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Abstract Pharmacophore modeling studies were undertaken for a series of quinoline derivatives as

VEGFR-2 tyrosine kinase inhibitors. A five-point pharmacophore with two hydrogen bond accep-

tors (A), one hydrogen bond donor (D), and two aromatic rings (R) as pharmacophore features was

developed. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with

a correlation coefficient of r2 = 0.8621 for training set compounds. The model generated showed

excellent predictive power, with a correlation coefficient of q2 = 0.6943 and for a test set of com-

pounds. Furthermore, the structure–activity relationships of quinoline derivatives as VEGFR-2

tyrosine kinase inhibitors were elucidated and the activity differences between them discussed.

Docking studies were also carried out wherein active and inactive compounds were docked into

the active site of the VEGFR-2 crystal structure to analyze drug-receptor interactions. Further

we analyzed all the compounds for Lipinski’s rule of five to evaluate drug likeness and established

in silico ADME parameters using QikProp. The results provide insights that will aid the optimiza-

tion of these classes of VEGFR-2 inhibitors for better activity, and may prove helpful for further

lead optimization and virtual screening.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Angiogenesis is an important component of certain normal
physiological processes such as embryogenesis, wound healing,
and the female reproductive cycle and also contributes to some

pathological disorders and in particular to tumor growth (Fan
et al., 1995; Folkman et al., 1995). Vascular endothelial growth
factor (VEGF) and its receptor tyrosine kinases VEGFR-1
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Figure 1 Steps in PHASE 3D QSAR.
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(Flt-1) and VEGFR-2 (KDR) are critical regulators of angio-
genesis (Shawver et al., 1997). It is also important that the spe-
cific binding of VEGF to the vascular cell surface expressed

VEGFR-2, triggers effective downstream cell proliferation sig-
naling pathways and leads to tumor vascularization (Ferrara,
2002; Carmeliet and Jain, 2000). Moreover VEGF proteins

as well as mRNA for the VEGF receptors Flk-1/KDR have
been identified in primary tumors of the breast (Anan et al.,
1996; Yoshiji et al., 1996), colon (Brown et al., 1993; Takah-

ashi et al., 1995) and those of renal origin.
The blockage of VEGFR-2 signaling by small molecule

inhibitors to the VEGFR-2 kinase domain has been shown
to inhibit angiogenesis, tumor progression, and dissemination

in a number of preclinical and clinical studies (Baka et al.,
2006; Sepp-Lorenzino and Thomas, 2002; Klebl and Muller,
2005; Supuran and Scozzafava, 2004; Holmes et al., 2007),

such as sorafenib (a dual Raf�KDR inhibitor) (Scanga and
Kowdley, 2009; Escudier et al., 2009) and sunitinib (a multitar-
ged kinase) (Motzer et al., 2006), have been approved for treat-

ment of cancers. Up to now, there has been a lot of research
focusing on the development of novel inhibitors of KDR as
vandetanib (ZD6474), orally bioavailable in phase III, consid-

ered to be a dual tyrosine kinase inhibitor targeting EGFR and
VEGFR-2 (Ryan and Wedge, 2005; Ciardiello et al., 2004;
Morabito et al., 2009). Therefore, inhibition of the VEGFR-
2 has become an attractive strategy in the treatment of cancers

(Ferrara et al., 2004).
The development of VEGFR-2 inhibitors has therefore be-

come an active area of research in pharmaceutical science. One

could not, however, confirm that the compounds synthesized
would always possess good inhibitory activity to VEGFR-2,
while experimental assessments of inhibitory activity of these

compounds are time-consuming and expensive. Consequently,
it is of interest to develop a prediction method for biological
activities before the synthesis. Quantitative structure activity

relationship (QSAR) searches for information relating chemi-
cal structure to biological and other activities by developing
a QSAR model. Using such an approach one could predict
the activities of newly designed compounds before a decision

is being made whether these compounds should be really syn-
thesized and tested.

With the above facts and in continuation of our research

for newer anti-cancer agents (Noolvi and Patel, 2010; Noolvi
et al., 2011a,b,c, 2012a,b) in the present study, we reported
molecular modeling studies of VEGFR-2 inhibitors using a

three dimensional quantitative structure activity relationship
(3D QSAR) and docking approach to provide further insight
into the key structural features required to design potential
drug candidates of this class. The excellent agreement between

the QSAR and docking fields indicates that the binding mode
hypothesis is mostly fairly close to the biological binding
mode, therefore offering a relevant basis for proposing

improvements for the further development of the series.

2. Materials and methods

The 3D-QSAR studies were carried out using PHASE (2007)
(Dixon et al., 2006), version 3.0, Schrodinger, LLC, New
York, USA, 2008 and all the steps are depicted in (Fig. 1).

Pharmacophore modeling presents a qualitative picture of
the geometry of the active site by identifying the chemical fea-
tures for the binding of ligands and their spatial arrangements
in 3D space (Axe et al., 2006; Prathipati and Saxena, 2005). In

the present study, pharmacophore modeling was carried out
using Pharmacophore Alignment and Scoring Engine PHASE.
It performs systematic explorations of rotatable bonds and cal-

culates the associated conformational energies, retaining only
the most reasonable energy conformers. PHASE determines
how molecular structure affects drug activity by dividing space

into a fine cubic grid, encoding atom type occupation as
numerical information, and performing a partial least-squares
(PLS) regression, resulting in the prediction of a significant
model (Dixon et al., 2006). This pharmacophore based align-

ment obtained from PHASE was utilized for QSAR model
development. Further we analyzed all the compounds for
Lipinski’s rule of five to evaluate drug likeness and established

in silico ADME parameters using QikProp. All the docking
studies were performed using a graphical user interface SP-
docking mode of the program Maestro 8 (Halgren et al.,

2004; Friesner et al., 2004; Sherman et al., 2006). The protein
structure of a complex VEGFR-2 was obtained from the
RCSB Protein Data Bank (PDB) as entry 2XV7 (http://
www.rcsb.org/pdb/explore/explore.do?structureId=2XV7).

