, supercritical fluids and hot melt extru-

sion have been prosperously applied to optimize the solubility and

bioavailability of novel drugs with unacceptable value of solubility

(Rasenack and Müller, 2004; Duarte et al., 2011; Madan and

Madan, 2012; Feeney et al., 2016). Compared with other prevalently

employed techniques, SCFs (especially SCCO2) has achieved more

attentions to optimize the solubility and bioavailability of drugs thanks

to their brilliant privileges such as low toxicity, environmentally

friendly properties, and low cost (Padrela et al., 2018; Ahmad et al.,

2019; Bin et al., 2020).

There have been substantial advances in a various range of scien-

tific fields thanks for utilizing of machine learning (ML) models, which

are useful tools for extracting information from experimental data.

The vast majority of experimental sciences have been impacted by this

simple fact (Alpaydin, 2020; Bishop, 2006). One of the important con-

cerns of ML methods is model selection that is, choosing the algo-

rithms and optimizing their important parameters (known as hyper-

parameters). In this study, MANN, GPR, and KNN are selected meth-

ods, and glowworm swarm optimization (GSO) as a metaheuristic is

employed for model selection.

For regression tasks, the GPR employs Gaussian processes (GP).

The GP’s prior must be given for this to activate. The prior mean is

assumed to be constant and equal to 0 or the average of the training

data (Rasmussen, 2003; Shi and Choi, 2011). When the data objectives

are continuous variables, such as in this study, a Neighbors-based

regression can be applied. The label (output) assigned to a query loca-

tion is calculated by averaging the labels assigned to its closest neigh-

bors (Lall and Sharma, 1996; Song et al., 2017).

For the first time, Krishnanand and Ghose (Krishnanand and

Ghose, 2005) used the glowworm swarm optimization (GSO) algo-

rithm to collective robotics. To travel toward a neighbor who shares

his luciferin value, each glowworm in this algorithm employs a
probabilistic process. Neighboring glowworms are drawn to them

(i.e., glowworms that have more luciferin). The motions are dependent

only on local information and selected neighbors’ connections.

2. Materials

As it mentioned above, the data set consists of 32 rows of data,
temperature and pressure being the inputs, and solubility being
the output. This data set originates from (Zabihi et al., 2020)

and demonstrated in Table 1.

3. Methods

3.1. Models

The Gaussian process (GP) is a collection of random parame-
ters, a subset of which is associated with Gaussian distribu-
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tions (Grbić et al., 2013). Covariance and mean functions char-
acterize the GP. Data from the past must be linked in order for
Gaussian process regression (GPR) models to work. In con-

trast to the GD, the GP is over functions. The predictive dis-
tribution of the test input is therefore understood by
Gaussian process regression models (Rasmussen, 2003).

For GPR, it is not necessary to define the exact fitting func-
tion. The data collected in the field may be compared to a
multi-dimensional Gaussian distribution sampled at random

places (Quinonero-Candela and Rasmussen, 2005; Jiang
et al., 2021).

y is exhibited as f xð Þ, D ¼ xi; yið Þji ¼ 1; 2; � � � ; nf g,
xi 2 Rdas input matrix and yi 2 R as output.

y ¼ f xð Þ

f xð Þ � GP m xð Þ;Kð Þ
K illustrates any covariance, that is explained through ker-

nels and their corresponding, m(x) is the mean operator (Wu
et al., 2020).

Many regression models employ the K-Nearest Neighbor

(KNN) technique, which combines numerous supervised learn-
ing models. A basic regression and classification algorithm,
this is the model under consideration (Aha et al., 1991;

Ribeiro and dos Santos Coelho, 2020). Since it does not gener-
alize from the training examples, it is called a ‘‘lazy algorithm.”
Indeed, it keeps all of the data collected over the course of the

testing process (Song et al., 2017). Using KNN regression is
very simple. In order to perform that, it has to be calculated
that the amount of neighbors with similar numerical target

(Deng, 2020). Another approach is to weight the nearest neigh-
bors to the center. To utilize regression, you use the same dis-
tance functions as KNN classification to analysis the samples.
This is how you express the Euclidian (Euc_Distance) and the

Manhattan distance (Man_Distance). Those equation which
are shown below, demonstrate the determination of distance
among � and y.

