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The sting of pancreatic ductal adenocarcinoma remains an irksome burden to the human populace. The
focus of recent research has switched from finding the perfect medicinal medication to blocking immuno-
logical checkpoint proteins such as the signal regulating protein alpha-cluster of differentiation 47
(SIRPa-CD47). The search for CD47/SIRPa inhibitors with excellent oral bioavailability and permeability
continues to elude researchers. This research aims to identify bioactive molecules with negligible side as
inhibitor SIRPa-CD47 signaling cascade. Bioactive flavonoids from African medicinal plants were virtually
screened against the SIRP-a binding site of CD47 using Schrodinger suite 2017-v1. The docking score was
validated and complex stability performed using Gromacs. Among the bioactive flavonoids, five (5) com-
pounds were predicted as potent inhibitors of CD47 with pelargonidin observed to have the best binding
affinity of �6.715 kcal/mol. Validation using QSAR and pharmacophore modeling further confirm the
interaction with predicted pIC50 range of 5.981 to 6.841 lM and fitness score of 1.109 to 1.530. Drug-
likeness prediction revealed that all hit compounds obey Lipinski’s rule of five. The MD simulation result
predicted the stability of pelargonidin and malvidin comparable to the standard drug NCGC00138783.
The quantum mechanics estimation revealed that, the hit compounds have proton donating and accept-
ing ability hence, they possess inhibitory potential. From the molecular docking, post-docking and MD
simulation analyzes of this study, Pelargonidin, malvidin and Peonidin were proposed as suitable candi-
dates that could be probed further for developing a new target-specific immunotherapeutic agent against
PDAC.
� 2023 Published by Elsevier B.V. on behalf of King Saud University. This is anopen access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Over the past ten years, cancer has remained one of the top
causes of death despite extensive study and rapid advancement
(Sandeep and Sobhia, 2018). Pancreatic ductal adenocarcinoma
(PDAC) was described by World Health Organization as one of
the most prevalent and fatal types of cancer and one of the contrib-
utors to this unpleasant burden (Da-Costa et al., 2020). The
increase in recently identified cases of pancreatic ductal adenocar-
cinoma is still a topic of discussion in cancer research. The cure
remains elusive, and multiple attempts at developing the optimum
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treatment for PDAC, a disease with low survival, have been unsuc-
cessful (Beatty et al., 2017). As a result, research has shifted toward
immunotherapy. Immunotherapy is a cancer treatment strategy
that takes advantage of the immune system’s specificity and
heterogeneity (Yang, 2015). Unfortunately, PDAC has resisted
immunotherapy, varying from small molecule antibodies to viral
modifications during treatment and various alterations in its sig-
naling pathway could explain the reasons behind resistance mech-
anisms (Alausa et al., 2022). The limitation of cytotoxic T-cell
responses to cancer cells is distinguishing trait cancers developed
to evade host immunological responses. To treat and manage var-
ious malignancies, immunotherapeutic research has recently
moved its focus to block checkpoint proteins such as PD-1, CTLA-
4, LAG3, TIM3, TIGI T, and BTLA (Sarantis et al., 2020). In healthy
conditions, immune checkpoint proteins regulate immune
response by limiting autoimmunity. However, they hinder cyto-
toxic T-cell activity in cancer by inhibiting interactions between
T-cells and antigen-presenting cells or malignant cells (Sharma
and Allison, 2015).

Since its emergence in the late 1990s, the SIRPa-CD47 check-
point has been demonstrated to be essential for cancer immune
evasion (Jiang et al., 1999; Logtenberg et al., 2019). Fig. 1 showed
the crystal structure of the CD47 with the red, green, grey and blue
colours representing the N-terminal amino acids, C-terminal
amino acids, a-helixes and b-fold sheets respectively.

All human cells express the trans-membrane protein CD-47, but
specific tumour cells have high levels of this protein (Zola et al.,
2020). It is a cell surface glycoprotein related to the immunoglob-
ulin superfamily that binds to several different proteins, including
signal regulatory protein (SIRP), thrombospondin 1, and integrin
(Zola et al., 2020). Numerous cancers rely on the tumour antigen
CD47 for growth and spread. The focus of research has been on cre-
ating therapeutic drugs that significantly disrupt the SIRPa-CD47
signalling cascade. This cascade prevents dendritic cells from
phagocytosing tumours, deactivating innate immunity, and ulti-
mately leading to tumour regression (Alausa et al., 2022). Phagocy-
tosis is inhibited by the interaction of CD47 with SIRPa, which
sends the macrophages a ‘‘don’t eat me” signal (Brown and
Frazier, 2001). As a result, tumour cells might avoid immune mon-
itoring by the inhibition of phagocytic processes when CD47 is
overexpressed. It takes more than only CD47 inhibition to activate
Fig. 1. Crystal structure of CD47.
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macrophage anti-tumour action. Recent studies indicated that the
CD47-SIRPa axis, like the PD-1/PD-L1 in solid tumours is an essen-
tial immune checkpoint in various cancers.

