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Abstract Zr, Nb and Si doped TiCN coatings, with (C+N)/(metal + Si) ratios of approximately

1, were deposited on stainless steel and Si wafer substrates using a cathodic arc technique in a mix-

ture of N2 and CH4 gases. The coatings were comparatively analysed for elemental and phase com-

position, adhesion, anticorrosive properties and tribological performance at ambient and 250 �C.
Zr, Nb and Si alloying contents in the coatings were in the range 2.9–9.6 at.%. All the coatings

exhibited f.c.c. solid solution structures and had a h111i preferred orientation. In the adhesion tests

conducted, critical loads ranged from 20 to 30 N, indicative of a good adhesion to substrate mate-

rials. The Ti based coatings with Nb or Si alloying elements proved to be resistant to corrosive

attack in 3.5% NaCl and of these coatings the TiNbCN was found to have the best corrosion resis-

tance. TiCN exhibited the best tribological performance at 250 �C, while at ambient temperatures it

was TiNbCN. Abrasive and oxidative wear was found to be the main wear mechanism for all of the

coatings. Of the tested coatings, TiNbCN coatings would be the most suitable candidate for severe

service (high temperature, corrosive, etc.) applications.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1 Deposition parameters for the coatings.

Total gas (CH4 + N2) flow

rate

90 sccm

CH4 flow rate 65 sccm

N2 flow rate 25 sccm

Arc currents 90 A for Zr, 110 A for the other

cathodes

Substrate bias voltage �100 V

Deposition temperature 320 �C
Deposition duration 40–50 min
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1. Introduction

Cutting tools in the machining industry are required to provide a level

of mechanical strength and chemical stability such that they provide

both durability and performance. The state of the art suggests that

the mechanical requirements can be met; however, corrosion and wear

requirements particularly in severe conditions (e.g. high temperatures

and corrosive environment) remain problematic (Cramer and

Covino, 2003; Arai, 1992; Suh, 1980; Möhring et al., 2015). A wide

range of surface engineering, focused on hard coatings, has been sug-

gested to overcome these issues. Coatings include nitrides (TiN (Zhang

and Zhu, 1993; Jindal et al., 1999); ZrN (Deng et al., 2008a, 2008b);

CrN (Atar et al., 2014; Birol, 2013; Sresomroeng et al., 2011); TiAlN

(Jindal et al., 1999; Khrais and Lin, 2007; Kumar et al., 2014)) and car-

bides (TiC (Klaasen and Kübarsepp, 2004; Prengel et al., 1998) or NbC

(Prengel et al., 1998; Mesquita and Schuh, 2012)) due to their high

hardness, reduced Young’s modulus, and good resistance to corrosion.

They are applied using physical vapour deposition techniques, and

processes offering high coating adhesion to the steel substrates, while

maintaining a relatively low deposition temperature. This helps to

reduce microstructural changes within the substrate (Van Stappen

et al., 1995; Friz and Waibel, 2003; Mikuła and Dobrzański, 2007).

Carbo-nitrides of transition metals offer a combination of the

properties of nitride and carbide coatings, improving hardness, ther-

mal stability, wear and corrosion resistance and reducing oxidation

(Van Stappen et al., 1995; Toth, 1971; Lengauer et al., 1995; Naguib

et al., 2012; Kral et al., 1998). In more recent work, alloying with var-

ious elements (including Al, V, Nb, W, Mo, Y, Si and B) in the struc-

ture of the binary or ternary compounds further improves the

mechanical and tribological properties of the coatings (Hauert and

Patscheider, 2000; Endrino and Derflinger, 2005; Volovitch et al.,

2011; Farzaneh et al., 2011; Kutschej et al., 2005; Kathrein et al.,

2005).

