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Abstract A hybrid computational approach was employed for simulation of molecular separation

using polymeric membranes. The considered system is a cylindrical membrane module in which the

mass transfer equations were solved numerically using CFD (Computational Fluid Dynamics) to

obtain the concentration of the species, and then the simulation results were used in machine learn-

ing models. Indeed, the CFD simulation results were used as the inputs for several machine learning

models to obtain the hybrid model. We have a dataset with more than 2000 data points and two

input features (r and z). Also, the only output is C which is the concentration of the species in

the feed channel of membrane module. KNN (K nearest neighbor), PLSR (Partial Least Square

Regression), and SGD (Stochastic Gradient Descent) are the models employed in this research to

analyze the mentioned data set. Models were optimized with their hyper-parameters and finally

evaluated with different statistical metrics. MAE error metric is 3.4, 5.1, and 5.5 for KNN,

SGD, and PLSR. Also, they have 0.998, 0.997, 0.896 coefficient of determination (R2) respectively.

Finally, based on the overall results, KNN with K = 8 is selected as the best model in this study for

simulation of the membrane system. The final maximum error is also 1.35E+02.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Separation and removal of water pollutants is a great subject of inter-

est which can be done using molecular separation methods via differ-

ent separation techniques. From the environmental perspective,

pollutant molecules must be removed from effluents prior to discharge

to the environment, as they might cause severe health problems (Fan

et al., 2022; Ge et al., 2019; Guan et al., 2021; Liu et al., 2020, 2022;

Bai et al., 2021). The process of molecular separation has also wide

applications in different fields such as nanotechnology-based areas,

biochemical, pharmaceuticals, food, etc. (Wang et al., 2022a, 2022b;

Xu et al., 2022; Yang et al., 2021; Yu et al., 2022a, 2022b). The
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selection and design of appropriate method is of fundamental impor-

tance to achieve the best and optimum conditions for the separation

yield (Wang et al., 2022c, 2021; Zhang et al., 2022).

The molecular separation based on membrane technology offers

superior advantages in process engineering field which makes this

novel process efficient for separation and removal of target molecules

from a mixture (Han et al., 2022; Chen and Yang, 2022; Wang et al.,

2022d). The main advantage of membrane processes in molecular sep-

aration is that these processes can be regarded as green technology for

separation, as no organic solvent is required in most of the membrane

processes. In some cases, organic solvents are used for the separation

such as those in membrane contactors for CO2 capture and liquid

extraction (Sabzekar et al., 2022; Petukhov et al., 2022; Liu et al.,

2022).

To design and optimize the membrane separation process for a

given target molecule, computational simulation can be employed in

this regard to improve the separation process (Mou et al., 2022; Liu

et al., 2022). The membrane-based computational simulation can be

performed mainly using either computational fluid dynamics (CFD)

or machine learning models. CFD methods are considered to be mech-

anistic models which provide process understanding, while the machine

learning (ML)models are black-boxmodels and use dataset for training

algorithms. Integration of both models would be a novel idea in molec-

ular separation which is the main focus of the current research.

A growing number of scientific disciplines are transitioning to

machine learning (ML) methodologies that are progressively taking

on the roles of classical computing methods. These techniques can

be applied to solve problems in a number of ways. There is some cor-

relation between inputs and outputs derived from these models, which

produce some predictions (Alpaydin, 2020; Bishop, 2006; Carbonell

et al., 1983).

KNN (K nearest neighbor) is one of the models that have been

selected for this study to model the molecular separation case study.

As well as being used for classification problems, it can also be used

for regression problems. The application of this method is, however,

more widely used in the field of classification problems. As the name

implies, The K nearest neighbor algorithm is a simple algorithm that

stores all of the available cases. New cases are estimated by the K clos-

est neighbors based on their majority votes or average. In a distance

function, the case being assigned to a class will be the one that has

the highest frequency among its K nearest neighbors (Song et al.,

2017; Kohli et al., 2021).