Traditional medicine has a rich history of using natural sub-
stances to treat cancer. Additionally, about 60% of current anti-
cancer therapeutics was derived from natural products and medic-
inal plants (Takahashi, 2018). Hence, this research focuses on dis-
covering natural compounds capable of alleviating
immunotherapeutic resistance in PDAC by targeting the CD47
using computational molecular mechanics, molecular dynamics,
and quantum investigations.
2. Methods

The E-pharmacophore hypothesis development and screening,
virtual screening, MM-GBSA calculation and QSAR modeling were
performed using Maestro Schrodinger 2017v1 software. The ADME
analysis was performed using web server, quantum calculation
was carried out using Spartan 14 software and MD simulation by
Gromacs. All computational studies were performed on a Dell com-
puter with a Windows-10 OS, an Intel core i3 processor, and 8 GB
RAM.
2.1. Protein preparation

The three-dimensional X-ray crystallographic structure of a
complex of human signal regulatory protein SIRPa complex with
CD47 (PDB ID: 2JJS) was chosen. The protein was prepared using
the Schrodinger suite’s protein preparation package. The prepara-
tion included the assignment of hydrogen bonds, bond orders,
hydrogen addition, optimization, protein minimization, removal
of all chains excluding chain C (CD47 chain), and deletion of waters
(Newman et al., 2003).
2.2. Grid generation

The receptor grid was created using the amino acids found on
the surface of CD47 that are important for binding to SIRPa
(Sandeep and Sobhia, 2018). GLU 35, THR 99, ARG 103, GLU 97,
THR 102, GLU 100, GLU 104, LEU 101 and GLU 106 are among the
amino residues. The coordinates for the X, Y, and Z axis are
28.98, �14.73, and 35.32 respectively.
2.3. Ligand preparation

Flavonoids with cancer-inhibitory properties from medicinal
plants were retrived from literature. The flavonoids’ three-
dimensional structure was downloaded in Sdf format from Pub-
chem database. The compounds were prepared with the Maestro
Schrodinger software’s LigPrep module . Fig. 2 shows the initially
screened top ranking ligand structures as well as their chemical
names.
2.4. Structure-based screening

GLIDE structure-based screening includes three precision meth-
ods: HTVS, standard precision (SP) docking, and XP docking. This
study used two docking precisions to obtain a potential lead mole-
cule quickly. HTVS can swiftly screen a vast number of molecules;
however, the sampling techniques were constrained, making it dif-
ficult to interpret the results. As a result, SP was used to dock all
the ligands (16) with high glide score from the HTVS precision
analysis, which chooses an appropriate binding pose from a broad
pool of ligands.



Fig. 2. 2D Structure and name of the selected flavonoids.
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2.5. Generation of pharmacophore hypothesis

The standard drug (NCGC00138783) was used to generate an
energy optimized pharmacophore model for the crystal structure
of CD47. The model was generated from protein-ligand option of
the phase develop pharmacophore tool of schrodinger suite
(2017–1) (Omoboyowa et al., 2023). The pharmacophore model
is shown in Fig. 3.

The virtual screening base on E-pharmacophore was performed
with the five (5) flavonoids with top docking scores after prepara-
tion using macro model minimization. The pharmacophore-based
analysis was carried out with phase module to generate a subset
of molecules having chemical features for binding to CD47 accord-
ing to the generated model. The fitness scores were used to justify
the best hits.
2.6. Development of automated QSAR model

By blasting the FASTA sequence of the protein received from
PDB, the protein inhibitors with their corresponding IC50 were
extracted from the CHEMBL database (https://www.ebi.ac.uk/
chembl/) with the chain C (CD47 chain) sequence (shown below)
used for the blasting. The inhibitory chemicals were translated to
sdf format using the Data-Warrior software (v.2) (Omoboyowa
et al., 2022). The sdf format of the inhibitors was imported into
the Schrodinger suite workspace and prepared using the macro
model minimization tool. The QSAR model for the protein was
developed. The best-projected rank was kpls molprint 24, with
the model’s prediction precision measured by the ranking score,
RMSE, SD, Q2, and R2. The pIC50 of a lead compound was predicted
using this approach.
2.7. CD47 FASTA sequence for CHEMBL blast

>2JJS_2|Chains C|LEUKOCYTE SURFACE ANTIGEN CD47|HOMO
SAPIENS (9606).
3

QLLFNKTKSVEFTFGNDTVVIPCFVTNMEAQNTTEVYVKWKFKGRDI
YTFDGALNKSTVPTDFSSAKIEVSQLLKGDASLKMDKSDAVSHTGNYTC
EVTELTREGETIIELKYRVVSWSTRHHHHHH.