In the present paper, alloying elements of Zr, Nb and Si have been

added to a TiCN ternary carbo-nitride compound. High C/N coatings

were selected, because of their superior tribological performance in

both dry and corrosive environments (Jiang et al., 2003; Polcar

et al., 2010). The improved tribology can be attributed to the high car-

bon content in the coating, which leads to the formation of an amor-

phous free carbon phase (Jiang et al., 2003; Polcar et al., 2010). It also

results in increased grain boundaries length impeding corrosive attack

(Scully et al., 2007; Boxman et al., 1995; Schwarzer and Richter, 2006;

He et al., 2001). The selected coatings are investigated for components

requiring protective coatings for both tribological applications in dry

environments and under corrosive conditions.

2. Experimental details

The coatings were deposited simultaneously on 316L stainless
steel (SS) and Si wafer substrates. This was dependent on the
analysis carried out: 316L substrates for elemental and phase

compositions, adhesion, corrosion testing, tribological perfor-
mance and surface profilometry measurements; Si wafers for
stress measurements, cross-sectional microstructures and
chemical bonds in the films. Samples were prepared using a

cathodic arc technique (CAT). CAT offers an alternative for
depositing films with good uniformity, high adhesion to metal-
lic substrates, and high-density plasma, which generates an

intense ion bombardment at the substrate. In this way, suffi-
ciently high chemical activity of the reactive species is
achieved, resulting in thermodynamically driven phase segre-

gation and the formation of nanostructures (Dylla et al.,
1997; Boxman et al., 1995). For preparation of the TiCN,
TiNbCN and TiSiCN coatings, the deposition chamber was
equipped with only one cathode (Ti 100 at.%, Ti85–Nb15 at.
%, or Ti88–Si12 at.%). For TiZrCN, two cathodes were used
(Ti and Zr). The deposition conditions were selected to obtain
films with a C/N ratio of about 2, atomic concentrations for

Zr, Nb and Si of 3–9 at.% and thicknesses of �3.8 lm. The
main process parameters are presented in Table 1.

Elemental composition was determined using a scanning

electron microscope (Hitachi 3030PLUS) equipped with
energy dispersive X-ray detector (EDS, Bruker). Crystalline
structure, phase composition, texture and grain size were

obtained by means of X-ray diffraction (XRD) using a Rigaku
MiniFlex II diffractometer, with Cu Ka radiation. The crystal-
lite sizes were determined from the XRD peak widths using the
Scherrer formula. Chemical bonding structure of the coatings

was investigated using a confocal Raman microscope (alpha
300 WITec GmbH.) in backscattering geometry, using an exci-
tation laser radiation at 532 nm. The scattered radiation was

collected via a 0.9 NA (100� magnification) objective lens.
For spectral analysis it was conducted at 1800 g/mm, provid-
ing a resolution of 1.2–1.3 cm�1. Displayed Raman spectra

represented single accumulations (60 s) and were raw spectra
without any averaging or smoothing.

Coating adhesion was tested according to ISO EN 1071-

3:2005. The critical load values (Lc – defined as the load where
film flaking starts) were obtained by microscopic examination
of the scratch tracks. The residual stress of the coatings was
determined by the Stoney equation (Schwarzer and Richter,

2006), using the measurements of the radii of curvature of Si
(111) wafer substrates before and after coating deposition
using a surface profilometer (Dektak 150).

The corrosion resistance of the coatings was tested in 3.5%
NaCl solution (pH = 8), at room temperature (RT, 22
± 1 �C), using a VersaSTAT 3 Potentiostat/Galvanostat.

Experiments were conducted using a typical three-electrode
cell, with a Pt and saturated Ag/AgCl (0.197 V vs. NHE) coun-
ter and reference electrodes. The open-circuit potential (EOC)

was continuously monitored for 1 h, starting after immersion
in the corrosive environment. After the initial period, potentio-
dynamic polarization measurements from �1 V to +1 V were
recorded. All specimens, mounted on the working electrode,

were placed in a PTFE sample holder with an exposure area
of 1 cm2. The electrochemical measurements were performed
with a scanning rate of 0.167 mV/s (as given in ASTM G 59-

