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Abstract A systematic in-silico study based on molecular modeling techniques was conducted on

thirty 3,4-disubstituted pyrrolidine sulfonamides derivatives to identify the drug candidate for treat-

ing schizophrenia and impairments associated with NMDA receptor hypofunction, through selec-

tive and competitive inhibition of GlyT1. QSAR analysis demonstrates that geometric and

constitutional descriptors have a key function in human GlyT1 activity. The in-silico study con-

cluded that the most active ligand labeled C19 was predicted to be a non-toxic inhibitor, with a

desired ADME-Toxicity profile and a significant probability to penetrate the central nervous system

(CNS). Molecular docking simulations confirmed that the C19 compound was docked to the active

sites of drosophila melanogaster dopamine transporter (DAT) protein, creating a variety of chem-
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ical bonds towards TYR 124, ASP 475, GLU 480, ALA 479, and VAL 120 amino acids residues.

The molecular dynamic (MD) technique combined with the MMGBSA approach confirmed that

produced intermolecular interactions for the (DAT protein–C19 ligand) complex remain so stable

during 100 ns of MD simulation time. Consequently, the C19 ligand is highly recommended for the

treatment of schizophrenia and other disabilities linked to the hypofunction of glutaminergic

NMDA receptors.

� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Over the last decade, the glycine transporter type 1 (GlyT1) localized at

glutamatergic synapses has gained great attention as one of the major

neurotransmitters that control memory and learning functions, and a

key element of glycine metabolism in the central nervous system

(CNS) (Eulenburg et al., 2005; Hudson et al., 2020; Lowe et al.,

2009; Santora et al., 2018). Many pharmaceutical companies have

focused on developing selective and competitive GluT1 inhibitors, to

provide potential treatments for neurodegenerative disorders associ-

ated with glutamine N-methyl-D-aspartate (NMDA) receptor hypo-

function, including schizophrenia (Atkinson et al., 2001; Ouellet

et al., 2011; Wolkenberg and Sur, 2010; Wolkenberg et al., 2009). A

number of these GlyT1 inhibitors have been repeatedly proven to be

effective and successful in animal models of schizophrenia and clini-

cally assessed for several symptom domains (Blackaby et al., 2010;

Pinard et al., 2010a; Santora et al., 2018). A few years ago, Roche suc-

ceeded in developing a noncompetitive GlyT1 inhibitor as the most

advanced compound, namely bitopertin (RG1678), which attained

positive results to treat negative symptoms of schizophrenia patients.

However, it did not successfully reduce these negative symptoms in

the later stages of clinical trials, due to its very limited efficacy

(Alberati et al., 2012; Pinard et al., 2010a). For this reason, the discov-

ery of selective and competitive glycine transporter type 1 inhibitors

continues to be of great interest to chemists in a wide range of litera-

ture (Amberg et al., 2018; Blackaby et al., 2010; Hudson et al., 2020;

Łaztka and Bajda, 2022; Pinard et al., 2010b; Rosenbrock et al.,

2023; Santora et al., 2018). Recently, a structural family of 3,4-

disubstituted pyrrolidine sulfonamides, was synthesized and experi-

mentally evaluated through in vivo and in vitro assays to selectively

and competitively inhibit the glycine transporter type 1. In this regard,

our in-silico investigations were carried out on thirty derivatives of 3,4-

disubstituted pyrrolidine sulfonamides which were detected thanks to

their inhibitory activity against the type 1 of glycine transporter

(Wang et al., 2018). In the beginning, we applied the quantitative struc-

ture–activity relationship (QSAR), which gained an advanced position

in modern chemistry (Vilar et al., 2008), by developing two validated

QSAR models which will be able to predict human GluT1 activity

for 3,4-disubstituted pyrrolidine sulfonamides family, using multiple

linear regression (MLR) and multiple nonlinear regression (MNLR)

techniques (Mostoufi and Constantinides, 2023). Thereafter, we pre-

dicted the physicochemical and pharmacokinetic properties of candi-

date inhibitors able to cross the blood–brain barrier (BBB),

penetrating the central nervous system (CNS). Afterwards, the most

active inhibitor having an excellent absorption, distribution, metabo-

lism, excretion, and toxicity (ADME-Tox) profile and meeting all

drug-likeliness conditions (Tian et al., 2015), was chosen for molecular

docking simulation as a technology widely applied in the field of drug

discovery (Serrano et al., 2020), indicating the intermolecular interac-

tions produced towards the dopamine transporter membrane protein

encoded as 4 M48.pdb https://www.rcsb.org/structure/4M48 (Bank,

n.d.). Moreover, the process of molecular docking for the (candidate

ligand-targeted protein) complex was successfully validated using the

docking validation protocol (El fadili et al., 2022a). The molecular sta-

bility of the studied complex was examined with the help of the molec-

ular dynamics (MD) technique during 100 ns of MD simulation time,
studying the conformational changes behaviors of the targeted protein

towards the candidate drug with detailed temporal resolution and

highest atomic precision (El fadili et al., 2022b; Hollingsworth and

Dror, 2018; Hu et al., 2023; Karplus and McCammon, 2002). Finally,

the molecular mechanics with generalized born and surface area

(MMGBSA) solvation was equally conducted to calculate the binding

free energies of the studied complex, to check again the molecular sta-

bility of the candidate ligand in complex with the protein target (Faisal

et al., 2022; Ononamadu et al., 2021). Thus, the present study aims to

discover a highly effective drug among thirty selective and competitive

GluT1 inhibitors, predicted with a good ADME-Toxicity profile, and

defined with a good level of molecular stability towards the targeted

protein, which we can strongly recommend for the treatment of

schizophrenia and other impairments associated with NMDA receptor

hypofunction.