2.8. Free binding energy calculation (MM-GBSA)

The docking results showed that the selected ligands bind to the
protein’s active site via the receptor grid. However, it was unclear if
this binding would be sufficient to cause a biological response as
this depends primarily on the free binding energies of the pro-
tein–ligand complex. The binding free strengths of the top-
ranking compounds and the reference drug were determined using
the MM-GBSA module of the Schrodinger software.

2.9. Quantum chemical methods

Theoretical calculations have been widely studied through a
powerful tool denoted as the Density Functional Theory method
(DFT) due to its structural and spectral explanation of organic
molecules. All calculations were performed and computed by spar-
tan 14 software by wavefunction Inc on the top five hit com-
pounds. The study was carried out with complete optimization of
all geometrical variables via 6-31G* basis set, and this was accom-
plished with B3LYP density functionals (Huang et al., 2021). Fron-
tier molecular orbitals (FMOs) energy was calculated, i.e., for the
top five hit compounds identified, which by calculation deduce
the energy band gap (Eq (1), which according to Koopman’s theo-
rem, predicts the interacting center.

Eg ¼ ELUM0 � EHOMO ð1Þ
2.10. Insilco ADMET prediction

We were interested in the drug-likeness properties of the top
five hits identified through molecular docking. This was accom-
plished with the help of the QikProp module. Then, additional
ADME properties were obtained from the online web server

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/


Fig. 3. The pharmacophore hypothesis generated with the standard drug.
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AdmetSar (https://lmmd.ecust.edu.cn/). The ligands’ chemical
structures were provided. The structures were translated to their
canonical simplified molecular-input line-entry system (SMILE)
to determine the ligand’s physicochemical properties and pharma-
cokinetic models (Jensen, 2001). The drug-likeness of can be used
to establish if a ligand is suitable for oral administration. The in sil-
ico prediction is based on Lipinski’s rules (molecular weight,
hydrogen bond donor, and hydrogen bond acceptor) (Cheng
et al., 2012).
Fig. 4. Graph depicting the docking and MM-GBSA scor
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2.11. Molecular dynamic (MD) simulation

After the docking screening, the top ligand–protein complexes
were further submitted to molecular dynamics simulation. Other
approaches are needed for validation because the dynamics of
the complexes were not considered during the molecular docking
procedure. Using molecular dynamic simulations, the stability of
docked Protein-Ligand complexes was evaluated. LiGRO (Yao
et al., 2017) was used to set up the simulation system, and a
es for the top five hits including the standard drug.

https://lmmd.ecust.edu.cn/


Fig. 5. 2D molecular interaction SIRPa binding pocket with hit compounds. (a) Pelargonidin (b) (+)-Gallocatechin (c) Malvidin (d) Peonidin (e) Catechin (f) NCGC00138783
(Standard Drug).
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GUI-based tool produced the system file needed to execute the
simulation. The target was dissolved in a cubic box filled with
TIP3P molecules of water with 150 mM NaCl ion concentration.
The target was parameterized using the Amber99sb force field,
and the ligand molecules were parameterized using LiGRO’s
ACPYPE module. The study by Omoboyowa et al. served as the
guide for preparing all other simulation systems and parameters.
GROMACS 5.1.5 was used to generate a run for each complex sys-
tem that lasted 100 ns (Omoboyowa et al., 2022).

2.12. MD simulation trajectories analysis

Using conventional GROMACS tools, the trajectories of the MD
simulation were evaluated for the root mean square fluctuation,
radius of gyration (RG), H-bond mapping and root mean square
deviation. The generated trajectories were shown in the PyMOL
visualization graphics system (Version 2.0 Schrödinger, LLC.).
Using the Molecular-dynamics-Interaction-plot tool, the interac-
tion proportions of the target residues interacting with the com-
pounds were computed (Jiang et al., 2021).

3. Results and discussion

3.1. Molecular docking, MMGBSA and interaction profiling

The protein CD47 was docked by the selected flavonoid deriva-
tives to predict binding energy and interaction with the protein.
Before docking was carried out, the protein was analyzed for its
residues, which were vital for interacting with its partner protein
CD-47.