97). Tests were repeated at least two times for each specimen.
The corrosion potential (Ei=0), corrosion current density
(icorr), anodic slope (ba) and cathodic slope (bc) were deter-

mined by graphical extrapolation of the two branches of the
polarization curves in the range of ±50 mV, as per the method
detailed in Gostin et al. (2010). The electrochemical parame-
ters were calculated using Versa Studio software (Princeton
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Figure 1 XRD spectra of the deposited films: s = substrate,

d = grain size.
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Applied Research). The polarization resistance (Rp) was calcu-
lated using the Stern-Geary equation (Stern and Geary,
1957a):

Rp ¼ 1

icorr

babc
ba þ bc

����
���� ð1Þ

These parameters were obtained according to the procedure
described in Stern and Geary (1957b) and Rybalka et al.

(2014).
The tribological behaviour of the coatings was assessed

using a TE77 high frequency reciprocating friction rig (Phoe-
nix Tribology, Berkshire, UK). Tests were conducted using a

6 mm AISI 316 pin and a coated plate, with a 5 N normal load,
2 Hz frequency, 12.4 mm stroke length, in air without any fluid
lubricant, in controlled humidity (50%) and at ambient tem-

perature and 250 �C. All the experiments were carried out in
comparison with carbo-nitride films without alloying elements,
taken as reference coatings. The data represent the average of

at least three tests for each temperature. The wear rate (K) was
calculated by normalizing the worn volume (V) over the nor-
mal load (F) and the sliding distance (d):

K ¼ V

Fd
:

The worn volume was determined by measuring the cross-

sectional areas of the wear scar at 3 points on each track.

3. Results and discussions

3.1. Elemental composition, crystalline structure, chemical bonds
and cross-sectional morphology

The elemental compositions of the coatings are given in
Table 2. The Zr, Nb and Si contents in the deposited film ran-

ged from 2.9 to 9.6 at.%. The coatings were almost stoichio-
metric, with (C + N)/metal ratios ranging from 0.97 to 1.06,
and C/N ratios between 1.52 and 1.94.

X-ray diffractograms of the TiCN, TiZrCN, TiNbCN and

TiSiCN coatings are shown in Fig. 1. The investigated coatings
exhibited f.c.c. solid solutions, with preferred orientation in the
plane (111). This texture, commonly reported for the films

deposited by CAT (Boxman et al., 1995), is a result of the
intense ion bombardment of the substrate, inducing compres-
sive stresses. Ionic impacts also generate growth defects (such

as vacancies, grain boundary voids, and stacking faults), non-
equilibrium structures, and porosity, increasing stress concen-
trations. If the film texture follows the rule of ‘‘lowest overall

energy” (Dylla et al., 1997; Boxman et al., 1995), the (111)
Table 2 Elemental composition of the coatings determined by EDS

Coating Elemental composition (at.%)

Ti Zr Nb Si C

TiCN 45.8 – – – 30.5

TiZrCN 35.1 10.3 – – 31.8

TiNbCN 35.7 – 11.6 – 28.6

TiSiCN 43.3 – – 2.6 29.2
preferred orientation would indicate that the strain energy
dominates surface energy. Fig. 1 shows the XRD spectra of

the deposited coating. Film crystallinity is low, regardless of
the type of alloying element. The (111) diffraction peak of
the TiNbCN is in the same position as for TiCN, indicating
that the Nb addition in TiCN matrix is relatively low and does

not distort the lattice of TiCN. The (111) diffraction peak of
the TiSiCN is broader and less intense than that of TiCN, sug-
gesting the formation of an amorphous structure. Under the

deposition conditions used here, the intensity of (111) peak
for the TiZrCN is higher and shift towards low angles when
compared to the TiCN coating. These results were due to the

significant differences in atomic radii of the constituent ele-
ments (Ti = 1.47 nm, Nb = 1.46 nm, Si = 1.11 nm,
Zr = 1.60 nm). According to the classical Hume-Rothery rules

for binary systems, a solid solution was formed only when the
constituent elements have close atomic radii (Cahn and
Haasen, 1996). An amorphous phase is formed at large differ-
ences in atomic radii which create a severe lattice distortion