In this study, partial least square regression is also used as one of

the models. In many problems, the partial least square regression

(PLSR) model is a method that combines spectral measurements and

chemical composition or physical properties of solids and charred

materials to produce a rapid multivariate analysis with several vari-

ables (Xie and Chen, 2022; Boulesteix and Strimmer, 2007).

It is also relevant to note that Stochastic Gradient Descent (SGD)

is a straightforward and effective technique for classifying and regress-

ing linear data with convex loss functions, such as Support Vector

Machines (linear) and Logistic Regression (linear). In the field of

machine learning, the idea of SGD has been around for a long time;

however, it is only relatively recently that it has received a significant

amount of attention in the context of large-scale learning (Ighalo

et al., 2020; Bottou, 1998).

In the current research, we have employed for the first time, the

three mentioned machine learning methods for integration with CFD

simulation to build hybrid modeling for simulation of a molecular sep-

aration case study via polymeric membrane technique.

2. Methodology

2.1. CFD method of modeling

As stated before, we used CFD simulation results in modeling
of membrane separation process using machine learning mod-
els. In the first step of this work, CFD was performed to sim-
ulate removal of a species using polymeric cylindrical shape
membrane. A simple geometry was designed and the mass

transfer equations including convection and diffusion was
solved for the feed, membrane, and permeate channels of the
membrane module (Shirazian et al., 2012). Cylindrical coordi-

nate was used for deriving and solving the governing equa-
tions. The main mass transfer equation can be expressed as
(Rezakazemi et al., 2019):

DAB

@2C

@r2
þ 1

r

@C

@r
þ @2C

@z2

� �
¼ V

@C

@z
ð1Þ

where DAB refers to the diffusion coefficient and C refers to the
species concentration. Also, r and z refer to the radial and axial
coordinate, while V is the velocity vector. Finite element
method was used to solve Eq. (1) numerically (Rezakazemi

et al., 2019).

2.2. Partial least squares regression (PLSR)

We have used a number of machine learning models to inte-
grate to the CFD results for simulation of the membrane pro-
cess in which PLSR is the first model which is utilized in this

research. Using the covariance matrix, partial least squares
regression is an efficient, quick and optimal regression tech-
nique. Partial Least Squares Regression, or PLS Regression,

is the most common Partial Least Squares model. All other
models in the family of PLS models are based on partial least
squares regression. Regression models are applicable when you
have numerical dependent variables (Bjørn-Helge et al., 2019).

In the field of engineering and science, PLSR acts as a bilinear
factor model which is extensively used in a variety of engineer-
ing and science fields. As a result, it performs well on matrices

X that contain many noisy and collinear factors. According to
the following Equations, the PLSR should have an optimal
factor number (Abdi, 2010; Guo et al., 2021):

SSS;h ¼
Xn

i¼1

yi � byhið Þ2 ð2Þ

SPRESS;h ¼
Xn

i¼1

yi � byh �ið Þ
� �2

ð3Þ

Qh
2 ¼ 1� SPRESS;h

SSS;h

ð4Þ

where yi is the original data and byhi is the fitted value of the i-th
data point calculated from all data points and the h component

of the regression model. By removing I as a data point from
the modeling process and extracting the h component from

the resulting regression model, we get the byh �ið Þ notation, which
indicates that yi was determined using the latter. In the pres-

ence of Qh
2 � 0:0975, the addition of a new component greatly

enhances the predictive power of the constructed model; in the

other cases, the added new component has no meaningful sig-
nificance (Guo et al., 2021; Elden, 2004).

2.3. KNN method

This model is a straightforward classification or regression
model that uses the k-Nearest Neighbor estimation technique
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as an instance-based machine learning model. A second reason
why this is an inefficient technique is that it does not generalize
from the subset of data used for training. This means that

when testing and for unknown data, the full training subset
is retained in addition to the testing subset. In KNN regres-
sion, the test examples are identified by comparing them to

the training examples, in order to learn the regression model
(Cover, 1968).