Pelargonidin and (+)-Gallocatechin exhibited the highest bind-
ing energies of �6.715 kcal/mol and �6.353 kcal/mol respectively
Fig. 6. 3D representation of hits w
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compared to the standard drug, which has a binding energy of
�3.445 kcal/mol (Fig. 4). Thus, the docking results were analyzed,
and it was finally reported that among the top flavonoid com-
pounds, Pelargonidin and (+)-Gallocatechin exhibit the best bind-
ing interaction, essential in identifying and developing new
therapeutics targeting CD47. This will block its interaction with
CD47 as a strategy to prevent cancer. The 2D interaction diagram
shows the residues involved in the ligand’s binding (Fig. 5) and
the 3D binding complexes were presented in Fig. 6. Pelargonidin,
the top-ranked ligand, formed H-bonds with THR 34, GLU 97,
LEU 101, and GLU 104. While the other ligands including the stan-
dard drug, interacted via H-Bond with GLU 104, a critical amino
residue in the CD47 binding site. Malvidin and Peonidin had
another unique interaction with TYR 37, called Pi-Cation. VAL 36,
TYR 37, ALA 53, and LEU 101 were the same interacting hydropho-
bic amino acids in the top-ranked ligand and the standard drug.
Additionally, all reported ligands, including the standard drug,
have similar interactions with the following key hydrophobic
amino acids: TYR 37, ALA 53, and LEU 101 as presented in Table 1.
The formation of H-bond and other hydrophobic interactions
between small molecules and the amino acid residues at the bind-
ing domain of the target is vital for their inhibitory potential
(Omoboyowa, 2022). The Schrodinger suite’s Prime module’s
MM-GBSA approach was used to calculate the binding energies
of the top compounds with the highest docking scores. The lower
the score, the higher the binding energy, this method provide a
reliable statistical post-docking examination of docked complexes.
The relative free binding energies of pelargonidin, (+)-
gallocatechin, malvidin, peonidin, and catechin are �29.25,
�15.87, �29.59, �24.92, and �16.00, respectively. Pelargonidin,
Malvidin, and Peonidin exhibit higher binding energies than the
reference drug, per the results of the MM-GBSA (�22.31).
ith binding pocket of SIRPa.



Table 1
Interacting hydrophobic amino acids and H-Bond interacting amino acids for the top five hit compounds and standard drug.

Entry Name H-Bond Residues Hydrophobic Interacting amino acids Other Interactions

Pelargonidin LEU 101, GLU 104, GLU 97, THR 34 VAL 36, TYR 37, ALA 53, LEU 101 None
(+)-Gallocatechin GLU 97, LYS 39, ASP 51, GLU 35, GLU 104 LEU 101, TYR 37, VAL 36, ALA 53 None
Malvidin THR 34, LYS 39, GLU 97, LEU 101, GLU 104 ALA 53, TYR 37, LEU 101 Pi-Cation: TYR 37
Peonidin ASP 51, LYS 39, GLU 104 ALA 53, VAL 36, TYR 37, LEU 101 Pi-Cation: TYR 37
Catechin GLU 35, LYS 39, ASP 51, GLU 97, GLU 104 VAL 36, TYR 37, ALA 53, LEU 101 None
NCGC00138783(Standard Drug) ASP 51, GLU 104 VAL 36, TYR 37, ALA 53, LEU 101 PI-PI STACKING: TYR 37
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3.2. Virtual screening using E-pharmacophore model

Ligand-based pharmacophore approach is a vital computational
model for drug design without macromolecular protein structure.
This hypothesis is an ensemble of electronic and steric characters
which are vital in ensuring molecular interactions with specific
biological molecules and to stimulate or inhibit signaling pathways
of such protein (Yang, 2010; Omoboyowa et al., 2023). In this
study, Herein, the e-pharmacophore model was developed based
on the standard drug-CD47 complex using four partitioning fea-
tures. Fig. 3 showed the generated hypothesis with the standard
Table 2
E-pharmacophore fitness scores of lead compounds.

Entry Name Fitness

Pelargonidin 1.185
(+)-Gallocatechin 1.109
Malvidin 1.191
Peonidin 1.143
Catechin 1.191
NCGC00138783(Standard Drug) 1.530

Table 3
The best model and Auto-QSAR parameters.

Model code S.D R2 RMSE Q2

kpls_molprint2D_24 0.4354 0.8774 0.4220 0.8706

Fig. 7. Scatter plot of
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drug. The model with the best fitness score has one hydrogen bond
acceptor, two hydrogen bond donors, one aromatic ring and
hydrophobic interaction.

The fitness scores of the five (5) hits and standard drug are
shown in Table 2. All the hit compounds showed fitness score
greater than 1.0 with (+)-gallocatechin and catechin having the
highest score of 1.191 followed by Catechin (1.531). Although the
standard drug showed higher fitness scores higher (1.530).