2.1. Phase methodology

2.1.1. Data set

The novel 26 quinoline derivatives were taken from the litera-
ture (Kubo et al., 2005). The IC50 values were converted to

pIC50 using the formula (pIC50 = �log IC50). Since some com-
pounds exhibited insignificant/no inhibition, such compounds
were excluded from the present study. The structures of all

the compounds along with their actual and predicted biologi-
cal activities are presented in Table 1.

2.1.2. Ligand preparation

Three-dimensional (3D) conversion and minimization was per-
formed using LigPrep (MMFFs force field) (Halgren, 1996)

http://www.rcsb.org/pdb/explore/explore.do?structureId=2XV7
http://www.rcsb.org/pdb/explore/explore.do?structureId=2XV7


Table 1 Experimental and predicted activity of quinoline derivatives used in training and test sets for VEGFR-2 inhibition using

Model-1.

Sr. No. Compounds IC50 (nm) pIC50 Residual

Exp. Pred.

1

N

O

O

O

H
N

H
N

O

0.2 0.699 0.728 0.29

2

N

O

O

O

H
N

H
N

O

O
0.2 0.699 0.781 �0.082

3T

N

O

O

O

H
N

H
N

O
O

1.1 0.041 0.592 �.0551

4

N

O

O

O

H
N

H
N

O

2.3 0.362 0.501 �0.139

5

N

O

O

O

H
N

H
N

O

0.2 0.699 0.652 0.047

6T

N

O

O

O

H
N

H
N

O

0.5 0.301 0.285 0.016

7

N

O

O

O

H
N

H
N

O

NO2

1.1 0.049 0.701 �0.652
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Table 1 (continued)

Sr. No. Compounds IC50 (nm) pIC50 Residual

Exp. Pred.

8T

N

O

O

O

H
N

H
N

O
NO2

5.6 0.748 0.850 �0.102

9

N

O

O

O

H
N

H
N

O

F 0.5 0.301 0.442 �0.141

10

N

O

O

O

H
N

H
N

O

F
1.2 0.079 0.091 �0.012

11T

N

O

O

O

H
N

H
N

O
F

0.4 0.398 0.401 �0.003

12

N

O

O

O

H
N

H
N

O

Cl
1.6 0.204 0.287 �0.083

13

N

O

O

O

H
N

H
N

O
Cl

0.2 0.699 0.582 0.117

14T

N

O

O

O

H
N

H
N

O

F
F

0.7 0.155 0.189 �0.034
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Table 1 (continued)

Sr. No. Compounds IC50 (nm) pIC50 Residual

Exp. Pred.

15

N

O

O

O

H
N

H
N

O

F

F

0.7 0.155 0.178 �0.023

16

N

O

O

O

H
N

H
N

O

F

F

0.4 0.398 0.321 0.077

17

N

O

O

O

H
N

H
N

O

F

F

1.8 0.255 0.291 �0.036

18

N

O

O

O

H
N

H
N

O

F

F

1.1 0.041 0.048 0.007

19T

N

O

O

O

H
N

H
N

O

F

F

1.8 0.255 0.271 �0.016

20

N

O

O

O

H
N

H
N

O

Cl

Cl

5.6 0.748 0.789 �0.041

21

N

O

O

O

H
N

H
N

O

Cl

Cl

6 0.778 0.781 �0.003
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Table 1 (continued)

Sr. No. Compounds IC50 (nm) pIC50 Residual

Exp. Pred.

22

N

O

O

O

H
N

H
N

O

Cl

Cl

3.7 0.568 0.584 �0.016

23

N

O

O

O

H
N

H
N

O

Cl

Cl

2.6 0.414 0.439 �0.025

24

N

O

O

O

H
N

H
N

O

F F

F

0.9 0.045 0.055 �0.01

25

N

O

O

O

H
N

H
N

O

Cl F

F

0.4 0.398 0.371 0.027

26

N

O

O

O

H
N

H
N

O

F

F

Cl

8.9 0.949 0.881 0.068

Expt. = experimental activity, Pred. = predicted activity.

T = test set.
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incorporated in PHASE. Conformers were generated using a
rapid torsion angle search approach followed by minimization

of each generated structure using the MMFFs force field, with
an implicit GB/SA solvent model. A maximum of 1000 con-
formers were generated per structure using a pre-process min-

imization of 1000 steps and post process minimization of 500
steps. Each minimized conformer was filtered through a rela-
tive energy window of 50 kJ mol�1 and a minimum atom devi-

ation of 1.00 Å (Phase 1.0; 2005; Narkhede and Degani, 2007;
Tawari et al., 2008). This value (50 kJ mol�1) sets an energy
threshold relative to the lowest-energy conformer. Conformers
that are higher in energy than this threshold are discarded. All

distances between pairs of corresponding heavy atoms must be
below 1.00 Å for two conformers to be considered identical.
This threshold is applied only after the energy difference
threshold, and only if the two conformers are within

1 kcal mol�1 of each other.

2.1.3. Training and test set selection

The training set was selected randomly with random seed value

of zero for selecting leave-n-out subsets, ensuring that the
assignment is always random. The total set of inhibitors was
divided randomly into a training set (19 compounds) for the

generation of 3D-QSAR models and a test set (7 compounds)
for validation of the developed model.

The training set molecules were selected in such a way that

they contained information in terms of both their structural
features and biological activity ranges. The most active mole-
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cules, moderately active, and less active molecules were in-
cluded, to spread out the range of activities (Golbraikh
et al., 2003). In order to assess the predictive power of the

model, a set of 7 compounds was arbitrarily set aside as the test
set. The test compounds were selected in such a way that they
truly represent the training set.