Euc Distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1

xi � yið Þ2
vuut

Man Distance ¼
Xk

i¼1

jxi � yij

KNN is trained through make a comparison among test

data (X,y) and a training data D ¼ Xi; yið Þf g. In regression,
the last prediction of y is the mean over its k nearest neighbors’
results, as shown in the equation below (Cheng and Ma, 2015;

Devroye et al., 1994).

by ¼ 1

k

Xk

i¼1

yi Xð Þ

The other used model in this study is modular ANN
(MANN). In order to develop MANN, the data points must

be separated into multiple clusters, and then each learner is uti-
lized to each cluster separately. In the current work, the fuzzy
c-means clustering method is used (Bezdek, 2013; Wang et al.,

2006). Soft or crisp clusters may be made. ANN (or equivalent
methods) cannot extrapolate beyond the range of data pro-
vided for training. Under other conditions, when new data

point exceeds the interval of those involved for model training,
inaccurate predictions might be predicted. Fig. 1 shows the
MANN diagrammatic model in which the training set is
divided into four clusters. After input–output pairings are pro-

duced, the fuzzy c-means (FCM) technique divides them into
four subgroups, and any subset is estimated by an ANN.
The modular model’s output comes from one of three local

models.

3.2. Model optimization

In this research, we employed glowworm swarm optimization
(GSO) approach in order to tune hyper-parameters of models.
Krishnanand and Ghose (Krishnanand and Ghose, 2005) cre-

ated the GSO algorithm, which is an improvement of the
ACO. It was driven by the glowworm metaphor and adapted
to collaborative robots. Each artificial glowworm or agent in
GSO has a local-decision range that lets it light up a two-

dimensional work environment. The luciferin level is related
to the agent’s position’s objective value. The brighter agent will
fly to a better position. The number of neighbors influences the

local decision range. When the density of neighbors is low, the
range is widened to discover additional individuals; otherwise,
the range is narrowed. The agent’s movement direction is

always determined by which adjacent individual is chosen.
The higher the luciferin level of the neighbor, the greater the
magnetism. Finally, most agents will congregate at various
sites (Wu et al., 2012).

All individuals (glowworms) have the identical value of
luciferin, however it changes according on their response of
function. The luciferin value at that site is well proportioned

to the observed value of the sensor profile. Every glowworm
increases its previous level of luciferin (Manimaran and
Selladurai, 2014). Simultaneously, the glowworm’s luciferin

level is deducted from the prior luminescence measurement
to imitate luminosity degradation. The rule of luciferin updat-
ing is:

li tþ 1ð Þ ¼ 1� qð Þli tð Þ þ cJi tþ 1ð Þ
In the above equation, li(t) is the level of luciferin for the

individual I based on the time t, q stands for the luciferin decay
constant 0 < q < 1, c reflects the luciferin enhancement con-
stant, moreover, Ji denotes the objective function at individual

i’s position based on the time time, t.
The chance of traveling toward an adjacent j for each glow-

worm I is determined by (Muller, 2007):

pij ¼
lj tð Þ � li tð ÞP

k2Ni tð Þ lk tð Þ � li tð Þ
Where j 2 Ni tð Þ;Ni tð Þ ¼ j : di;j tð Þ < rid tð Þ; li tð Þ < lj tð Þ

� �
stands for the neighborhood for the glowworm i in iteration
t. di,j(t) shows the distance of individuals i and j at iteration

or time t, moreover, rid(t) stands for the variable neighbor-
hood range amalgamated via individuals i at time t. Assume
that individual i choose an individual j 2 Ni(t) with pij(t)
determined by the above equation. Then, motions of glow-

worms might be expressed as (He, 2022):

xi tþ 1ð Þ ¼ xi tð Þ þ s
xj tð Þ � xi tð Þ
kxj tð Þ � xi tð Þk

� �

In this equation, s shows the step size described above and

kk reflects the Euclidean norm operator.



Fig. 1 Flowchart of MANN (https://theses.lib.polyu.edu.hk/bitstream/200/5912/1/b23930640.pdf, 2010).
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The rule for neighborhood range updating: We connect
with each individual i a neighborhood which radial range rid
is naturally dynamic 0 < rid < rs.rs represents the radial range
of the luciferin sensor (Krishnanand, 2009).

The neighborhood range is difficult to establish at a value

that works well for diverse function landscapes since we sup-
pose that a priori knowledge about the fitness function is
unknown. A specified neighborhood range rd, for example,

would perform better on fitness functions where the optimum
inter-peak distance is greater than rd than on those where it is
smaller than rd. This optimization algorithm employs an adap-
tive neighborhood range to locate numerous peaks in a multi-

modal function landscape. The following rule may be observed
to significantly boost performance (Abdullah, 2021; Zhou
et al., 2013; Krishnanand, 2009):

rid tþ 1ð Þ ¼ min rs;max 0; rid tð Þ þ b nt� jNi tð Þjð Þ� �� �
Where b stands for a constant value and nt is utilized to

control the quantity of neighbors. The workflow of GSO is dis-

played in Fig. 2.