3.3. Auto QSAR analysis

As it uncovers the correlations between the structural charac-
teristics of chemical compounds and their biological activities,
the quantitative structure–activity relationship (QSAR) is a compu-
tational model significant in drug development (Omoboyowa et al.,
2023). AutoQSAR is a machine-learning approach that generates
streams of independent variable-building models with various
topological and physiochemical descriptors (Dixon et al., 2016).
The autoQSAR model divides the test compounds into a 25% test
and a 75% train set, as shown in Table 5. The best predictive model
from the experimental data was determined using the based par-
tial least-squares regression (kpls) analysis: kpls molprint2D 29.
The model parameters resulted in a standard deviation (S.D.) of
0.4354, R2 of 0.8774, RMSE of 0.4220, and Q2 of 0.8706 (Table 3).
The experimental compounds’ model showed more training sets
(blue colour) than the test set (red colour) as observed in the scat-
ter plot in Fig. 7. The distribution of the test and train set in Fig. 7
was consistent with the distribution observed in Table 5. The QSAR
model was use to obtain the pIC50 of the hit compounds shown in
the best model.
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Table 5, All the hit compounds and standard drug showed high
pIC50 above 5.00 lM with pelargonidin and peonidin (6.001 lM)
showing better pIC50 among the hit compounds comparable with
the standard drug (6.841 lM).(See Table 4)
Table 4
Comparison with predicted and observed Auto-QSAR analysis.

ID Set pIC50 (observed) pIC50 (predicted) Residue error

1 Train 6.800 6.7053 0.2253
2 Train 7.2800 7.2276 �0.0524
3 Train 7.3600 7.3898 0.0298
4 Train 6.4100 5.6460 �0.7640
5 Train 6.7800 6.5088 �0.2712
6 Train 6.8000 6.7940 �0.0060
7 Train 4.3300 4.1273 �0.2027
8 Train 5.2800 5.1881 �0.0919
9 Train 7.8900 8.1051 0.2151
10 Train 5.5200 5.3111 �0.2089
11 Train 4.5100 5.2974 0.7874
12 Train 4.3900 4.5702 0.1802
13 Test 4.6500 5.5514 0.9014
14 Train 6.1500 6.3404 0.1904
15 Train 5.6100 6.8730 1.2630
16 Train 7.2800 7.1699 �0.1101
17 Train 6.5100 6.8792 0.3692
18 Train 7.2400 7.7064 0.4664
19 Train 6.7400 6.8927 0.1527
20 Train 4.3000 4.4081 0.1081
21 Train 6.4000 6.3470 �0.0530
22 Test 7.1500 6.9184 �0.2316
23 Test 4.0000 4.3802 0.3803
24 Train 7.6000 7.8038 0.2038
25 Train 7.5500 7.1972 �0.3528
26 Train 5.4800 6.3736 0.8926
27 Test 7.0800 6.8466 �0.2334
28 Test 6.4600 6.7386 0.2786
29 Train 5.5700 5.9920 0.4220
30 Train 7.8900 7.1059 �0.7841
31 Test 7.2800 7.0674 �0.2126
32 Train 7.3000 7.1560 �0.1440
33 Train 7.1600 6.7734 �0.3866
34 Test 5.2900 5.4361 0.1461
35 Train 7.8900 7.5223 �0.3677
36 Test 5.6000 5.5471 �0.0529
37 Test 7.8000 7.1266 �0.6734
38 Train 5.6000 5.1285 �0.4715
39 Train 6.1000 5.4129 �0.6871
40 Train 5.3400 5.3328 �0.0072
41 Train 5.3500 5.3987 0.0487
42 Test 7.5200 7.2172 �0.3028
43 Train 7.6800 7.2379 �0.4421
44 Train 8.7000 8.2774 �0.4226
45 Train 8.4000 8.2109 �0.1891
46 Train 7.6000 7.8038 0.2038
47 Train 6.9200 7.04796 0.1276
48 Train 5.8200 6.3538 0.5338
49 Test 5.3700 5.2028 �0.1672
50 Train 4.1300 4.4591 0.3291
51 Test 6.7700 6.3736 �0.3964
52 Train 8.3000 8.1063 �0.1937
53 Test 6.1500 5.5388 �0.6112
54 Test 7.9200 7.4993 �0.4207
55 Train 5.5200 5.0927 �0.4273
56 Train 6.2600 6.1460 �0.1140

Table 5
The best model and predicted pIC50 of lead compounds.

Pubchem ID Compound Name Predicted pIC50 (lM)

65,084 (+)-Gallocatechin 5.981
159,287 Malvidin 5.981
440,832 Pelargonidin 6.001
441,773 Peonidin 6.001
NCGC00138783 Reference Drug 6.841
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3.4. Quantum calculations

The development of density functional theory (DFT) of small
molecules is an important tool use to describe the molecular inter-
actions between molecules and gives information concerning elec-
tron transfer within the molecule which is required to predict the
chemical stability and reactivity of a molecule (Balogun et al.,
2021). The energy of high occupied molecular orbital (EHOMO)
and low unoccupied molecular orbital (ELUMO) and energy gap
(Eg) estimated from the quantum mechanics calculations are vital
in predicting molecular reactivity of bioactive compounds
(Omoboyowa et al., 2023). From the results presented in table
Fig. 8, the complete geometry optimization of the selected flavo-
noid derivatives at their low energy level, in which all analysis
were computed on these least optimized flavonoid molecules.