2.1.4. Creating pharmacophore sites

Each compound structure is represented by a set of points in
3D space, which coincide with various chemical features that

may facilitate noncovalent binding between the compound
and its target receptor. PHASE provides a built-in set of six
pharmacophore features, hydrogen bond acceptor (A), hydro-

gen bond donor (D), hydrophobic group (H), negatively ioniz-
able (N), positively ionizable (P), and aromatic ring (R). The
rules that are applied to map the positions of pharmacophore

sites are known as feature definitions, and are represented
internally by a set of SMARTS (Dixon et al., 2006) patterns.
Each pharmacophore feature is defined by a set of chemical
structure patterns. All user defined patterns are specified as

SMARTS queries and assigned one of three possible geome-
tries, which define physical characteristics of the site:

1. Point: the site is located on a single atom in the SMARTS
query.

2. Vector: the site is located on a single atom in the SMARTS

query, and will be assigned directionality according to one
or more vectors originating from the atom.

3. Group: the site is located at the centroid of a group of

atoms in the SMARTS query. For aromatic rings, the site
is assigned directionality defined by a vector that is normal
to the plane of the ring.
Figure 2 Pharmacophore hypothesis (AADRR.55), where the red ba

bond donor while the brown ring demonstrates the R (ring) fe

pharmacophoric sites.

Table 2 Statistical data for best QSAR Model-1 by the PLS metho

Model Hypothesis ID Factor SD r2

Model-1 AADRR.55 5 0.4412 0.8621

Model-2 ADHRR.60 5 0.4804 0.8234

Model-3 AHRRR.27 5 0.5572 0.7668

Model-4 AHRRR.74 5 0.5534 0.7051

Model-5 ADHRR.63 5 0.5823 0.6834

r2 = Coefficient of determination; q2 = cross validated r2, F= F test s

activity for the test set.
A default setting having a hydrogen bond acceptor (A), do-
nor (D), hydrophobic (H), negative (N), positive (P), and aro-
matic ring (R) was used to create pharmacophore sites.

2.1.5. Scoring hypotheses

These common pharmacophore hypotheses were examined
using a scoring function to yield the best alignment of the ac-

tive ligands using an overall maximum root mean square devi-
ation (RMSD) value of 1.2 Å with default options for distance
tolerance. The quality of alignment was measured by a survival

score, defined as:

S ¼WsiteSsiteþWvecSvecþWvolSvolþWselSsel

þWm rew

where W are weights and S are scores; Ssite represents align-

ment score, the RMSD in the site point position; Svec repre-
sents vector score, and averages the cosine of the angles
formed by corresponding pairs of vector features in aligned

structures; Svol represents volume score based on overlap of
van der Waals models of non-hydrogen atoms in each pair
of structures; and Ssel represents selectivity score, and ac-

counts for what fraction of molecules are likely to match the
hypothesis regardless of their activity toward the receptor.
Wsite, Wvec, Wvol, and Wrew have default values of 1.0, while
Wsel has a default value of 0.0. In hypothesis generation, de-

fault values have been used. Wm rew represents reward
weights defined by m�1, where m is the number of actives that
match the hypothesis.

Scoring of the pharmacophore with respect to activity of
the ligand was conducted using default parameters for site,
vector, and volume terms. These common pharmacophore

hypotheses were examined using a scoring function to yield
ll shows hydrogen bond acceptor site, blue ball indicates hydrogen

ature; pharmacophore distances (A) and angles (B) between

d for quinoline derivatives.

F Stability RMSE q2 Pearson R

34.66 0.8246 0.4287 0.6943 0.8462

28.67 0.7842 0.5278 0.6328 0.7886

26.45 0.7256 0.5852 0.5924 0.7246

22.22 0.6874 0.6128 0.5424 0.6624

18.56 0.5173 0.6238 0.4982 0.6182

core; Pearson R= correlation between experimental and predicted
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the best alignment of the active ligands using overall maximum
root mean square categories according to a simple set of rules:
hydrogens attached to polar atoms are classified as hydrogen

bond donors (D); carbons, halogens, and C–H hydrogens are
classified as hydrophobic/non-polar (H); atoms with an expli-
cit negative ionic charge are classified as negative ionic (N);

atoms with an explicit positive ionic charge are classified as po-
sitive ionic (P); non-ionic atoms are classified as electron-with-
drawing (W); and all other types of atoms are classified as

miscellaneous (X). For purposes of QSAR development, van
der Waals models of the aligned training set molecules were
placed in a regular grid of cubes, with each cube allotted zero
or more ‘bits’ to account for the different types of atoms in the

training set that occupy the cube. This representation gives rise
to binary-valued occupation patterns that can be used as inde-
pendent variables to create partial least-squares (PLS) QSAR

models. Pharmacophore based QSAR models were generated
for all hypotheses using the 19 member training set using a grid
spacing of 1.0 Å. The best QSAR model was validated by pre-

dicting activities of the seven test set compounds.

2.1.6. Building 3D-QSAR models using partial least square

(PLS) analysis

The QSAR models were developed from a series of molecules,
of varying activity, that have all been aligned to a common
pharmacophore hypothesis (CPH) that is associated with a sin-

gle reference ligand. All hypotheses that successfully generated
and scored were then used to build pharmacophore-based 3D-
QSAR models with grid spacing 1.0 Å, random seed value of

zero, and 1–5 PLS factors. Statistics on the correlation of pre-
dicted with actual activity were performed for the top ten scor-
ing hypothesis, by the default hypotheses scoring functions.

Partial least-squares (PLS) regression analysis was applied

to obtain the QSAR model. The independent variables in the
regression were the binary-valued occupancies (bits) of the
cubes by pharmacophore feature and the dependent variable

was the inhibitory activity. The independent variables were fil-
tered using a t value filter and a default value of 2.0 to elimi-
Figure 3 The common pharmacophore based alignment of

molecules in 3D QSAR.
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Figure 4 Pictorial representation of the cubes generated using the QSAR model. Blue cubes indicate favorable regions, while red cubes

indicate unfavorable regions for the activity. Atom-based 3D QSAR model visualized in the context of the most active (a-compound 5)

and least active (b-compound 23) in the training set.

Figure 5 Scatter plots for the QSAR model applied to all

compounds in the training and test set.

S1988 V.G. Ugale et al.
nate independent variables whose regression coefficients are
too sensitive to small changes in the training set composition.