Suppose T ¼ x1; y1ð Þ; � � � ; xN; yNð Þ½ � indicate distance

parameterized training data and d, xi ¼ xi1; � � � ; ximð Þ is a rep-
resentation of the i-th instance based on m input variables
together with corresponding target output yi. The number N
represents the quantity of examples that have been provided.

The di must be calculated between a test data point (x) and
all other points xi 2 T. Then sort the di distances for a test data
point x. If di is ranked as the ith position, the di matching sam-

ple is referred to as the ith nearest neighbor NNi(x), and its

target is denoted by yi (x). Lastly, by denotes the average of

the regression outputs of KNN to x, i.e., by ¼ 1
k

Pk
i¼1yi xð Þ. Fol-

lowing are the steps involved in the KNN regression algorithm
(Song, 2017):

� Inputs: training samples xi; yif g; xi: input features, yi: output
value, a single test data point x

� Algorithm:

o Compare each xi with the query data point(x) and calcu-
late the distance between them.

o Search for k closet data points xi1 � � � xik and their target
outputs yi1 � � � yik

o output:
by ¼ 1

K

Xk

j¼1

yij
Fig. 1 Concentration (C) distribution of species in the feed

channel of membrane calculated using CFD method.
2.4. Stochastic Gradient Descent (SGD)

SGD estimates the objective function gradient using a subset
of training samples and dynamically adjusts the parameters.
Batch size refers to the number of training samples employed.

In the case of larger batches, the SGD simply changes into a
gradient descent when the batch size increases. Although this
is a very slow solution to convergence, it can be sped up by

changing parameters more often with a small batch size
(Haider et al., 2021).

The stochastic gradient descent (SGD) method is an algo-

rithmic simplification of GD that uses only a sample from
the dataset to estimate the gradient on each update iteration:

wtþ1 ¼ wt � ctrwQ zi;wtð Þ ð5Þ
Under sufficient regularity conditions, it usually achieves a

fast convergence when the learning rate is c t�1.
Each time the SGD iterates, it picks random samples from

a finite training set. Most training sets have a bigger number of
iterations than the number of training iterations. In this way,
most of the data points in the training subset can be traversed
by the average traversal of the data. Additionally, some of

them will be run multiple times so that the expected risk can
be directly optimized (Johnson and Zhang, 2013).
3. Results and discussions

3.1. CFD results

As explained earlier, we have performed CFD simulations for
removal of species using a cylindrical membrane module. At

the beginning of this work, the concentration distribution of
the species was calculated using the CFD which uses finite ele-
ment method. The results of the concentration (C) distribution

are illustrated in Fig. 1 as 2D plot in cylindrical coordinate.
The feed enters the membrane module from the bottom where
the concentration is the highest (�1000) and leaves the module
from the top side where the concentration decreases due to the

mass transfer of species towards the polymeric membrane sur-
face. It should be noted that we presented only the feed chan-
nel of the membrane module, and the membrane itself, and the

permeate side is not represented in Fig. 1. Also, we used the
feed channel data for training and validation of the machine
learning models.



Fig. 2 Impact of different train fractions on model accuracy.

Fig. 3 0.5 training set – Comparison of predicted and actual C

values.

Fig. 4 0.9 training set – Comparison of predicted and actual C

values.
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3.2. Machine learning results

In order to obtain a suitable evaluation, the selection of the
ratio of training and testing in the data is of particular impor-
tance. For this purpose, we tested this work with different val-

ues and evaluated the accuracy of the models (on average) in
order to choose this configuration accurately. In Fig. 2, the
effect of the ratio of the data of the train and the test on the

accuracy of the model is examined, and according to this fig-
ure, 90% of the data is considered as the train and 10% as
the test. Figs. 3 and 4 also show the comparison of the most

50% and 90% data in terms of the proximity of the expected
and predicted data, which confirms the above fact.