2. Materials and methods

2.1. Experimental database

The present work aims to study thirty of 3,4-disubstituted
pyrrolidine sulfonamides shown in Table S1 (Wang et al.,
2018), whose the human GlyT1 activities of Ki order were con-

verted to pKi scale (pKi = - log10 Ki), and the experimental
database was divided on training and test sets which contain
80 % and 20 % of active molecules, respectively.

2.2. Molecular descriptors calculation

To develop the quantitative structure–activity relationships
(QSAR), a number of molecular descriptors were calculated,

as resulted in Table S2. The constitutional descriptors were
executed using ACD/chemsketch software (Österberg and
Norinder, 2001), while the geometric, physicochemical, ther-

modynamic, and topological descriptors were obtained using
ChemBio3D software (Milne, 2010).

2.3. Statistical methods

Initially, the principal component analysis (PCA) was applied
as a multivariate statistical method, to reduce the dimension of
calculated descriptors based on the correlation matrix, in

which the non-correlated descriptors were kept well, while
one of the two highly correlated descriptors (r greater than 0.9)
was removed (Groth et al., 2013; Guerra Tort et al., 2020;

Maćkiewicz and Ratajczak, 1993). Secondly, the linear and
nonlinear relationships between human GluT1 activity and
uncorrelated descriptors were studied using multiple linear

regression (MLR) and multiple nonlinear regression (MNLR)
techniques, respectively (Mostoufi and Constantinides, 2023).
So, MLR and MNLR QSAR models, which were developed

http://creativecommons.org/licenses/by-nc-nd/4.0/
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for training set of 24 molecules, were externally validated for
test set on 6 novel molecules. Moreover, the mathematical
models were internally validated with the help of cross valida-

tion with the leave one out procedure (CV-LOO) (Er-Rajy
et al., 2022).

2.4. In-silico pharmacokinetics, drug-likeliness, and ADMET
depiction exploration

Before proceeding with any clinical investigation, it is neces-

sary to carry out an assessment of absorption, distribution,
metabolism, excretion and toxicity (ADME-Tox) properties
in the human body, checking the five rules of Lipinski

(Lipinski et al., 1997), and respecting the violations number
of Veber, Ghose, Egan, and Muegge (Egan et al., 2000;
Egan and Lauri, 2002; Muegge et al., 2001; Veber et al.,
2002) for the drug candidates, which were predicted as central

nervous system (CNS) agents according to Boild-Eggs model.
To achieve this objective, we examined the physicochemical
and in-silico pharmacokinetics properties of the candidate’s

compounds, with the help of pkCSM (Pires et al., 2015), and
SwissADME (‘‘SwissADME,” n.d.) servers.

2.5. Molecular docking simulation

To discover the chemical bonds produced between a drug can-
didate and a target protein, we performed molecular docking,
an effective drug discovery technique (Bassani et al., 2022).

The dopamine transport protein, was uploaded from proteins
data bank (PDB), which was discovered by the X-ray diffrac-
tion technique with a resolution of 2.96 Å (Bank, n.d.;

Kouranov, 2006). The targeted protein coded as 4 M48.pdb
was prepared using Discovery Studio 2021 (BIOVIA) software
package (Systèmes, 2020), removing the water molecules

(H2O), chloride and sodium ions (Na+, Cl-) and all suspended
ligands like as cholesterol (C27H46O) and nortriptyline
(C19H21N). The gasteiger charges and polar hydrogens were

added. Then, the prepared protein was docked to the candi-
date drug using AutoDock 4.2 software (Norgan et al.,
2011), converting the complex to PDBQT format. The sizes
of grid box were centralized on (�42.424 Å, �0.573 Å,

55.066 Å), putting the 3D- structure dimensions on (120,
120, 120) with a spacing of 0.375 Å. Finally, the results of
intermolecular interactions produced for the most stable com-

plex were visualized by mean of Discovery Studio 2021 (BIO-
VIA) software.

2.6. Molecular dynamic

To investigate the stability of intermolecular interactions pro-
duced between the candidate drug and targeted protein, we

performed the molecular dynamics for studied complex during
100 ns of simulation time, using Desmond software, a package
of Schrödinger LLC (Pyrhönen et al., 2022). The (candidate
drug-targeted protein) complex was prepared with the assis-

tance of Protein Preparation Maestro. Then, the pre-treated
complex was optimized in the System Builder, working on a
solvent model of TIP3P orthorhombic box, with application

of OPLS force field (Kaminski et al., 2001). Additionally, the
selected model was neutralized by the reproduction of physio-
logical conditions, adding water molecules (H2O) and counter
ions ([Na+, Cl-] equal to 0.15 M) with a temperature of 300 K
and a pressure of 1 atm.