The maximum number of PLS factors were 5. PHASE QSAR
models do not use internal cross-validation techniques, but
rather use distinct training and test sets. PHASE supports only

external validation, using a factual test set whose structures
and activities are not considered when QSAR models are
developed. Each of the developed 3D-QSAR models was vali-

dated by predicting activities of seven test set molecules (q2).
The predictive ability of the models was measured by means
of the Pearson-R value. To overcome the over-fitting problem,
the run was performed using 1–5 PLS factors, in which the

standard deviation of regression was approximately equal to
the experimental error. The stability value was used to check
the strength of the resulting 3D QSAR model and compare

models from different hypothesis.

2.2. Docking studies

The molecular docking tool, GLIDE (Schordinger Inc., USA)
(2008) was used for ligand docking studies into VEGFR-2
tyrosine kinase receptor binding pocket. The crystal structure

of VEGFR-2 tyrosine kinase was obtained from the protein
data bank (PDB ID: 2XV7). The protein preparation was car-
ried out using the ‘protein preparation wizard’ in Maestro 8.0
in two steps, preparation and refinement. After ensuring chem-

ical correctness, water molecules in the crystal structures were
deleted and hydrogens were added, where they were missing.
Using the OPLS 2005 force field energy of crystal structure

was minimized (Zhong et al., 2009). Grids were defined center-
ing them on the ligand in the crystal structure using the default
box size. The ligands were built using maestro build panel and

prepared by a Ligprep 2.2 module which produce the low en-
ergy conformer of ligands using OPLS 2005 force field. The
low energy conformation of the ligands was selected and was
docked into the grid generated from protein structures using

a standard precision (SP) docking mode. The final evaluation
is done with the glide score (docking score) and the single best
pose is generated as the output for a particular ligand.

2.3. Lipinski’s rule for drug likeliness and in silico ADME

prediction

We further analyzed physically significant descriptors and
pharmaceutically relevant properties of all synthesized com-
pounds, among which were molecular weight, log p, H-bond

donors, and H-bond acceptors according to the Lipinski’s rule
of five. Lipinski’s rule of five is a rule of thumb to evaluate
drug likeness, or determine if a chemical compound with a cer-
tain pharmacological or biological activity has properties that

would make it a likely orally active drug in humans. The rule
describes molecular properties important for drug pharmaco-
kinetics in the human body, including its ADME. These com-

pounds were further evaluated for their drug-like behavior
through the analysis of pharmacokinetic parameters required
for absorption, distribution, metabolism and excretion

(ADME) by use of QikProp version 9.0 (2010), Lipinski
et al. (2001).

3. Results and discussion

The training set was used to identify the common pharmaco-
phore hypothesis (CPH) by following tree-based partition

algorithms. For finding the common pharmacophore hypoth-
eses, the dataset was divided into active and inactive sets
depending upon the observed activity; active ligands are those



Figure 6 Binding interaction of ligands with VEGFR-2 tyrosine kinase (PDB: 2XV7) domain; (A) Binding pose of the highest scoring

compound 7, (B) Binding mode of the most active compound 2, (C) Binding mode of co-crystallized ligand, and (D) Binding mode of the

all ligands in VEGFR-2 tyrosine kinase. Dotted yellow bond showing H-bond interaction with site residue.
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with IC50 below 1.8 nm and inactive above 1.8 nm. Based on
sites, maximum of five features were allowed to develop
hypotheses and a number of CPHs were reported common

in all 26 molecules. There were 147 hypotheses; five hypotheses
were selected for molecular alignment based upon the survival
score. PLS analyses were conducted using five factors with a
grid spacing 1 Å and five regression models were derived.

The best fitted Model-I AADRR.55 (r2 = 0.8621,
q2 = 0.6943, F= 34.66) along with the regression summary
are given in Table 2. The selected pharmacophore hypothesis

is displayed in Fig. 2. Red ball shows hydrogen bond acceptor
site, blue ball indicates hydrogen bond donor while the brown
ring demonstrates the R (ring) feature pharmacophore (Fig. 2).

The pharmacophore hypothesis labeled as Models 1–5, to-
gether with their statistical scores, is listed in Table 2. Reliable
predictions can only come from statistically valid QSAR mod-
els. There are several statistical parameters, such as r2, q2, SD,

RMSE, and F, that can be used to evaluate the robustness of a
QSAR model. According to Tropsha (Tropsha, 2005), high r2

is a necessary but not sufficient condition for a predictive

QSAR model. Besides the consideration of high r2, the best
QSAR model should be chosen based on its predictive ability
q2. The r2 and q2 values of Model 1 are much higher than those
of Models 2, 3, 4 and 5 suggesting that Model 1 is the best
model. Additionally, Model 1 has the lowest RMSE value
and highest Pearson-R value of all the models. Further, five

different combinations of training and test sets were generated
and analyzed by PHASE PLS analysis. Good and consistent
predictivity was observed for Model 1 for each combination
compared to the other models. Considering the flexibility of

all the molecules, the predictive qualities of the QSAR models
are satisfactory. Overall, based on r2, q2, SD and RMSE, as
well as on the highest value on the Pearson-R, the best model

was Model 1. This pharmacophore model includes two hydro-
gen bond acceptors, two ring residues and one hydrogen bond
donor. The pharmacophore model hypothesis of distances and

angles as well as the alignment of active compounds is shown
in Figs. 2 and 3 respectively. The distances and angles between
the five features are shown in Table 3.

For Model-1, the training set correlation is characterized by

PLS factors (r2 = 0.8621, SD = 0.4412, F= 34.66,
P = 0.8462). The test set correlation is characterized by PLS
factors (q2 = 0.6943, RMSE = 0.4287, Pearson-R= 0.8462).

The contribution maps obtained from model-I AADRR.55
show how 3D-QSAR methods can identify features important
for the interaction between ligands and their target protein.



Table 4 Glide docking results of quinoline derivatives based on glide dock score, glide energy and hydrogen bonding interaction.