(Cahn and Haasen, 1996). It can be seen that by alloying with
Si, an element with a smaller atomic radii than Ti, results in a
decrease in the lattice parameter and consequently to an

increase in Bragg angles. The addition of Zr, an element with
a higher atomic radius, has contrary effects. In the case of
TiZrCN, it is reasonable to suppose that this finding is also

affected by high density plasma generated because this coating
was prepared using the two cathodes.
.

(C + N)/(metal + Si) C/N

N O

16.2 7.5 1.02 1.88

16.4 6.4 1.06 1.94

17.5 6.6 0.97 1.63

19.2 5.7 1.05 1.52



Figure 2 Raman spectra of the deposited films.
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The grain size is also given and is calculated from the Scher-
rer equation, being in the range from 6.3 to 7.8 nm. After the
incorporation of alloying elements into TiCN structure there

was a slight decrease in grain size.
The Raman spectra are shown in Fig. 2. The spectrum

recorded for TiCN reference coating presents the best resolved

features, with four peaks at 252 cm�1, 346 cm�1, 565 cm�1,
and 657 cm�1. These bands can be attributed to first-order
Raman scattering by phonons, more precisely transverse

acoustic (TA), longitudinal acoustic (LA), transverse optic
(TO), and longitudinal optic (LO) modes (Escobar-Alarcón
et al., 2010). For all of the doped coatings, the bands in the
optical phonon range are not well separated, being broader

than the reference TiCN sample. This is indicative of a lower
crystal order in the doped samples. In the acoustic phonon
range, the TO and LO bands are clear for the Nb and Si doped

coatings and are similar to the TiCN coating.
The TiZrCN spectrum deviates from this behaviour as the

acoustic phono-region is not well defined. The ratio between

the intensity of the acoustic phonon modes and that of the
optical phonon modes is also considerably larger than that
for the other samples. This suggests more disorder in this sam-

ples’ lattice. On the other hand, the samples did not exhibit any
Raman bands above 800 cm�1, in the range where the so-
called D and G bands would be expected for samples contain-
ing an amorphous carbon phase. This suggests that C atoms

are linked in a TiCNX (with X being the dopant) lattice rather
than forming CAC bonds in an amorphous phase. A good
homogeneity of the films across the sample surfaces was

observed, which was confirmed by the reproducibility of the
spectra recorded from several regions on each sample.

The cross-sectional SEM micrographs of the coatings

deposited on the Si wafers are illustrated in Fig. 3 (�50,000
mag.). The TiCN reference and the coatings with Zr and Nb
additions exhibit columnar structures, with integer and frac-

tured columns of different dimensions. An obvious finer and
denser structure was observed for the Si containing coating.

3.2. Adhesion strength and stress level

For the investigated coatings, the values of critical loads were
measured between 20 and 30 N (Fig. 4). The most significant
result was that the addition of Zr and Nb led to an improve-

ment in coating adhesion over the TiCN basic system. The
experiments did not reveal significant differences between the
adhesion of the TiZrCN and TiNbCN coatings. Poor adhesion

was observed for the TiSiCN coatings (Lc = 20 N).
Fig. 5 shows the SEM images of scratch tracks on the

TiNbCN and TiSiCN coated samples, where the both cracking
and coating breakthrough are visible. All samples examined

displayed three of the coating failure types described by Lars-
son et al., semi-circular cracking, chipping, fracture and cohe-
sive spallation along the scratch tracks. For the TiSiCN

coating, discontinuous ductile perforation of the layer was seen
(Fig. 5). For the TiCN and TiZrCN coatings, it was found that
the size and severity of cohesive failures increased. A slightly

lower Lc value was measured for the TiSiCN coating as a result
of high higher stress level (Fig. 4).