From the results presented in Table 6 and Fig. 8, the electron
donation potential of the hit compounds was suggested by the
EHOMO values which range from �5.63 to �9.25 eV and the electron
accepting potential was predicted by the ELUMO values which range
from �6.12 –n0.08 eV. Hence, the high EHOMO value and lower
ELUMO value are necessary for the predicted reactivity of the com-
pounds. Energy gap (Eg) is the difference between the HOMO
and LUMO energies and has been reported by Uzzaman and
Mahmud (2020), as a predictor of the molecule stability and reac-
tivity, higher value of Eg denote greater stability with less bioavail-
ability and low reactivity (Omoboyowa et al., 2023). The Eg of the
hits were estimated between the range of 2.56 to 5.71 eV suggest-
ing that the hit compounds are reactive and stable molecules.(See
Table 7 and Table 8.

3.5. Prediction of physicochemical and ADMET-TOX properties

The in silico drug-likeness predictions are founded on Lipinski’s
rule of five; hydrogen bond donor, hydrogen bond acceptor and
molecular weight (Cheng et al., 2012). The draggability of a mole-
cule is generally based on this rule. To ascertain if substances could
penetrate the central nervous system, the blood–brain barrier pen-
etration was evaluated (Table 5) (Karelson et al., 1996). Out of the
five predicted molecules, only (+)-Gallocatechin and Catechin are
likely to penetrate the blood–brain barrier. In humans, many cyto-
chrome P450s catalyze the metabolism of various substances,
including xenobiotics and medicines.

Thus, inhibition of cytochrome P450 isoforms may result in
drug-drug interactions in which co-administered drugs fail to be
metabolized and accumulate to toxic levels. The predicted com-
pounds are CYP2D6 inhibitors and CYP2C9 substrates. All are pre-
dicted to be CYP3A4 substrates except for pelargonidin. Adverse
drug administration-related effects are referred to as acute oral
toxicity (Nyandoro, et al., 2018). Fortunately, all substances proved
negative for acute toxicity and mutagenicity in the AMES test.
Based on their acute oral toxicity, compounds are categorized into
four classes. LD50 values for substances in Category I are less than
or equal to 50 mg/kg. LD50 values for substances in Category II are
higher than 50 mg/kg but lower than 500 mg/kg. LD50 values for
substances in Category III are higher than 500 mg/kg but lower
than 5000 mg/kg. The LD50 values of the substances in Category
IV were higher than 5000 mg/kg. It is predicted that all the com-
pounds will fall into Category III or IV. All of the compounds are
thought to be non-carcinogenic. Drug solubility has previously
been defined as a critical property of evaluating pharmaceuticals
in the drug development cycle. This is because it helps to deter-
mine the concentration of the drug in the systemic circulation,
resulting in a maximal optimal response (Walum, 1998). As a
result of the presence of hydroxyl groups in the compounds, they
were water-soluble. None of the substances is P-glycoprotein sub-
strates (P-GB). The potassium channel, the human Ether-a-go-go



Fig. 8. HOMO and LUMO density for the five flavonoid derivatives.

Table 6
Quantum chemical reactivity parameters for the top five hit compounds.

Compounds EHOMO ELUMO Eg

Pelargonidin �9.25 �6.34 2.91
(+)-Gallocatechin �5.65 0.02 5.67
Malvidin �8.68 �6.12 2.56
Peonidin �8.83 �6.19 2.64
Catechin �5.63 0.08 5.71
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Related Gene (hERG), is required for cardiac excitability control
and regular heartbeat (Savjani et al., 2012). Since none of the
chemicals inhibits the hERG gene, they cannot induce proarrhyth-
mia. Pelargonidin, the lead compound, has been shown to have
antioxidant properties after reducing oxidative markers. A research
found the antioxidant efficacy of Pelargonidin via an increase in the
level of the natural antioxidant enzymes catalase and superoxide
Table 7
Drug likeness properties of the standard and top five hit compounds.