Sr. No. Compounds Docking

Score

Glide Energy

(kcal/mol)

Hydrophobic Interaction

(within 5 A�)
H-bond

interaction

1

N

O

O

O

H
N

H
N

O

�11.5506 �66.8608 LEU-840, VAL-845,

LYS-868, PHE-1047,

ILE-888, CYS-1045,

ILE-1044, VAL-899,

VAL-916, LEU-1035,

GLU-917, LYS-920

N- of quinoline and H atom of amino

acid backbone of CYS-919

NH of urea and amino acid backbone

of GLU-885

2

N

O

O

O

H
N

H
N

O

O
�12.105129 �71.5388 LEU-840, VAL-845,

LYS-868, PHE-1047,

ILE-888, CYS-1045,

ILE-1044, VAL-899,

VAL-916, LEU-1035,

GLU-917, LYS-920

N- of quinoline and H atom of amino

acid backbone of CYS-919

NH of urea and amino acid backbone

of GLU-885

3

N

O

O

O

H
N

H
N

O
O

�11.237536 �60.2845 LEU-840, VAL-845,

LYS-868, PHE-1047,

ILE-888, CYS-1045,

ILE-1044, VAL-899,

VAL-916, LEU-1035,

GLU-917, LYS-920

N- of quinoline and H atom of amino

acid backbone of CYS-919

NH of urea and amino acid backbone

of GLU-885

4

N

O

O

O

H
N

H
N

O

�11.181321 �67.9674 LEU-840, VAL-845,

LYS-868, PHE-1047,

ILE-888, CYS-1045,

ILE-1044, VAL-899,

VAL-916, LEU-1035,

GLU-917, LYS - 920

N- of quinoline and H atom of amino

acid backbone of CYS-919

NH of urea and amino acid backbone

of GLU-885

5

N

O

O

O

H
N

H
N

O

�11.770905 �68.5487 LEU-840, VAL-845,

LYS-868, PHE-1047,

ILE-888, CYS-1045,

ILE-1044, VAL-899,

VAL-916, LEU-1035,

GLU-917, LYS - 920

N- of quinoline and H atom of amino

acid backbone of CYS-919

NH of urea and amino acid backbone

of GLU-885

6

N

O

O

O

H
N

H
N

O

�11.63571 �67.8791 LEU-840, VAL-845,

LYS-868, PHE-1047,

ILE-888, CYS-1045,

ILE-1044, VAL-899,

VAL-916, LEU-1035,

GLU-917, LYS-920

N- of quinoline and H atom of amino

acid backbone of CYS-919

NH of urea and amino acid backbone

of GLU-885

7

N

O

O

O

H
N

H
N

O

NO2

�12.479295 �73.1296 LEU-840, VAL-845,

LYS-868, PHE-1047,

ILE-888, CYS-1045,

ILE-1044, VAL-899,

VAL-916, LEU-1035,

GLU-917, LYS-920

N- of quinoline and H atom of amino

acid backbone of CYS-919

NH of urea and amino acid backbone

of GLU-885
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Table 4 (continued)

Sr. No. Compounds Docking Score Glide Energy

(kcal/mol)

Hydrophobic Interaction (within

5 A�)
H-bond interaction

8

N

O

O

O

H
N

H
N

O
NO2

�11.23191 �67.2231 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H

atom of amino acid

backbone ofCYS-919

NH of urea and amino acid

backbone of GLU-885

9

N

O

O

O

H
N

H
N

O

F

�11.262384 �67.2369 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom

of amino acid backbone of

CYS-919

NH of urea and amino acid

backbone of GLU-885

10

N

O

O

O

H
N

H
N

O

F

�11.859276 �66.5956 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom

of amino acid backbone of

CYS-919

NH of urea and amino acid

backbone of GLU-885

11

N

O

O

O

H
N

H
N

O
F �11.726688 �67.1874 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom of

amino acid backbone of CYS-

919

NH of urea and amino acid

backbone of GLU-885

12

N

O

O

O

H
N

H
N

O

Cl

�11.844542 �69.988 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom

of amino acid backbone of

CYS-919

NH of urea and amino acid

backbone of GLU-885

13

N

O

O

O

H
N

H
N

O
Cl �11.679257 �68.7645 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom

of amino acid backbone of

CYS-919

NH of urea and amino acid

backbone of GLU-885

14

N

O

O

O

H
N

H
N

O

F
F

�10.000164 �66.9048 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom

of amino acid backbone of

CYS-919

NH of urea and amino acid

backbone of GLU-885

Molecular modeling studies of quinoline derivatives as S1991



Table 4 (continued)

Sr. No. Compounds Docking Score Glide Energy

(kcal/mol)

Hydrophobic Interaction (within

5 A�)
H-bond interaction

15

N

O

O

O

H
N

H
N

O

F

F

�10.14931 �65.6382 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom of

amino acid backbone of CYS-

919

NH of urea and amino acid

backbone of GLU-885

16

N

O

O

O

H
N

H
N

O

F

F

�9.737217 �67.7536 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom of

amino acid backbone of CYS-

919

NH of urea and amino acid

backbone of GLU-885

17

N

O

O

O

H
N

H
N

O

F

F

�9.506826 �61.0352 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom of

amino acid backbone of CYS-

919

NH of urea and amino acid

backbone of GLU-885

18

N

O

O

O

H
N

H
N

O

F

F

�10.055614 �68.0649 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom of

amino acid backbone of CYS-

919

NH of urea and amino acid

backbone of GLU-885

19

N

O

O

O

H
N

H
N

O

F

F

�10.469236 �56.8363 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom of

amino acid backbone of CYS-

919

NH of urea and amino acid

backbone of GLU-885

20

N

O

O

O

H
N

H
N

O

Cl

Cl

�10.21120 �61.3390 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom of

amino acid backbone of CYS-

919

NH of urea and amino acid

backbone of GLU-885

21

N

O

O

O

H
N

H
N

O

Cl

Cl

�10.34212 �63.0922 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom of

amino acid backbone of CYS-

919

NH of urea and amino acid

backbone of GLU-885
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Table 4 (continued)