3. Results and discussion

3.1. Quantitative structure-activity relationships (QSARs)

3.1.1. Principal components analysis

The quantitative structure–activity relationship technique is
intended to develop a predictive QSAR model between bio-
logical activity and uncorrelated descriptors. For this goal,

we applied the principal component analysis (PCA) as a sta-
tistical method widely applied to minimize the size of
molecular descriptors in a reduced number of factorial axes

(or principal components) based on the correlation matrix
(Bastianoni et al., 2021), as resulted in Table S2, which indi-
cates thirty-two strong correlations (correlation coefficients
of Pearson superior than 0.9). So, the development of

QSAR model was focused only on weakly correlated
descriptors.

3.1.2. Multiple linear regression

To study the linear relationship between the structural descrip-
tors and human GluT1 activity, we applied the multiple linear
regression (MLR) technique (Uyanık and Güler, 2013) on 24

molecules of training set, based on stepwise selection for hun-
dreds of randomizations. Therefore, the best MLR QSAR
model was obtained in equation (1), considering the best val-

ues of determination, adjustment, and correlation coefficients
(R2, R2 adjusted, and R) and minimal root mean square devi-
ation (RMSD).

pKi ¼ �60:528þ 43:061�Dþ 3:569�%Hþ 0:321

� VDWE� 0:087� TE� 0:642�%N� 0:539

�%O ð1Þ

The first predictive QSAR model developed in equation (1),
demonstrates that human Glut1 activity of pKi order is

strongly correlated with constitutional descriptors (in particu-
lar %H, %N, %O and D) and geometric descriptors (like as T
E, and VDW E), with minimal root mean square deviation
(RMSD of 0.546) and good values of determination, correla-

tion, and adjustment coefficients (R2 = 0.746, R2

adjusted = 0.657, and R = 0.864, respectively). The six
selected descriptors (Table S3) have significant impacts on

human GluT1 activity, because the slope of each one is defined
by a probability<0.05 (5%) for 95% of confidence interval, as
displayed in Table 1.

The developed MLR model shows that electronic density
(D), mass percentage of hydrogen (%H), and van der Waals
energy (VDW E) have a positive effect on human GluT1 activ-

ity, but mass percentages of nitrogen and oxygen (%N, %O),
and torsion energy (T E) affect it negatively, as displayed in
Fig. 1.

The analysis of variance (Anova test) shows that calculated

value of Fisher (F = 8.332) is superior to its critical value (F
(30, 6) = 2.42, p < 5%), which indicates that null hypothesis
(H0) was rejected, so there is an homogenous variance between

the inhibitory activity and six selected descriptors as displayed
in Table 2.



Table 1 The significant weights of the selected descriptors.

Source Value Standard deviation t Pr > |t| Lower terminal (95%) Higher terminal (95%)

Constante �60.528 12.047 �5.024 0.000 �85.945 �35.111

D 43.061 7.133 6.037 < 0.0001 28.011 58.110

%H 3.569 0.710 5.025 0.000 2.071 5.068

VDW E 0.321 0.101 3.162 0.006 0.107 0.534

T E �0.087 0.026 �3.366 0.004 �0.142 �0.033

%N �0.642 0,129 �4.969 0.000 �0.915 �0.369

%O �0.539 0.117 �4.628 0.000 �0.785 �0.293

Fig. 1 The impact of selected descriptors on human GluT1

activity.
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3.2. Multiple non-linear regression

To model the nonlinear regression between the six uncorre-
lated descriptors, signaled by MLR method and GlyT1 activ-
ity, we performed the multiple non-linear regression

(MNLR) method (Kravić et al., 2022), for twenty-four inhibi-
tors (training set) based on following programmed function:

Y ¼ a0þ
Xn

i¼1
ai�Xiþ bi�Xi2
� �

(El fadili et al., 2022b) Y: predicted activity by MNLR
QSAR model. a0: constant of predictive model. Xi: selected

descriptor. ai, bi: slopes of each descriptor for one and two
degrees, respectively.

The second QSAR model, developed by the pre-

programmed function of multiple non-linear regression con-
Table 2 Analysis of variance using the fisher test.

Source DDL Total square

Model 6 14.923

Error 17 5.075

Adjusted total 23 19.998
firms also that human GluT1 activity of pki order is affected
by the six selected descriptors as expressed in equation (2).

This mathematical model is done by a low deviation (RMSD
equal to 0.636) and good values of determination and correla-
tion coefficients (R2 = 0.777 and R = 0.882, respectively).

pKi ¼ 87:623� 193:402�Dþ 11:223�%Hþ 1:393

� VDWE� 0:048� TE� 1:080�%N0:479�%O

þ 80:55646�D2 � 0:866�%H2 � 0:027

� VDWE2 � 0:00038� TE2 þ 0:014�%N20:004

�%O2 ð2Þ
3.3. Validation of predictive QSAR models

3.3.1. External validation

External validation is an essential and critical step to examine
the reliability of MLR and MNLR QSAR models, ensuring
their application to new molecules included in the test set

(Rezende et al., 2019). Based on developed models in equations
(1) and (2) for twenty-four molecules (training set), we tested
six novel molecules (2, 10, 11, 13, 19, 24) which are part of test

set, and we obtained an external correlation coefficient of
R2ext = 0.648 and R2ext’=0.872 for MLR and MNLR mod-
els, respectively. According to Golbreikh and Tropsha’s study,

the linear and non-linear models are externally validated
because the external correlation coefficients are superior to
0.6. The Table 3, shows the predicted activities for six novel
molecules by MLR and MNLR models, where the quantitative

correlations are translated in Figs. 2 and 3, successively.