For the purpose of comparing and analyzing final results,

three models’ parameters are optimized, and final models are
implemented based on these configurations. For example, in
Fig. 5, as an example of the hyper-parameter optimization

result, the value of K (number of neighbors) in the KNN is
shown for different values, for which the value of 8 was finally
selected.

In regression modeling, a model error represents a devia-
tion of the dataset from a reference set. A regression line is
defined as the line that is closest to the observable data points.

If there are multiple data points, the model’s error is estimated
using the below parameters (Hu et al., 2022):

� MAE: A mean is found by averaging the absolute values of

the errors (Willmott and Matsuura, 2005; Botchkarev,
2018):



Fig. 5 Impact of value of K in KNN model on performance of model.

Table 1 The model results and their comparisons.

Models MAE RMSE Max Error R2

KNN 3.43514E+00 8.7266E+00 1.34717E+02 0.9983

SGD 5.13564E+00 1.1170E+01 1.64051E+02 0.9973

PLSR 5.51127E+01 6.5923E+01 1.97509E+02 0.8969
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MAE ¼
Pn

i¼1jyi � xij
n

ð6Þ

� RMSE: The root mean square error is one of the most com-

monly used model performance evaluation statistics which

is expressed as (Willmott and Matsuura, 2005):
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 xi � yið Þ2
n

s
ð7Þ

2

Fig. 6 KNN model – Comparison of predicted and actual C

values.
� R -Score

As can be seen from Table 1, the numerical results of the
introduced models can be compared with each other. We can

clearly see from the table that the KNN model is the most
accurate model. This is because it has the most accurate results
in terms of all the metrics, thus making it the most general

model. There is also a confirmation of this issue in the valida-
tion Figs. 6–8.

The plot of prediction surface in the final model is shown in
Fig. 9 for the best model which is KNN. Also, this diagram is

similarly shown for two other models that are not the best case
in Figs. 10 and 11. It is clearly seen that the developed machine
learning models are capable of capturing the variations of the

species concentration in the membrane feed channel with great
accuracy.

In order to have a better view of the result of the final

model, two heat map diagrams are shown in color in Figs. 12
and 13, in which the inputs are scaled in the first and not in the
second illustration. Having looked at the results, it is con-
cluded that the machine learning models can predict the

CFD simulation results with acceptable accuracy and thereby
can minimize the computational expenses for CFD simulation
of large-scale systems which require high computational

expenses.



Fig. 9 Final KNN model. 3D projection of output with model.

Fig. 7 SGD model – Comparison of predicted and actual C

values.

Fig. 8 PLSR model – Comparison of predicted and actual C

values.

Fig. 12 The heat map plot of final model. X-ax is r and Y-ax is z.

Fig. 10 Final SGD model. 3D projection of output with model.

Fig. 11 Final PLSR model. 3D projection of output with model.
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Fig. 13 The unscaled heat map plot of final model. X-ax is r and

Y-ax is z.
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4. Conclusion

In this investigation, we have a dataset that contains over 2,000 indi-

vidual data points and two distinct input features (r and z) which have

been obtained from a CFD simulation of membrane system. Addition-

ally, the only output is the concentration distribution of the species in

the feed channel, i.e., C. KNN, which stands for ‘‘K nearest neighbor,”

PLSR, which stands for ‘‘Partial Least Square Regression,” and SGD,

which stands for ‘‘Stochastic Gradient Descent,” are the models that

were used in this research to analyze the data set that was extracted

from the CFD simulation of membrane. Following the optimization

of the models with their hyper-parameters, the models were finally

evaluated using a variety of statistical metrics. The MAE error metric

for KNN, SGD, and PLSR are respectively 3.4, 5.1, and 5.5. In addi-

tion to this, the coefficient of determination (R2) for each of them is

respectively 0.998, 0.997, and 0.896. In conclusion, the KNN model

with a K value of 8 was chosen for process analysis, because it provided

the best results across the board in this investigation. The maximum

error possible in the final analysis is also 1.35E+02.
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