Sr. No. Compounds Docking Score Glide Energy

(kcal/mol)

Hydrophobic Interaction (within

5 A�)
H-bond interaction

22

N

O

O

O

H
N

H
N

O

Cl

Cl

�11.11231 �67.1897 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom of

amino acid backbone of CYS-

919

NH of urea and amino acid

backbone of GLU-885

23

N

O

O

O

H
N

H
N

O

Cl

Cl

�11.11281 �66.0126 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom of

amino acid backbone of CYS-

919

NH of urea and amino acid

backbone of GLU-885

24

N

O

O

O

H
N

H
N

O

F F

F

�9.366237 �66.7524 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom of

amino acid backbone of CYS-

919

NH of urea and amino acid

backbone of GLU-885

25

N

O

O

O

H
N

H
N

O

Cl F

F

�8.743855 �70.2198 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom of

amino acid backbone of CYS-

919

NH of urea and amino acid

backbone of GLU-885

26

N

O

O

O

H
N

H
N

O

Cl
F

F

�6.565878 �49.8362 LEU-840, VAL-845, LYS-868,

PHE-1047, ILE-888, CYS-1045,

ILE-1044, VAL-899, VAL-916,

LEU-1035, GLU-917, LYS-920

N- of quinoline and H atom of

amino acid backbone of CYS-

919

NH of urea and amino acid

backbone of GLU-885

Molecular modeling studies of quinoline derivatives as S1993
Such maps allow the identification of those positions that re-
quire a particular physicochemical property to enhance the

bioactivity of a ligand. A pictorial representation of the con-
tours generated on the most active ligand (compound 5) and
the less active ligand (compound 26) is shown in Fig. 4a and

b. In these representations, blue cubes indicate positive coeffi-
cients which are favorable while red cubes indicate negative
coefficients which are unfavorable regions for activity. Graphs

of observed versus predicted biological activity of training and
test sets are shown in Fig. 5.

The comparison of the most significant favorable and unfa-
vorable interactions, which arise when the 3D-QSAR model

was applied to the most active reference ligand (compound 5)
and the least active ligand (compound 26), which are shown
in Fig. 4a and b, respectively. The blue cubes around the

hydrogen bond donor suggest that these features are important
for the activity, while some unfavorable regions indicated by
the reference ligand, can be justified by examining the less ac-

tive molecule (compound 26). The blue cubes were observed at
the position-4 of quinoline ring near the hydrogen bond
acceptor (A5) vector which indicated that for better activity

the electron rich element like oxygen should be present at the
4th position. Nitrogen atom of the quinoline ring serves as
hydrogen bond acceptor (A1) in drug receptor interaction as

it is proved by the docking study where it is showing
hydrogen bonding interaction with the CYS-919 amino acid
residue. Ring residue (R12) in this model occupies much of
the favorable blue cubes due to the presence of the hydropho-

bic quinoline ring. Similarly ring residue (R14) in diphenylurea
at the 4th position of the quinoline ring suggests that the
bulky substituent is essential at the 4th position of the quino-

line ring for producing VEGFR-2 kinase inhibition, it is also



Table 5 Lipinski’s rule of five for drug likeliness and in silico ADME properties of quinoline derivatives by QikProp.

Criteria Lipinski’srule of five

(Drug Likeliness)

In Silico ADME

by QikProp,

Schordinger 9.0

Sr. No. Compounds Molecular

weight

QPlogP O/W a H-bond

donor

H-bond

acceptor

QPlogS b QPlogHERG c QPPCaco d QPMDCK e % Human Oral

Absorption f

1

N

O

O

O

H
N

H
N

O

415.448 4.407 02 5 �5.834 �5.728 1075.467 781.224 100

2

N

O

O

O

H
N

H
N

O

O
445.474 4.571 02 5.75 �6.027 �5.583 1238.645 900.151 100

3

N

O

O

O

H
N

H
N

O
O

445.474 4.508 02 5.75 �6.073 �5.624 1072.379 781.101 100

4

N

O

O

O

H
N

H
N

O

429.474 4.745 02 5 �6.223 �5.555 1477.538 1057.12 100

S
1
9
9
4

V
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.
U
g
a
le
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a
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Table 5 (continued)

Criteria Lipinski’srule of five

(Drug Likeliness)

In Silico ME

by QikP p,

Schordin 9.0

Sr. No. Compounds Molecular

weight

QPlogP O/W a H-bond

donor

H-bond

acceptor

QPlogS b QPlogHE G c QPPCaco d QPMDCK e % Human Oral

Absorption f

5

N

O

O

O

H
N

H
N

O

429.474 4.714 02 5 �6.4 �5.63 1074.461 781.015 100

6

N

O

O

O

H
N

H
N

O

429.474 4.716 02 5 �6.409 �5.636 1075.387 781.156 100

7

N

O

O

O

H
N

H
N

O

NO2

460.445 3.712 02 5 �5.997 �5.637 128.056 78.8 86.397

8

N

O

O

O

H
N

H
N

O
NO2

460.445 3.715 2 6 �6.01 �5.643 128.239 78.671 86.426

M
o
lecu

la
r
m
o
d
elin

g
stu

d
ies

o
f
q
u
in
o
lin

e
d
eriv

a
tiv

es
a
s

S
1
9
9
5

AD

ro

ger

R



Table 5 (continued)

Criteria Lipinski’srule of five

(Drug Likeliness)

In Silico ADME

by QikProp,

Schordinger 9.0

Sr. No. Compounds Molecular

weight

QPlogP O/W a H-bond

donor

H-bond

acceptor

QPlogS b QPlogHERG c QPPCaco d QPMDCK e % Human Oral

Absorption f

9

N

O

O

O

H
N

H
N

O

F 433.438 4.593 02 5 �6.005 �5.568 1174.34 1297.045 100

10

N

O

O

O

H
N

H
N

O

F
433.438 4.643 02 5 �6.204 �5.606 1075.577 1411.029 100

11

N

O

O

O

H
N

H
N

O
F

433.438 4.642 02 5 �6.198 �5.599 1075.433 1413.694 100

12

N

O

O

O

H
N

H
N

O

Cl
449.893 4.9 02 5 �6.576 �5.639 1075.284 1924.823 100

S
1
9
9
6

V
.G

.
U
g
a
le

et
a
l.