3.3.2. Internal validation

A cross-validation (CV) technique was performed using the
leave-one-out (LOO) procedure, for internal validation of the
established QSAR models, testing each chemical compound
once, modeling a new mathematical model on twenty-three

molecules each time (N-1 = 23) and predicting human GluT1
Mean square F Pr > F

2.487 8.332 0.000

0.299



Table 3 The observed and predicted activities of pKi order using MLR and MNLR models.

Compounds

number

Molecules nomenclature Observed

pKi

Predicted

pKi (MLR)

Predicted pKi

(MNLR)

2* (3R,4S)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)-N,4-diphenylpyrrolidin-3-

amine.

6.701 5.447 5.606

10* N-((3R,4S)-4-(4-fluorophenyl)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)

pyrrolidin-3-yl)-5-(trifluoromethyl)pyridin-3-amine.

5.936 7.218 7.088

11* (3R,4S)-N-(3-chlorophenyl)-4-(3-fluorophenyl)-1-((1-methyl-1H-imidazol-4-yl)

sulfonyl)pyrrolidin-3-amine.

7.377 8.286 8.257

13* N-((3R,4S)-4-(4-fluorophenyl)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)

pyrrolidin-3-yl)-2-(trifluoromethyl)pyridin-4-amine.

6.928 7.986 7.870

19* (3R,4S)-N-((R)-2,3-dihydro-1H-inden-1-yl)-4-(4-fluorophenyl)-1-((1-methyl-1H-

imidazol-4-yl)sulfonyl)pyrrolidin-3-amine.

9.000 10.644 9.518

24* 4-(((3R,4S)-3-benzyl-4-phenylpyrrolidin-1-yl)sulfonyl)-1-methyl-1H-imidazole. 7.032 6.653 7.845

* Indicates the test set molecules.
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Fig. 2 Quantitative correlation between observed and predicted

GluT1 activity using MLR technique.
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Fig. 3 Quantitative correlation between observed and predicted

GluT1 activity using MNLR technique.
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activity for each tested molecule (Rafało, 2022). The process
was repeated for all molecules in the training set, as resulted

in Table 4. Afterwards, the quadratic coefficient (Q2 cv) of
cross-validation, was calculated based on the following
equation:

Q2cv ¼ 1�
Pn

i ðYob� YprÞ2Pn
i ðYob� YmeanÞ2 Equation3ðElfadilietal:; 2023Þ

As: Yob: the observed activity, Ypr: the predicted activity,
and Ymean: the mean of observed activities.

According to Golbreikh and Tropsha’s study, although the
result of quadratic coefficient (Q2cv = 0.546) exceeds 0.5, so
the developed QSAR model is internally validated with a good
reliability and strong predictivity.

Table 4.

3.3.3. Validation using Y-randomisation test

According to Golbreikh and Tropsha’s study, the highest
value of quadratic coefficient generated by cross validation
technique with the leave one out procedure (CVLOO) is prob-
able to be overestimated and may refers to a lucky correlation,

so the internal validation is necessary but still not enough suf-
ficient. For this reason, the Y-Randomization test is so
required (Golbraikh and Tropsha, 2002; Halder and Jha,

2010). Using java Platform SE binary, we evaluated the predic-
tive accuracy of developed QSAR model through one hundred
randomizations as resulted in Table S4. The value of cR2p cri-

teria was 0.621, which exceeds 0.5 threshold. Moreover, the
resulted correlation, determination, and cross-validation with
the leave-one-out procedure coefficients of the original model
are so higher than the marked values for all 100 randomiza-

tions. So, the predicted GlyT1 activity by the originally devel-
oped model are not due to random chance.

3.3.4. Statistical criterias of Golbreikh and Tropsha’s study

Golbreikh and Tropsha’s statistical study emphasizes that a
certain number of postulated conditions must be verified
before the quantitative structure–activity relationship model

can be applied to other new molecules. In this part, we noted
that the generated model by MLR technique satisfy with suc-
cess all postulated threshold conditions of Tropsha and Gol-

braikh’s theory, as presented in Table 5. Consequently, the
developed model is qualified by an accurate and precise predic-



Table 4 The observed and predicted activities using MLR, MNLR and CVLOO techniques.

Molecules

number

Molecules nomenclature Observed

pKi

Predicted

pKi

(MLR)

Predicted

pKi

(MNLR)

Predicted

pKi

(CVLOO)

1 2-chloro-N-((3R,4S)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)-4-

phenylpyrrolidin-3-yl)-3-(trifluoromethyl)benzamide.

6.703 6.820 6.834 7.131

3 (3R,4S)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)-4-phenyl-N-(o-tolyl)

pyrrolidin-3-amine.

5.821 6.399 6.367 6.648

4 (3R,4S)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)-4-phenyl-N-(m-tolyl)

pyrrolidin-3-amine.

7.745 6.817 6,742 6.417

5 (3R,4S)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)-4-phenyl-N-(p-tolyl)

pyrrolidin-3-amine.

5.903 6.419 6.353 6.634

6 (3R,4S)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)-4-phenyl-N-(3-

(trifluoromethyl)phenyl)pyrrolidin-3-amine.

8.097 7.370 7.651 7.292

7 (3R,4S)-4-(4-fluorophenyl)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)-N-

(3-(trifluoromethyl)phenyl)pyrrolidin-3-amine.