3.3. Performance evaluation

In our study, the accuracy of the utilized regression models are
assessed using the criteria listed below. The following are the
definitions of metrics:
MSE ¼ 1

N

XN
i¼1

yi � ŷið Þ2

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
yi � ŷið Þ2

r

MAPE ¼ 1

N

XN
i¼1

yi � ŷi
yi

����
����

Here, yi is the expected (observed) solubility, ŷi is the fore-
casted solubility, and N is the quntity of data points.

4. Results

After implementation of the introduced models, their hyper-

parameters were tuned using the GSO algorithm. For this pur-
pose, multiple values for the number of iterations are possible
and have a direct impact on the performance of models. In
Fig. 3, the impact of this value is shown with R2-socre. Based

on this chart, the number of iterations is set at 45 for GPR and
60 for two other models.

After optimizing hyper-parameters, final models are

obtained and assessed via standard metrics. The final results
are shown in Table 2. Also, a visual comparison of expected
and estimated targets is shown in Figs. 4, 5, and 6. These facts

http://rs.rs


Fig. 2 The Flowchart of the GSO algorithm.

Fig. 3 Number of iterations vs R2-score.
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and figures lead us to select GSO-GPR as the most accurate,
the most general and the best model for this research due to
its higher R2-Score and lower RMSE.

Figs. 7 and 8 respectively demonstrates 2D schemes to

evaluate the influences of two important inlet parameters
Table 2 Outputs of tuned models.

Models MSE RMSE

GSO-KNN 2.75E-07 5.25E-04

GSO-MANN 2.98E-07 5.46E-04

GSO-GPR 9.11E-10 3.01E-05
including temperature and pressure on the solubility amount

of Fenoprofen in SCCO2 solvent. Glancing at the figures
implies this reality that by increasing the pressure of system,
the solubility of Fenoprofen NSAID in SCCO2 solvent

enhances substantially because of increasing the molecular
compaction and consequently enhancing in the density of
solvent, which approaches the characteristics of the SCCO2

solvent to liquid phase. Increase in the density of solvent
has a direct relationship with the solvating power of SCCO2

solvent. For evaluating the influence of temperature, the

variation of sublimation pressure and density ate the pres-
sures greater and lower than the cross-over pressure (COP)
seems to be important. Applying higher pressure which is
more than COP, an increasing in the temperature be able

to improve the sublimation pressure while declines the den-
sity of SCCO2 system. But the effect of sublimation pressure
enhancement is stronger than the effect of decreased density

on the solubility of Fenoprofen in SCCO2 solvent. There-
fore, increase in temperature at pressures higher than COP
modify the drug solubility. When the pressure of the solvent

system is lower than the COP, the negative influence of den-
sity reduction is higher than the desirable influence of subli-
mation pressure. Moreover, increase in temperature at
pressures greater than COP significantly reduces the solubil-

ity of Fenoprofen in SCCO2 solvent.(See Fig. 9.).
MAPE R2-Score Max Error

2.86E + 00 0.767 1.14E-03

1.56E + 00 0.808 1.03E-03

6.49E-02 0.999 5.02E-05



Fig. 4 Expected and predicted values (GSO-KNN).

Fig. 5 Expected and predicted values (GSO-GPR).

Fig. 6 Expected and predicted values (GSO-MANN).

Fig. 7 Tendency of temperature.

Fig. 8 Tendency of pressure.

Fig. 9 Final model prediction surface (GSO-GPR).

6 S. Alshehri et al.



Optimization of Fenoprofen solubility within green solvent 7
5. Conclusion

Poor solubility of the majority of novel orally administered therapeutic

medicines have motivated the researchers and scientists to find various

ways to improve the solubility. In recent decades, the industrial-based

application of SCFs (such as SCCO2) to improve the solubility of drugs

has found greater attentions compared to other conventional techniques

due to their non-poisonous, eco-friendly and cost-effective nature. In

this research paper, machine learning (ML) technique has been

employed to develop accurate mathematical models to estimate the sol-

ubility of Fenoprofen NSAID in SCCO2 solvent. To do this work,

Modular ANN (MANN), Gaussian Process Regression (GPR), and

K-Nearest Neighbor Technique (KNN) are employed to make models.

Model optimization is performed employing GSO swarm-based algo-

rithm. GSO-KNN, GSO-MANN, and GSO-GPR have RMSE error

rates of 5.25E-04, 5.46E-04, and 3.01E-05, respectively. In terms of

RMSE they have 5.25E-04, 5.46E-04, and 3.01E-05 error rates. MAPE

of GSO-KNN is 2.86E+ 00, it is 1.56E+ 00 for GSO-MANN, and the

best one is 6.49E-02 for GSO-GPR. The mentioned models were also

evaluated with other criteria, and the GSO-GPR model was found to

have the best efficiency in all criteria, so this model is considered the final

model of this research.GSO-GPR showsR2 score of 0.999, then themax

error has been reduced to 5.02E-05.
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