The residual stress ranged from �2.7 GPa to �3.2 GPa,

indicating that all coatings exhibited a high compressive stress
(Fig. 4). By adding Zr and Nb in TiCN structure, the residual
stress was decreased, while the Si led to a higher stress. Low

adhesion was found in the case of the highly stressed coatings
(TiSiCN). The relatively good adhesion of TiZrCN and
TiNbCN coatings to the substrate could be ascribed to the

low residual stresses.

3.3. Electrochemical behaviour

The evolution of the open circuit potential during the 1 h
immersion is given in Fig. 6, showing that all coated samples
improved the corrosion resistance of the bare substrate. All

coatings exhibited Eoc values that were more electropositive
compared to the uncoated substrate. The open-circuit poten-
tials of the coated test samples were stable for potentials in
range of �150 mV to 40 mV, indicating good coating stability

in 3.5% NaCl solution during 1 h immersion tests. The most
noble open circuit potential was found for the TiNbCN coat-
ing (38 mV).

The potentiodynamic polarization curves of the uncoated
substrate and the coated specimens are shown in Fig. 7, while
the electrochemical parameters are presented in Table 3. The

corrosion resistance can be evaluated according to the follow-
ing criteria:

(1) Electro-positivity representing a resistance to corrosion:

if the corrosion potential value is more electropositive,
then the behaviour of the material is nobler in the used
electrolyte. Fig. 7, shows that all coatings were nobler

compared to the uncoated substrate. It was observed
that:

– the addition of Nb into the TiCN structure made cor-

rosion potential more electropositive, indicating that
the corrosive solution had less influence on the
surfaces;

– the most noble corrosion potential was measured
with TiNbCN.
(2) Materials with a low icorr value displayed a good corro-

sion resistance: all of the coatings with alloying elements
showed lower icorr values compared to the uncoated



Figure 3 SEM crosssection through the various coated surfaces.
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substrate. TiNbCN coating exhibited a lower icorr value
compared to all other samples, including the reference

coating (TiCN).
(3) Materials possessing superior anticorrosive properties

present high Rp values. Considering the Rp values in

Table 3, it can be observed that all coatings have higher
polarization resistances than the substrate and the refer-
ence coating TiCN, except for the TiSiCN which showed
the highest icorr value.

(4) According to Mansfeld (1976), a material tends to passi-
vate when the value of ba is greater than bc; conversely if
ba is lower than bc, the material has a tendency to cor-

rode (Liu et al., 2008). Most of the investigated coatings
exhibited a tendency towards passivation. By contrast,
the uncoated substrate had a low ba value, lower than

bc, indicating a tendency to corrode.
(5) Porosity of the coatings was also considered. Ahn et al.

(2004) and Fedrizzi et al. (1994) reported that the poros-

ity of deposited layers contributes to the corrosion beha-
viour of the coatings prepared by PVD methods. The
total porosity (P) of the coatings was estimated using
Elsener’s empirical equation (Eq. (2)), as it was reported
in Elsener et al. (1989) and is shown in Table 3. The

addition of Zr or Nb into the TiCN coating significantly
decreased porosity leading to improved corrosion resis-
tance. The TiNbCN coating exhibited the lowest poros-
ity, followed by TiZrCN. The highest porosity value was

determined for the TiSiCN coating, even when com-
pared to the reference TiCN coating.

P ¼ Rp;substract

Rp;coating

� �
� 10�jDEi¼0 j

ba ð2Þ
where Rp,substrat and Rp,coating are the polarization resis-
tance of the substrate and of the coating, respectively,
DEi=0 – the difference between the corrosion potentials

of the coatings and of the substrate, and ba is the anodic
slope of the substrate.
(6) The protective efficiency (Pe) of the coatings was deter-

mined using Eq. (3) (Nozawa and Aramaki, 1999):

Pe ¼ 1� icorr;coating
icorr;substrate

� �
� 100 ð3Þ
where icorr,coating and icorr,substrate are the corrosion cur-
rent densities of the coating and of the substrate,

respectively.
Comparing the values in Table 3, it was observed that Pe

increased with the addition of Nb as the alloying element.
No significant differences in protective efficiency between the
reference TiCN and the Zr and Nb alloyed coatings were

found (<1%). All alloyed coatings had Pe values greater than
90%, offering a high protective efficiency.