8.523 8.085 8.150 8.018

8 (3R,4S)-N-(3-chlorophenyl)-4-(4-fluorophenyl)-1-((1-methyl-1H-

imidazol-4-yl)sulfonyl)pyrrolidin-3-amine.

8.523 8.288 8.259 8.247

9 (3R,4S)-N-(4-fluoro-3-(trifluoromethyl)phenyl)-4-(4-fluorophenyl)-1-((1-

methyl-1H-imidazol-4-yl)sulfonyl)pyrrolidin-3-amine.

8.301 8.876 8.758 9.085

12 (3R,4S)-N-(3-chlorophenyl)-4-(2-fluorophenyl)-1-((1-methyl-1H-

imidazol-4-yl)sulfonyl)pyrrolidin-3-amine.

7.678 8.296 8.282 8.394

14 (3R,4S)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)-4-(pyridin-3-yl)-N-(3-

(trifluoromethyl)phenyl)pyrrolidin-3-amine.

6.116 6.401 6.350 6.494

15 (3R,4S)-4-(4-fluorophenyl)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)-N-

(3-(trifluoromethoxy)phenyl)pyrrolidin-3-amine.

8.398 7.745 7.714 7.639

16 N-((3R,4S)-4-(4-fluorophenyl)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)

pyrrolidin-3-yl)-4-(trifluoromethyl)pyridin-2-amine.

8.097 7.656 7.568 7.576

17 N-((3R,4S)-4-(4-fluorophenyl)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)

pyrrolidin-3-yl)-6-(trifluoromethyl)pyrimidin-4-amine.

8.301 7.906 8.337 7.629

18 (3R,4S)-N-(4-fluoro-3-(trifluoromethoxy)phenyl)-4-(4-fluorophenyl)-1-

((1-methyl-1H-imidazol-4-yl)sulfonyl)pyrrolidin-3-amine.

8.699 8.504 8.357 8.477

20 (3R,4S)-N-(4-fluoro-3-(trifluoromethyl)phenyl)-4-(4-fluorophenyl)-1-((1-

methyl-1H-1,2,3-triazol-4-yl)sulfonyl)pyrrolidin-3-amine.

8.523 8.806 8.694 8.896

21 4-(((3S,4R)-3-(4-fluorophenyl)-4-((3-(trifluoromethoxy)phenoxy)methyl)

pyrrolidin-1-yl)sulfonyl)-1-methyl-1H-imidazole.

8.155 7.790 8.082 7.649

22 ((3R,4S)-4-(4-fluorophenyl)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)

pyrrolidin-3-yl)(3-(trifluoromethoxy)phenyl)methanone.

7.538 7.522 7.459 7.515

23 N-(((3S,4S)-4-(4-fluorophenyl)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)

pyrrolidin-3-yl)methyl)-3-(trifluoromethoxy)aniline.

7.222 8.017 8.164 8.108

25 4-(((3R,4S)-4-(4-fluorophenyl)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)

pyrrolidin-3-yl)oxy)-6-(trifluoromethyl)pyrimidine.

7.013 7.390 7.077 7.583

26 (3R,4S)-4-(4-fluorophenyl)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)-N-

(3-(trifluoromethoxy)phenyl)pyrrolidine-3-carboxamide.

6.444 6.779 6.690 7.137

27 (3R,4R)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)-4-((R)-tetrahydro-2H-

pyran-2-yl)-N-(3-(trifluoromethoxy)phenyl)pyrrolidine-3-carboxamide.

8.523 8.660 8.474 8.714

28 (3R,4R)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)-4-((S)-tetrahydrofuran-

2-yl)-N-(3-(trifluoromethoxy)phenyl)pyrrolidine-3-carboxamide.

7.620 7.411 7.489 6.921

29 (3R,4R)-4-(1,3-dioxepan-2-yl)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)-

N-(3-(trifluoromethoxy)phenyl)pyrrolidine-3-carboxamide.

8.699 8.854 8.806 8.968

30 (3R,4R)-4-(1,3-dioxan-2-yl)-1-((1-methyl-1H-imidazol-4-yl)sulfonyl)-N-

(3-(trifluoromethoxy)phenyl)pyrrolidine-3-carboxamide.

8.699 8.527 8.682 8.445
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tivity, which affirms again that human GlyT1 activity is really
affected by the six selected descriptors.

3.4. In-silico pharmacokinetics ADMET prediction

We initiated the in-silico screening of thirty human GlyT1 inhi-
bitors, using the BOILED-Egg model as a widely applied pre-
dictive technique in the field of medicinal chemistry, to
discover drug candidates that could penetrate the central ner-
vous system (CNS), as resulted in Fig. 4. We noticed that most
of the chemical compounds are part of white Egan Eggs, so

they are predicted to be absorbed by the gastrointestinal tract,
except the molecules marked as 2, 3, 4, 5, and 19, which are
part of the yellow part of Egan-egg, thus they are predicted
to be effluated from the central nervous system (CNS) by the

P-glycoprotein, and predicted as potent inhibitors with an



Table 5 Tropsha and Golbraikh conditions to examine the accuracy of generated MLR QSAR model.