Table 5 (continued)

Criteria Lipinski’srule of five

(Drug Likeliness)

In Silico ADME

by QikProp,

Schordinger 9.0

Sr. No. Compounds Molecular

weight

QPlogP O/W a H-bond

donor

H-bond

acceptor

QPlogS b QPlogHERG c QPPCaco d QPMDCK e % Human Oral

Absorption f

13

N

O

O

O

H
N

H
N

O
Cl

449.893 4.898 02 5 �6.569 �5.631 1075.436 1928.785 100

14

N

O

O

O

H
N

H
N

O

F
F

451.429 4.357 02 5 �4.825 �4.683 679.825 1126.228 100

15

N

O

O

O

H
N

H
N

O

F

F

451.429 4.828 02 5 �6.369 �5.44 1173.86 2346.659 100

16

N

O

O

O

H
N

H
N

O

F

F

451.429 4.833 02 6 �6.376 �5.43 1204.462 2380.719 100
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Table 5 (continued)

Criteria Lipinski’srule of five

(Drug Likeliness)

In Silico ADME

by QikProp,

Schordinger 9.0

Sr. No. Compounds Molecular

weight

QPlogP O/W a H-bond

donor

H-bond

acceptor

QPlogS b QPlogHERG c QPPCaco d QPMDCK e % Human Oral

Absorption f

17

N

O

O

O

H
N

H
N

O

F

F

451.429 4.833 02 5 �6.332 �5.444 1297.433 2401.246 100

18

N

O

O

O

H
N

H
N

O

F

F

451.429 4.944 02 5 �6.832 �5.73 1072.441 2392.33 100

19

N

O

O

O

H
N

H
N

O

F

F

451.429 4.884 02 5 �6.576 �5.465 1106.857 2594.467 100

20

N

O

O

O

H
N

H
N

O

Cl

Cl

484.338 5.344 2 5 �7.014 �5.463 1230.912 4612.511 100
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Table 5 (continued)

Criteria Lipinski’srule of five

(Drug Likeliness)

In Silico A ME

by QikPro ,

Schordinge 9.0

Sr. No. Compounds Molecular

weight

QPlogP O/W a H-bond

donor

H-bond

acceptor

QPlogS b QPlogHER c QPPCaco d QPMDCK e % Human Oral

Absorption f

21

N

O

O

O

H
N

H
N

O

Cl

Cl

484.338 5.356 2 5 �7.051 �5.479 1270.107 4767.897 100

22

N

O

O

O

H
N

H
N

O

Cl

Cl

484.338 5.334 2 5 �7.191 �5.537 1102.199 4068.785 100

23

N

O

O

O

H
N

H
N

O

Cl

Cl

484.338 5.392 2 5 �7.313 �5.537 1074.893 4745.769 100

24

N

O

O

O

H
N

H
N

O

F F

F

469.419 5.015 02 5 �6.514 �5.258 1306.584 3975.17 100
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Table 5 (continued)

Criteria Lipinski’srule of five

(Drug Likeliness)

In Silico ADME

by QikProp,

Schordinger 9.0

Sr. No. Compounds Molecular

weight

QPlogP O/W a H-bond

donor

H-bond

acceptor

QPlogS b QPlogHERG c QPPCaco d QPMDCK e % Human Oral

Absorption f

25

N

O

O

O

H
N

H
N

O

Cl F

F

485.874 5.25 02 5 �6.726 �5.251 1388.316 5481.041 100

26

N

O

O

O

H
N

H
N

O

Cl
F

F

485.874 5.119 02 5 �6.6 �5.114 1174.475 4275.884 100

a Predicted octanol/water partition co-efficient log p (acceptable range: �2.0 to 6.5).
b Predicted aqueous solubility; S in mol/L (acceptable range: �6.5 to 0.5).
c Predicted IC50 value for blockage of HERG K+ channels (concern below �5.0).
d Predicted Caco-2 cell permeability in nm/s (acceptable range: <25 is poor and >500 is great).
e Predicted apparent MDCK cell permeability in nm/s.
f Percentage of human oral absorption (<25% is poor and >80% is high).
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Molecular modeling studies of quinoline derivatives as S2001
inferred from the docking results that the bulky moiety is lo-
cated in a deep hydrophobic pocket formed by VAL-845,
LYS-868, VAL-899, ILE-1044, PHE-1047, LEU-889 and

ILE-888.
Furthermore, Fig. 4a and b compares the most significant

favorable and unfavorable features at position-4 which indi-

cated that electron donating groups such as CH3, OCH3 on
diphenylurea favors the activity as compared to the electron
withdrawing groups. It is also observed that kinase inhibitory

activity is inversely proportional with the electron withdrawing
group present over diphenylurea; as the aromatic ring is get-
ting substituted with more number of electron withdrawing
groups the activity decreases as is evident from compounds

20, 21, 22 and 26.
It is also concluded by observing the blue cubes at the 6th

and 7th positions of the quinoline ring that an electron donat-

ing substituent such as methoxy is favorable for VEGFR-2
inhibition activity.

Docking study was carried out for the target compounds

into VEGFR-2 tyrosine kinase using GLIDE (Schordinger
Inc., USA) (2006). The crystal structure of the enzyme with
a co-crystallized ligand (2XV7) was obtained from the protein

data bank PDB. Our compounds were modeled by positioning
them in the co-crystallized ligand’s binding site. The entire
complex was then subjected to alternate cycles of minimization
and dynamics. We redocked the co-crystallized ligand into the

active site of the enzyme and then replaced it with our com-
pounds in order to compare the binding mode of both the
co-crystallized ligand and quinoline derivatives.