Fig. 8 shows the SEM images of the surfaces at the end of
the electrochemical tests, and there is an obvious difference

between the corrosion resistances of the coatings. All of the
coated surfaces present micro/macro particles, which were gen-
erated during the deposition process. Usually, these defects

constitute preferential diffusion trails of aggressive species
and can result in an accelerated coating failure. The reference
coating was severely damaged during testing, while the alloyed

coatings resisted NaCl corrosive attack.
After the corrosion attack, the samples were analysed for

their elemental composition changes using EDS mapping on
an area of 1280 � 1100 lm2. The elemental analyses on the
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investigated area of all the samples are given in Fig. 9, before
and after corrosion tests. For the uncoated 316L stainless steel
substrate, a high oxygen content was observed after the corro-

sion tests (26.1 ± 2.1 at.%), indicating that surface oxidation
had occured during the test. An increase in oxygen content
was observed for all coatings, but was the most pronounced

for the TiZrCN coating. A relative decrease in the concentra-
tion of all other elements of the coatings was observed, due to
the oxidation. Comparing the coatings, Fe content arising
from the substrate was found in the case of TiCN, TiZrCN

and TiSiCN, indicative of their poorer resistance to corrosive
attack. A significant concentration of Fe was measured on
the corroded surface of TiZrCN coatings (15.1 ± 0.9), as also
can be seen on the SEM images after the electrochemical tests

(Fig. 8). Also, some traces of Na and Cl were found on the
uncoated substrate and TiZrCN coating. This is evidence of



Table 3 Electrochemical parameters of the investigated samples (Ei=0 – corrosion potential; icorr – corrosion current density;

Rp – polarization resistance; P – porosity; Pe – protective efficiency).

Sample Ei=0 (mV) icorr (lA/cm2) Rp (X) ba (mV) bc (mV) P (�10�3) Pe (%)

316L steel �679 74.478 568 134.1 354.8 – –

TiCN �126 0.856 69,343 324.5 235.7 0.132 98.9

TiZrCN �175 1.563 105,096 969.3 619.2 0.126 97.9

TiNbCN �114 0.447 110,753 262.0 201.4 0.076 99.4

TiSiCN �240 6.944 12,442 857.4 258.7 1.730 90.7

TiCN

TiCN-2

Substrate TiZrCN-2

TiZrCN

NaCl

TiNbCN

TiNbCN-2

microdroplets

TiSiCN

TiSiCN-1

microdroplets

cracks
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Figure 8 SEM images of all coatings at the end of the electrochemical tests at 500� and 2500� (inset pictures) magnifications.
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the electrolyte on the films, located most probably in the sur-
face defects created by the corrosive attack.

The TiZrCN coating was more affected by the electrochem-

ical tests than the other coatings: clear dissolution of the coat-
ings can be seen. On the TiSiCN surface, separate fragments of
the coating and substrate were observed, demonstrating also a
weak corrosion resistance in NaCl solution. The TiNbCN

exhibited a low degree of localized corrosion, indicating that
this coating offers the best protection for steel against an
aggressive NaCl environment.

Similar results were found when inspecting the coatings at
higher magnification (2500�). The surfaces of TiNbCN were
similar before and after corrosion tests, indicating that the

NaCl corrosive solution did not have any effect on this coat-
ing. For the TiSiCN coating, cracks and delamination of the
coatings were observed on the surfaces after the electrochemi-
cal tests. All data from the SEM examinations are in line with
the results derived from the analysis of the electrochemical
parameters.