Statistical parameters Developed Equations Model scores Threshold Comment

R2
R2 ¼ 1�

P
ðYobs�YcalÞ2P
ðYobs�Yobs

�
Þ
2

0.746 > 0.6 Accepted

R2adj R2adj ¼ ðN�1ÞR2�p
N�p�1

0.657 > 0.6 Accepted

R2test R2test ¼ 1�
P

YcalðtestÞ�YobsðtestÞ2P
ðYobsðtestÞ�Yobs

�
ðtrainÞÞ

2

0.648 > 0.6 Accepted

Q2cv Q2cv ¼ 1�
P

ðYcal�YobsÞ2P
ðYobs�Yobs

�
Þ
2

0.529 > 0.5 Accepted

R2rand The average of 100 R2rand (i) 0.243 < R2 Accepted

Q2cv‘LOO’ rand The average for 100 Q2cv ‘LOO‘ rand (i) �0.660 < Q2cv Accepted

cR2p
cR2p = R*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðAverageRrandÞ22

q
0.621 > 0.5 Accepted
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important ability to cross the blood–brain barrier (BBB).
However, molecule 24 colored in red was predicted to not be

effluated from the central nervous system, but it’s capable to
pass through the blood–brain barrier (BBB) (Daina and
Zoete, 2016). Therefore, we conclude that just five glycine

transporter type 1 inhibitors (C2, C3, C4, C5, and C19) which
are predicted as central nervous system agents with the highest
probability to cross the blood–brain barrier.

Subsequently, we studied the physicochemical and pharma-
cokinetic properties of all central nervous system agents, as
shown in Table 6 and Table 7, respectively. Based on the prop-
erties of nortriptyline as a positive control molecule co-

crystallized with the DAT protein, we noticed that all pre-
dicted inhibitors are in good agreement with nortriptyline,
where they respect all five rules of Lipinski (MW � 500 g/m

ol, 40 � MR � 130, HBD < 5, Log P (Octanol/Water) < 5,
Fig. 4 The predictive model of BOILED
HBA � 10) (Er-rajy et al., 2022; Er-rajy et al., 2023a; Er-rajy
et al., 2023b), and satisfy the violations number of Veber,

Ghose, Egan, and Muegge (Jia et al., 2020). Moreover, the
pharmacokinetics properties reveal a good ADME-Toxicity
profile, where all predicted molecules are defined by a good

human intestinal absorption (HIA superior than 94 %), and
the values of CNC and BBB permeabilities are included in (-
2 to �3) Log PS, and higher than �1 Log BB, respectively.

Thus, they have a good permeabilities to the central nervous
system (CNS) and the blood–brain barrier (BBB). In addition,
they are all predicted as substrates of 3A4 cytochrome. C4 and
C24 compounds and C19 as the most active ligand, are pre-

dicted as potent inhibitors for 2C9 and 3A4 cytochromes.
Also, they are defined by an excretion of a total clearance infe-
rior than 1 Log ml/min/kg. According to the AMES toxicity

test, all chemical compounds are predicted as non-toxic inhibi-
-Egg for 3,4-disubstituted pyrrolidine.



Table 6 Prediction of physico-chemical parameters of central nervous system agents.

Compounds

number

Physical and chemical properties Lipinski

violations

Veber

violations

Egan

violations

Ghose

violations

Muegge

violations

Molecular

weight (g/mol)

Molar refractive

index

Rotatable bonds

Number

Log P

(Octanol/

Water)

H-bond

Acceptors

Number

H-bond donors

Number

Categorical (Yes/No)

Threshold � 500 40 � MR � 130 < 10 < 5 � 10 < 5

C2 382.48 109.01 5 3.03 4 1 Yes Yes Yes Yes Yes

C3 396.51 113.98 5 2.65 4 1 Yes Yes Yes Yes Yes

C4 396.51 113.98 5 3.24 4 1 Yes Yes Yes Yes Yes

C5 396.51 113.98 5 3.00 4 1 Yes Yes Yes Yes Yes

C19 440.53 119.90 5 3.37 6 1 Yes Yes Yes Yes Yes

C24 381.49 109.48 5 2.55 4 0 Yes Yes Yes Yes Yes

Nortriptylene 263.38 86.06 3 3.22 1 1 Yes Yes Yes Yes No

Table 7 Prediction of ADMET-Toxicity pharmacokinetic properties of central nervous system agents.

Compounds

number

Absorption Distribution Metabolism Excretion Toxicity

Intestinal Absorption

(human)

BBB

permeability

CNS

permeability

Substrate Inhibitor Total Clearance AMES

Toxicity

Hepatotoxicity Skin

Sensitization
Cytochromes

2D6 3A4 1A2 2C19 2C9 2D6 3A4

Numeric (% Absorbed) Numeric (Log

BB)

Numeric (Log

PS)

Categorical (Yes/No) Numeric (Log ml/

min/kg)

Categorical (Yes/No)

C2 94.986 0.175 �2.334 No Yes No Yes Yes No No 0.27 Not toxic Yes No

C3 96.126 0.219 �2.264 No Yes No Yes No No Yes 0.269 Not toxic Yes No

C4 95.608 0.142 �2.254 No Yes No Yes Yes No Yes 0.264 Not toxic Yes No

C5 95.522 0.125 �2.26 No Yes No Yes No No Yes 0.272 Not toxic Yes No

C19 94.049 0.151 �2.313 No Yes No No Yes No Yes 0.41 Not toxic Yes No

C24 99.251 0.066 �2.216 No Yes Yes Yes Yes No Yes 0.114 Not toxic Yes No

Nortriptylene 97.482 0.808 �1.196 No Yes Yes No No Yes No 0.929 Not toxic Yes Yes
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tors of the human body, without any skin sensitization, but
they have a known positive hepatotoxicity.