Entry Name mol MW Hbond Acceptors

Pelargonidin 271.24 5
(+)-Gallocatechin 306.27 7
Malvidin 331.30 7
Peonidin 301.27 6
Catechin 290.27 6
NCGC00138783(Standard Drug) 503.59 6

9

dismutase (Lamothe et al., 2016; Mirshekar et al., 2010). The ther-
apeutic potential of the screened compounds was determined
using Christopher Lipinski’s proposed rules of five (ROF) with a
molecular weight of 500, HB donors of 5, HB acceptors of 10, and
an octanol/water partition coefficient (log p 5) (Table 3) (Cheng
et al., 2012). Except for gallocatechin, which possesses more than
five HB donors, all the compounds met all the criteria.

3.6. Molecular dynamics simulation

Following the results generated from the molecular docking
campaign, we employed the use of the following molecular
dynamics parameters; RMSD, RMSF, HBOND and ROG in a 100 ns
simulation to evaluate the dynamical stability of the three selected
hit druglike candidates (Pelargonidin, (+)-Gallocatechin and Mal-
vidin) and the reference drug (NCGC00138783). Their behavioral
kinetics was also evaluated in both bound and unbound states with
Hbond Donors iLogP Polar Surface Area Rule of Five

4 �2.44 94.06 Suitable
6 1.47 130.61 Suitable
4 �1.96 112.52 Suitable
4 �1.94 103.29 Suitable
5 1.33 110.38 Suitable
2 3.13 126.16 Suitable



Table 8
ADMET screening of the top hit compounds.

Model Pelargonidin (+)-Gallocatechin Malvidin Peonidin Catechin

Ames mutagenesis – – – – +
Acute Oral Toxicity (c) III IV III III IV
Blood Brain Barrier + – + + –
Caco-2 – – + + –
Carcinogenicity (binary) – – – – –
CYP1A2 inhibition – – + + –
CYP2C19 inhibition – – + + –
CYP2C9 inhibition – – + + –
CYP2C9 substrate – – – – –
CYP2D6 inhibition – – – – –
CYP2D6 substrate – + – – +
CYP3A4 inhibition – – + + –
CYP3A4 substrate + – – – –
Hepatotoxicity + + + + –
Human Ether-a-go-go-Related Gene inhibition – – – – –
Human Intestinal Absorption – + + + +
Human oral bioavailability – – – – –
Acute Oral Toxicity 1.435115576 1.636945605 1.2353605 0.9769318 1.418269
P-glycoprotein inhibitor – – + – –
P-glycoprotein substrate – – – – –
PPAR gamma + + + + +
Plasma protein binding 0.852887869 0.877940595 0.881655 0.9295143 0.987759
Subcellular localization Nucleus Mitochondria Nucleus Nucleus Mitochondria
UGT catelyzed – + + + +
Water solubility �3.09788922 �3.101451725 �3.4489542 �3.343575 �3.101452
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the protein structure (2JJS). Each complex was confined to an envi-
ronment closely related to a normal physiological condition of a
natural cell in terms of temperature, solvent, pressure, and ions
throughout the simulation. To this end, we evaluated and com-
pared the 100 ns spectrums of each prospective drug candidate
complex against the reference drug (NCGC00138783).

3.7. Root mean square deviation

Using RMSD analysis, it is possible to determine the conforma-
tional and structural alterations of the backbone atoms of the pro-
tein–ligand entities (2JJS-NCGC00138783, 2JJS-GALLOCATECHIN,
2JJS-MALVIDIN, 2JJS-PELARGONIDIN and 2JJS). By comparison of
RMSD spectrum of the referenced inhibitor and the unbound pro-
tein with the proposed hit compounds, one could speculate if the
Fig. 9. The RMSD of the backbone atom of the protein in top do
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binding of the chemical entities is stable and capable of binding
stably at the binding pocket of the receptor (Roy et al., 2017).
Hence, we calculated and plotted the RMSD of each simulated
complex for the entire 100 ns MD production run (Fig. 9). Looking
at the RMSD spectrum, Pelargonidin and Malvidin depicted almost
the same graphical pattern with the standard compound through-
out the entire simulation suggesting their potential to act as a
putative binder of the protein target. This is evidenced with their
close average RMSD of 0.1899 nm and 0.186 nm respectively, com-
pared with the 0.175 nm of the referenced compound. In contrast,
Gallocatechin showed a different RMSD pattern compared to the
standard drug and the apoprotein (2JJS). However, with mean
RMSD value of 0.30 nm, the ligand average RMSD value falls below
0.5 nm value which is acceptable for a considerable stable system
(Adelusi et al., 2020). Overall, the RMSD result showed that the
cking scored hit complexes throughout 100 ns simulation.
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binding of Malvidin, Pelargonidin, and Gallocatechin with the pro-
tein target are stable and suggest their ability to disrupt the SIRPa-
CD47 signaling cascade.