To summarize the results of the electrochemical tests, it can

be concluded that the Zr, Nb or Si additions to TiCN coating
led to a higher protection against corrosive attack in 3.5%
NaCl. Of the investigated coatings, TiNbCN proved to be
the most corrosive resistance, likely due to the high electroneg-

ativity of Nb.

3.4. Tribological performance

3.4.1. Friction performance

The results of the tribological tests were expressed in terms of

the change of coefficient of friction (COF) versus time, and
wear rate (K). Fig. 10a and b shows the evolution of the coef-
ficients of friction as a function of time at room temperature

(23 �C) and 250 �C.
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Figure 9 The elemental compositions before and after the electrochemical tests of the studied samples by EDS.
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Fig. 10a shows that at room temperature the friction coef-
ficients for the coatings are approximately 3 times lower than
those of uncoated samples, being stable at about 0.2. This is
not the case at 250 �C. The TiZrCN coating has the highest

coefficient of friction and is close to the COF of the uncoated
material.

Fig. 11 shows the averages of the coefficients of friction at

23 �C and 250 �C. The average value was calculated after a
‘running period’ of 1000 s to eliminate initial contact instabil-
ities. For the uncoated specimens the friction is lower at higher

temperatures, which is most probably due to the formation of
oxide layers on the sample surface which are known to induce
a low friction coefficient (Polcar et al., 2006; Holmberg et al.,
1998; Rester et al., 2006; Braic et al., 2014). In contrast, the
coatings performed worse at 250 �C, where there was more
severe film damage. This is consistent with previously reported
data on friction performance of carbide or carbonitride coat-
ings (Polcar et al., 2006; Rester et al., 2006; Braic et al., 2014).

3.4.2. Wear resistance

Fig. 12 shows the wear rate K, calculated post-testing. Wear
rates in the coating specimens reduced compared with the

uncoated specimens, suggesting a longer life than uncoated
samples. For the alloyed coatings, the wear rates at 250 �C
were higher than those measured at room temperature, likely

as a result of a more intense oxidation process.
The optical micrographs and surface profiles of the wear

tracks at the end of the sliding tests are shown in Figs. 13
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and 14 and provide a map of the dominant wear mechanisms.
The presence of grooves parallel to the sliding direction is
indicative of the abrasive nature of the wear. The deepest wear
tracks were found in the TiNbCN and TiSiCN coatings sub-
jected to high temperature, while the largest width occurred
on the TiZrCN surface also under the high temperature. A
deeper wear scar and a larger track led to an increase in the

friction coefficient confirmed by the results given in Figs. 10
and 11, which showed an increased friction coefficient for
the coatings tested at 250 �C.

Further details of the wear processes can be observed in
Fig. 15, where the wear track morphology of an uncoated sam-
ple and the coatings tested at 23 �C and 250 �C are shown. This

is compared to the morphology of selected samples, at high
magnification, after the tribological tests in Fig. 16 of the bare
substrate, TiNbCN tested at 23 �C and TiCN at 250 �C. For
all the uncoated and coated samples, abrasive wear scars
(groves of different widths parallel to sliding direction) are
seen. On the uncoated 316L steel specimen, the formation of
micro/macro pitting and craters, as well as debris fracturing,

is visible, showing severe wear damage and a low wear resis-
tance (Fig. 16a). In contrast, the coated samples were much
less affected by wear (Fig. 16b and c). For these, beside the

some minor abrasive wear, a mild polishing can be identified.
Local failures in the TiCN coating can be also seen.