3.5. Molecular docking

The results of molecular docking simulation exposed in the
Fig. 5, demonstrate the intermolecular interactions produced

between the dopamine transporter (DAT) protein as a key
therapeutic strategy to treat clinical depression and neuro-
pathic pain (Adamski et al., 2017; Belhassan et al., 2019),

and the compound C19 as the most active ligand with a good
ADME-Toxicity profile. 2D and 3D dimensional visualiza-
tions confirm that C19 ligand forms two hydrogen bonds

towards ASP 475 and GLU 480 amino acids residues of
DAT protein in A chain, with nuclear distances of 3.90 Å
and 3.07 Å respectively, taking into account that the chemical
bonds of the hydrogen bonding type make the (ligand–protein)

complex so stable. Additionally, C19 reacts to VAL 120 and
ALA 479 amino acids forming two chemical bonds of Pi-
Alkyl type at 6.08 Å and 3.95 Å, respectively. And Pi-Pi T-

shaped bond with TYR 124 amino acid at 5.39 Å. Conse-
quently, ASP 475, GLU 487, VAL 120, ALA 479, and TYR
124 are the main sites of glycine transporter type 1 inhibition

for the candidate drug. The resulted chemical bonds include
intermolecular interactions similar to those detected towards
Tyr 124, Ala 479, and Val 120 amino acid residues, which have
Fig. 5 2D (left) and 3D (right) intermolecular interactions, produced

�8.96 Kcal/mol.
been produced by two selective GluT1 inhibitors, after being
bound to the same membrane protein of drosophila melanoga-
ster dopamine transporter (DAT), which were also designed to

improve memory performance while treating depression and
the cognitive symptoms associated with schizophrenia (El
fadili et al., 2023; Hudson et al., 2020; Santora et al., 2018).

3.6. Docking validation protocol

The process of molecular docking simulations was examined

using docking validation protocol or re-docking methodology
for the (C19 ligand – DAT protein) complex. In the first time,
we have compared the intermolecular interactions produced

for the studied complex with the active sites of nortriptyline
as co-crystallized ligand bound to the same chain of targeted
protein. Where, the active sites of nortriptyline are the residues
of TYR 124, PHE 325, and PHE 43 amino acids, which are

experimentally extracted using the ProteinsPlus online server
(‘‘Zentrum für Bioinformatik: Universität
Hamburg - Proteins Plus Server,” n.d.), as resulted in

Fig. 6A, and TYR 124, PHE 325, PHE 43, VAL 120, and
ALA 479 amino acids, which are theoretically produced using
Autodock tools, as presented in Fig. 6B. Therefore, we noticed

that TYR 124, VAL 120, and ALA 479 amino acids are the
same amino acids, which were obtained for (C19 - DAT pro-
tein) complex. In second time, we have used the superposition
for (C19 ligand - DAT protein) complex with binding energy of



Fig. 6 The active sites of co-crystallized ligand of DAT protein in A-chain. B: 2D intermolecular interactions produced for the (docked

nortriptyline - DAT protein) complex with a binding energy of � 9.02 kcal/mol. C: Re-docking pose with a RMSD value of 0.128 Å (co-

crystallized nortriptyline colored in cyan superposed on docked nortriptyline).
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of co-crystallized and docked nortriptyline, and we have
obtained a good overlay pose with a minimal root mean square
deviation (RMSD = 0.128) which is<2 Å as shown in

Fig. 6C. Therefore, we conclude that the candidate drug was
docked in the active sites of targeted protein, and the process
of molecular docking is successfully validated (Abdullahi

et al., 2020).

3.7. Molecular dynamic simulation

High-performance molecular dynamics simulation was per-
formed to study the stability of intermolecular interactions
Fig. 7 The changes of Root Mean Square Deviation (RMSD) and

dopamine transporter protein complexed with C19 ligand.
produced for the (C19 ligand - DAT protein) complex during
100 ns (El fadili et al., 2022b; Er-rajy et al., 2023). The results
of the conformational changes presented in Fig. 7 show that

the root mean square deviation (RMSD) of the candidate
ligand oscillates in parallel with the RMSD values of the pro-
tein target during the first thirty nanoseconds, then destabilizes

a little, and stabilizes again during the last thirty nanoseconds
due to the effect of heavy atoms as oxygen and nitrogen which
make the ligand–protein complex so stable. In addition, there
are no deviations greater than 3 Å, which demonstrates that

the simulation remains in equilibrium during the molecular
dynamics simulation time without any noticeable deviation.
Root Mean Square Fluctuation (RMSF) during 100 ns, for the



Fig. 8 The changes in radius of gyration (r Gyr), molecular surface area (MolSA), solvent accessible surface area (SASA), and polar

surface area (PSA), over 100 ns of molecular dynamics simulation time.

Fig. 9 The histogram of interaction fractions between DAT protein and C19 ligand (left), and the timeline depiction of intermolecular

interactions and chemical contacts of candidate ligand in the active sites of targeted protein (right).

In-silico screening based on molecular simulations 11



Table 8 Binding energies in Kcal/mol of the studied complex using MMGBSA approach.