3.8. Root mean square fluctuation of the top docking scored hit
complexes

For examining the structural fluctuation of the amino acid resi-
dues of the bound and unbound complexes, as well as changes in
the position of the ligand, the Root Mean Square Fluctuation
(RMSF) is a commonly used metric. A higher average RMSF value
denotes a system with more fluctuating residues while a lower
average value corresponds to a system with less fluctuating resi-
dues (Roy et al., 2017). According to the result represented in
Fig. 12, all the bounded system including the standard (2JJS-
GALLOCATECHIN, 2JJS-MALVIDIN, 2JJS-PELARGONIDIN, and 2JJS-
Fig. 10. The RMSF of the residues present in the protein (2JJS) of top

Fig. 11. H-bond distribution of the top docking scored hit complexes du
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NCGC00138783) demonstrate similar RMSF pattern. In comparison
with the mean RMSF of the unbound receptor (0.199 nm), 2JJS-
GALLOCATECHIN, 2JJS-MALVIDIN, 2JJS-PELARGONIDIN, and 2JJS-
NCGC00138783, have lower average RMSF values of 0.146 nm,
0.135 nm, 0.152 nm, and 0.138 nm respectively. Interestingly,
the RMSF result is consistent with the RMSD analysis which
revealed that the binding of the ligands do not disrupt the confor-
mational dynamics of the protein by depicting a lower average
RMSD (with the exception of Gallocatechin) and RMSF values com-
pared with the unbound form of the receptor (2JJS) (Fig. 10).

3.9. Hydrogen bond mapping of top docking scored hit complexes

Intermolecular H-bond is an important type of interaction that
exists between protein–ligand complexes. Higher H-bond could be
responsible for the greater stability of a compound at the binding
docking scored hit complexes throughout the simulation period.

ring 100 ns simulation run in the active site of the protein target.



Fig. 12. Radius of gyration spectrum of the top docking scored hit complexes during 100 ns simulation run.
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pocket of the receptor while lower H-bond may indicate a lower
stable system (Lee et al., 2012). In the H-bond spectrum depicted
in Fig. 11, Pelargonidin-one of the promising drug candidates
showed thicker H-bond spectrum compared to all other binary
complexes including the referenced inhibitor. Statistically,
Pelargonidin, Malvidin, Gallocatechin, and the standard drug aver-
aged 1.85, 0.44, 0.46, and 0.53 H-bonds respectively with their tar-
geted receptor. Although Malvidin, and Gallocatechin have lower
intermolecular H-bond, however, the difference between their val-
ues with the standard drug is not statistically significant and hence
they could also be a good inhibitor of the protein using the H-bond
metric.
3.10. Radius of gyration

The compactness of the secondary structures of the bound and
unbound form of a simulated receptor is measured by radius of
gyration (ROG). From this, one could determine if a system is stably
folded or not. Fig. 12 shows the ROG plots of the apoprotein (2JJS)
and the complexes (2JJS-NCGC00138783, 2JJS-Gallocatechin, 2JJS-
Malvidin, 2JJS-Pelargonidin) as a function of time. Like the ROG
result, Pelargonidin and Malvidin depicted similar ROG pattern
with the standard drug throughout the entire simulation time.
Their average ROG values are 1.364 nm, 1.370 nm, and 1.369 nm
respectively. In contrast, Gallocatechin demonstrated different
ROG pattern with the standard drug, but it has the lowest ROG
value (1.337 nm) when compared with all other bounded systems.
Our overall analysis of ROG indicates that the binding of the
ligands does not distort the structural compactness of the receptor
as they all averaged lower ROG vales when compared with the
apoprotein (1.376 nm) as shown in Fig. 12.
4. Conclusion

The interaction of CD47-SIRPa signaling allows cancer cells to
elude immune detection and clearance by suppressing phagocytic
action. As a result, this research aimed to predict a therapeutic
drug that may circumvent immunotherapeutic resistance in PDAC
12
by suppressing SIRPa-CD47 signaling with minimal side effects in
humans.

After computational analysis using molecular docking, molecu-
lar dynamics, and MM/GBSA quantum chemical calculations, the
screened compounds (pelargonidin, malvidin, and peonidin) have
higher binding energies than the reference medication. They also
demonstrated better ideal stability and desirable intermolecular
interactions in the selective pockets of CD47 compared to the ref-
erence medication (NCGC00138783). This study contributes to a
better knowledge of the stability and interaction profile of pro-
tein–ligand complexes and the mechanism of inhibition involved
in CD47-ligand complexes. According to the pharmacokinetic
study, pelargonidin, malvidin and peonidin possess novel physico-
chemical characteristics and drug-like features. Additional in-vivo
or in-vitro research is required to evaluate these ligands’ pharma-
cological and biological activities in overcoming immunotherapeu-
tic resistance in PDAC via CD47-SIRPa inhibition.
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