These docking studies have revealed that the quinoline ring
binds to a narrow hydrophobic pocket in the N-terminal do-
main of VEGFR-2 tyrosine kinase where N- of the quinoline

ring interacts with H-atom of the amino acid backbone of
CYS-919 via a hydrogen bond (Fig. 6). These interactions
underscore the importance of both nitrogen atoms for binding

and the subsequent inhibitory capacity. The importance of
nitrogen in drug receptor interaction is also inferred from a
common pharmacophore hypothesis developed from 3D
QSAR where nitrogen is acting as the hydrogen bond acceptor

(A1) as shown in Fig. 2.
Quinoline ring is surrounded by hydrophobic residues such

as LYS-920, GLY-922, PHE-918, GLU-917, LEU-1035, LEU-

840, and VAL-916 indicating its role in hydrophobic interac-
tion; ring residue (R12) in 3D QSAR model also suggests the
same thing.

The diphenylurea moiety at the C-4 position of quinoline is
observed to be inserted deeply in the cavity, interacting with
VAL-845, LYS-868, VAL-899, ILE-1044, PHE-1047, LEU-
889, ILE-888 and GLU-885 through hydrophobic and H-bond

contacts, respectively. This deep cavity is very well conserved
in all tyrosine kinase isoforms, and coincides with the ATP-
binding site region; hydrophobic interaction of diphenylurea

moiety is also confirmed by the ring residue (R14) in 3D-
QSAR studies. The co-crystallized ligand forms hydrogen
bonding with GLU-885 via –NH– of carboxamide group

(–CONH–) and a similar hydrogen bonding interaction is also
shown by –NH– of urea (–NHCONH–) with GLU-885 of all
quinoline derivatives.

As a measure of docking reliability, the docking results
were evaluated in terms of glide dock score values by compar-
ison of the docked poses of the co-crystallized ligand as shown
in Table 4. The minimum glide score of �12.479295 and
�12.105129 kcal/mol of compound 2 and 7 having methoxy
and nitro derivatives proves that both electron donating and
withdrawing groups favors the VEGFR-2 inhibition activity;

but as the number of electron withdrawing groups increases
the diphenylurea moiety activity decreases as is obvious from
docking scores of compounds 24, 25 and 26.

Residues within 5 Å areas of co-crystallized ligand and
quinoline derivatives are shown in Fig. 6. Some common resi-
dues involved in this type of interaction within 5 Å area are

LEU-840, VAL-845, LYS-868, PHE-1047, ILE-888, CYS-
1045, ILE-1044, VAL-899, VAL-916, LEU-1035, GLU-917,
LYS – 920 as shown in Table 4.

For the 26 compounds, the partition coefficient (QPlogPo/

w) and water solubility (QPlogS), critical for the estimation of
absorption and distribution of drugs within the body ranged
between 3.712 to 5.392 and �7.313 to �4.825. Cell permeabil-

ity (QPPCaco), a key factor governing drug metabolism and its
access to biological membranes, ranged from 128.056 to
1470.581, QPMDCK ranges from 78.8 to 4995.235. Overall,

the percentage human oral absorption for the compounds ran-
ged from 86.397% to 100%. All these pharmacokinetic param-
eters are within the acceptable range defined for human use

(see Table 5 footnote), thereby indicating their potential as
drug-like molecules.
4. Conclusion

A series of quinoline derivatives with VEGFR-2 tyrosine ki-
nase inhibitory activity were subjected to a 3D-QSAR study.
All the developed 3D-QSAR models have shown good predic-

tabilities and statistical validation. Model-1 (AADRR.55) was
significantly more accurate than other models, which is charac-
terized by PLS factors (r2 = 0.8621, SD = 0.4412, F= 34.66,

P = 0.8462) and the test set correlation is characterized by
PLS factors (q2 = 0.6943, RMSE = 0.4287, Pearson-
R= 0.8462). The resulting 3D-QSAR contour maps have pro-

vided useful insights into active-structure relationship, allow-
ing a discussion in terms of drug design. Nitrogen atom of
the quinoline ring serves as hydrogen bond acceptor (A1) in

drug receptor interaction as it is proved by docking studies
where it is showing a hydrogen bonding interaction with the
CYS-919 amino acid residue. Ring residue (R12) in this model
occupies much of the favorable blue cubes due to the presence

of the hydrophobic quinoline ring. Similarly ring residue (R14)
in diphenylurea at the 4th position of the quinoline ring sug-
gests that the bulky substituent is essential at the 4th position

of the quinoline ring for producing VEGFR-2 kinase inhibi-
tion, it is also inferred from the docking results that the bulky
moiety is located in a deep hydrophobic pocket formed by

VAL-845, LYS-868, VAL-899, ILE-1044, PHE-1047, LEU-
889 and ILE-888. Furthermore, at position-4 (diphenylurea)
of the quinoline ring electron donating groups such as CH3,
OCH3 favors the activity as compared to the electron with-

drawing groups. It is also observed that kinase inhibitory
activity is inversely proportional with the electron withdrawing
group present over diphenylurea. It is also concluded by

observing the blue cubes at 6th and 7th positions of the quin-
oline ring that an electron donating substituent such as meth-
oxy is favorable for VEGFR-2 inhibition activity. Docking

studies have revealed that the quinoline ring binds to a narrow
hydrophobic pocket in the N-terminal domain of VEGFR-2
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tyrosine kinase where N- of the quinoline ring interacts with
the H-atom of the amino acid backbone of CYS-919 via a
hydrogen bond. These interactions underscore the importance

of both nitrogen atoms for binding and the subsequent
inhibitory capacity. The diphenylurea moiety at the C-4 posi-
tion of quinoline is observed to be inserted deeply in the cavity,

interacting with VAL-845, LYS-868, VAL-899, ILE-1044,
PHE-1047, LEU-889, ILE-888 and GLU-885 through hydro-
phobic and H-bond contacts, respectively. In summary, the li-

gand-based 3D-QSAR model based on pharmacophore
conformations, docking study and drug-like filters (ADMET
and Lipinski’s rule of five) presented in this study could be very
useful for further development of VEGFR-2 tyrosine kinase

inhibitors.
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