Studied

complex

MMGBSA

dG Bind

MMGBSA dG

Bind Coulomb

MMGBSA dG

Bind Covalent

MMGBSA dG

Bind Hbond

MMGBSA

dG Bind Lipo

MMGBSA dG

Bind Solv GB

MMGBSA

dG Bind vdW

(C19 –

protein)

complex

�51.417899 �56.518147 1.557139 �0.820922 –23.877425 73.360626 �45.119169
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Secondly, the root mean square fluctuation (RMSF) values
show only two remarkable fluctuations for the residuals 470

and 530, which exceeded 3 Å, as shown in Fig. 7. So, we con-
clude that the ligand does not diffuse far from its primary
binding site.

In addition, we recorded negligible fluctuations for ligand
properties, such as radius of gyration (r Gyr), molecular sur-
face area (MolSA), solvent accessible surface area (SASA),

and polar surface area (PSA), which all oscillate in a very small
range over 75 ns, making just one remarkable fluctuation at
the same time, due to the influence of nitrogen, oxygen, sulfur,
and fluorine, as typical heteroatoms characterizing this organic

molecule (AlAmiery, 2023; TANWER and Shukla, 2023).
However, they stabilize again until the rest of the molecular
dynamics simulation time as displayed in Fig. 8, which demon-

strates minimal changes in the compactness of the candidate
ligand. Consequently, the targeted protein is very flexible after
being bound to the candidate ligand.

Furthermore, the upper panel shown in Fig. 9, reflects the
specified number of contacts produced by the candidate ligand
towards the targeted protein throughout molecular dynamics
simulation time, while the lower panel displays the residues

of amino acids, which reacted with the C19 compound along
the trajectory. The scale on the right-hand side of the graph
shows that the strongest connection is one that corresponds

to a dark orange residue that has entered into more than one
chemical reaction with the candidate ligand (Ebenezer et al.,
2022). For this, ASP 475 amino acid residue has the main func-

tion in the stability of (protein–ligand) complex throughout
100 ns of MD simulation time, which presents an important
interaction fraction of H-bonds as displayed on the left side

of Fig. 9.
The Molecular Mechanics with Generalized Born and Sur-

face Area (MMGBSA) solvation was equally conducted to cal-
culate the binding free energies of the C19 ligand in complex

with DAT protein, as resulted in Table 8 (Faisal et al., 2022;
Ononamadu et al., 2021). The MMGBSA approach shows
that the binding energies are negatively very large, indicating

that the candidate drug have reacted with the protein target
with low energies (minimal DG Bind scores), which makes
the complex so stable with optimal energies during the molec-

ular dynamic’s simulation time.

4. Conclusion

In summary, quantitative structure–activity relationships reveal that

constitutional and geometric descriptors have a key function in the

human GluT1 activity of the 3,4-disubstituted pyrrolidine sulfon-

amides family. In-silico screening indicates that C2, C3, C4, C5, and

C19 were predicted as non-toxic inhibitors of the human body, and

functioning as central nervous system agents with the highest probabil-

ity to cross the blood–brain barrier, respecting Lipinski, Veber, Egan,

Muegge, and Rhose conditions. The compound C19 having the highest
activity and predicted with a good ADME-Tox profile, was chosen for

molecular docking and molecular dynamics simulations, which indi-

cate that this candidate ligand produced stable intermolecular interac-

tions with ASP 475, GLU 480, VAL 120, ALA 479, and TYR 124

amino acids residues of dopamine transporter protein, because the

studied properties of (C19 ligand – DAT protein) complex remained

perfectly stable until 100 ns of molecular dynamic simulation time with

lowest binding energies of MMGBSA solvation. Therefore, C19 ligand

is strongly recommended as candidate drug to treat schizophrenia and

similar disabilities in relation with glutaminergic N-methyl-D-

aspartate receptor hypofunction.
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Maćkiewicz, A., Ratajczak, W., 1993. Principal components analysis

(PCA). Comput. Geosci. 19, 303–342. https://doi.org/10.1016/

0098-3004(93)90090-R.

Milne, G.W.A., 2010. Software Review of ChemBioDraw 12.0. J.

Chem. Inf. Model. 50, 2053–2053. https://doi.org/

10.1021/ci100385n.

Mostoufi, N., Constantinides, A., 2023. Linear and nonlinear regres-

sion analysis, in: Applied Numerical Methods for Chemical

Engineers. Elsevier, pp. 403–476. https://doi.org/10.1016/B978-0-

12-822961-3.00008-X.

Muegge, I., Heald, S.L., Brittelli, D., 2001. Simple selection criteria for

drug-like chemical matter. J. Med. Chem. 44, 1841–1846. https://

doi.org/10.1021/jm015507e.

Norgan, A.P., Coffman, P.K., Kocher, J.-P.-A., Katzmann, D.J.,

Sosa, C.P., 2011. Multilevel parallelization of AutoDock 4.2. J.

Cheminform. 3, 12. https://doi.org/10.1186/1758-2946-3-12.

Ononamadu, C.J., Abdalla, M., Ihegboro, G.O., Li, J., Owolarafe, T.

A., John, T.D., Tian, Q., 2021. In silico identification and study of

potential anti-mosquito juvenile hormone binding protein

(MJHBP) compounds as candidates for dengue virus - Vector
insecticides. Biochem. Biophys. Rep. 28,. https://doi.org/10.1016/j.

bbrep.2021.101178 101178.
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