An elemental map, within the wear tracks of all of the sam-

ples tested at 23 �C and 250 �C is given in Fig. 15. For compar-
ison, the results for an uncoated sample, as well as the atomic
concentrations before wear testing, are also presented. For the
uncoated specimen, a substantial percentage of oxygen (31.5–

33.2 at.%) was detected after testing, suggesting that there
was a major contribution from an oxidation phenomena to
the wear mechanisms. This is also true in the case of the coated

samples, for which there was a significant increase in oxygen
content. Elemental concentrations differed from a zone to
another one, indicating that the wear processes were not uni-

form across the worn surface. The EDS spectra (Fig. 15)
revealed the presence of Fe within the substrate. This indicates
a severe degradation of the coating, and is treated as an index

for the severity of the wear damage. Moreover, the width of
the wear track of the uncoated substrate was higher than that
of the coatings, indicating that the tribological performance of
the SS steel was significantly improved by coatings.
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Figure 13 Optical images and cross-sectional wear profiles of the wear tracks for the coatings tested at 23 �C: TiCN (a and b), TiZrCN (c
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Figure 15 Surface morphology after tribological testing and the elemental compositions before and after wear testing of all of the

investigated samples at 23 �C and 250 �C.
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Summarizing the data from the optical, SEM and EDS

analyses, the wear mechanisms present in the deposited coat-
ings were a result of the combined effects of abrasive, oxidative
and polishing wear.
4. Conclusions

TiCN, TiNbCN, TiZrCN, and TiSiCN coatings were prepared and

investigated for elemental and phase composition, adhesion,
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Figure 16 Surface morphology after tribological testing for (a) uncoated sample at 23 �C and selected coatings: (b) TiNbCN at 23 �C
and (c) TiCN at 250 �C.
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anticorrosive properties and tribological performance at room and

high temperatures. The following conclusions can be drawn from the

study:

� Zr, Nb and Si alloying elements in the film composition were in the

range 2.9–9.6 at.%.

� The coatings exhibited f.c.c. solid solutions and the (111) preferred

orientation.

� All the coatings had a good adhesion to the metallic substrate, crit-

ical loads of 20–30 N being measured. The best adhesion was found

for the TiNbCN coating.

� Ti based coatings with Nb or Si alloying elements proved to be

resistant to corrosive attack in 3.5% NaCl. The TiNbCN coating

was found to have the best corrosion resistance, due to the low

residual stress and high adhesion to the substrate.

� Coatings improved the friction coefficients across all experimental

parameters.

� The wear mechanism was found to be dominated by abrasive and

oxidative processes.

� The best wear resistance was measured in the TiCN coating at

250 �C and the TiNbCN coating at 23 �C.
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Klaasen, H., Kübarsepp, J., 2004. Wear of advanced cemented

carbides for metal forming tool materials. Wear 256, 846–853.

Kral, C., Lengauer, W., Rafaja, D., Ettmayer, P., 1998. Critical review

on the elastic properties of transition metal carbides, nitrides and

carbonitrides. J. Alloys Compd. 265, 215–233.

Kumar, T.S., Prabu, S.B., Manivasagam, G., Padmanabhan, K.A.,

2014. Comparison of TiAlN, AlCrN, and AlCrN/TiAlN coatings

for cutting-tool applications. Int. J. Miner. Metall. Mater. 21, 796–

805.

Kutschej, K., Fateh, N., Mayrhofer, P.H., Kathrein, M., Polcik, P.,

Mitterer, C., 2005. Comparative study of Ti1�xAlxN coatings

alloyed with Hf, Nb, and B. Surf. Coat. Technol. 200, 113–117.

Lengauer, W., Binder, S., Aigner, K., Ettmayer, P., Guillou, A.,

Debuigne, J., et al, 1995. Solid state properties of group IVb

carbonitrides. J. Alloys Compd. 217, 137–147.

Liu, F., Meng, Y.D., Ren, Z.X., Shu, X.S., 2008. Microstructure,

hardness and corrosion resistance of ZrN films prepared by

inductively coupled plasma enhanced RF magnetron sputtering.

Plasma Sci. Technol 10, 170–175.
Mansfeld, F., 1976. In: The Polarization Resistance Technique for

Measuring Corrosion Currents, vol. 6. Springer, US.

Mesquita, R.A., Schuh, C.A., 2012. Tool steel coatings based on

niobium carbide and carbonitride compounds. Surf. Coat. Technol.

207, 472–479.
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