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Abstract Gadolinium(III) trifluoromethanesulfonate (Gadolinium triflate) Gd(OTf)3 catalysed

efficient Hantzsch reaction via four-component coupling reactions of aldehydes, 5,5-dimethyl-1,3-

cyclohexaedione (dimedone), ethyl acetoacetate and ammonium acetate at ambient temperature

was described as the preparation of polyhydroquinoline derivatives. The process presented here

is operationally simple, environmentally benign and has excellent yield. Furthermore, the catalyst

can be recovered conveniently and reused efficiently.
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Multi component reactions (Domling andUgi, 2000; Ugi, 2001,
2003; Zhu, 2003; Domling, 2006) allow the creation of several

bonds in a single operation and are attracting increasing atten-
tion as one of the most powerful emerging synthetic tools for
the creation of molecular diversity and complexity (Burke

and Schreiber, 2004). They also have considerable advantages
in terms of user and environmental friendliness because of the
step reduction and atom economy associated to their use.

4-Substituted 1,4-dihydropyridines (DHPs) comprise a

large family of medicinally important compounds. In recent
years, an increasing interest has been focused on the synthesis

of 1,4-dihydropyridine compounds owing to their significant
biological activity (Di Stilo et al., 1998; Kawase et al., 2002;
Suarez et al., 2003). In particular, dihydropyridine drugs such

as nifedipine, nicardipine, amlodipine (Fig. 1) and others are
effective cardiovascular agents for the treatment of hyperten-
sion (Buhler and Kiowski, 1987; Reid et al.,1985). 4-Aryl-
1,4-dihydropyridines are analogues of NADH coenzymes,

which have been explored for their calcium channel activity
and the heterocyclic rings are found in a variety of bioactive
compounds such as vasodilator, bronchodilator, antiathero-

sclerotic, antitumour, antidiabetic, geroprotective and
heptaprotective agents (Godfraid et al., 1986; Sausins and
Duburs, 1988; Mager et al., 1992; Mannhold et al., 1992).

Quinolines having 1,4-dihydropyridine nucleus are very impor-
tant compounds because of their pharmacological properties.
Members of this family are being used as antimalarial,
anti-inflammatory, anti-asthmatic, antibacterial and tyrosine

kinase inhibiting agents (Chen et al., 2001; Roma et al., 2000).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.arabjc.2012.10.017&domain=pdf
mailto:smansoors2000@yahoo.co.in
http://dx.doi.org/10.1016/j.arabjc.2012.10.017
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Figure 1 Dihydropyridine drugs.
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Numerous methods have been reported for the synthesis of
polyhydroquinoline derivatives. The classical methods involve

the three-component condensation of an aldehyde with ethyl
acetoacetate, and ammonia in acetic acid or in refluxing alco-
hol (Hantzsch and Liebigs, 1882; Loev and Snader, 1965).

In recent years, several new efficient methods have been
developed including the use of MCM-41 (Nagarapu et al.,
2007), microwave (Tu et al., 2001), TMS iodide (Sabitha

et al., 2003), ionic liquid (Ji et al., 2004), autoclave (Watanabe
et al., 1983), fluoroboric acid (Chen et al., 2007),
K7[PW11CoO40] (Heravi et al., 2007), metal triflates (Wang

et al., 2005; Donelson et al., 2006), molecular iodine (Ko
et al., 2005), silica-supported acids (Maheswara et al., 2006;
Gupta et al., 2007), ceric ammonium nitrate (Ko and Yao,
2006; Reddy and Raghu, 2008), PTSA-SDS (Kumar and

Maurya, 2008), tris(pentafluorophenyl)borane (Chandrase-
khar et al., 2008), boronic acids (Sridhar and Perumal, 2005;
Debache et al., 2008), grinding (Kumar et al., 2008), organo-

catalyst (Kumar and Maurya, 2007; Baghbanian et al., 2010)
and Hafnium(IV)bis(perfluorooctanesulfonyl) imide complex
(Hong et al., 2010). These methods, however, suffer from

drawbacks such as unsatisfactory yields, acidic or basic cata-
lysts, extended reaction times, elevated temperatures, tedious
work-up, anhydrous organic solvents and the use of stoichiom-
etric and/or relatively expensive reagents. Moreover, the main

disadvantage of almost all existing methods is that the cata-
lysts are destroyed in the work-up procedure and cannot be
recovered or reused. Therefore, the search continues for a bet-

ter catalyst for the synthesis of 1,4-DHPs and polyhydroquin-
olines in terms of operational simplicity, reusability, economic
viability, and greater selectivity.

Lanthanide triflates are unique Lewis acids that are cur-
rently of great research interest. They are quite stable in water
and reusable, as well as highly effective for the activation of

nitrogen containing compounds. Therefore, lanthanide tri-
flates are unique catalysts compared to conventional Lewis
acids in several carbon–carbon bond forming reactions and
have found a wide application in organic synthesis (Green

and Wuts, 1999). In addition, these metal triflates can be used
either in aqueous or in non-aqueous media and the reactions
can be conveniently carried out under mild conditions and

do not require anhydrous conditions or an inert atmosphere.
In 1994 Kobayashi and Hachiya (1994) used Godolinium

triflate as a water-tolerant Lewis acid in the aldol reactions
of silyl enol ethers with aldehydes in aqueous media. Gadolin-
ium triflate has been used extensively as Lewis acid catalyst in
acetylation of alcohols and amines (Alleti et al., 2005), alkyl-

ation of pyrroles (Unaleroglu and Yazici, 2007), Michael addi-
tions (Alleti et al., 2008) and acetylation of alcohols and
phenols (Yoon et al., 2008).

Gadolinium triflate has several advantages over other Lewis
acids, it is stable in water and therefore does not decompose
under aqueous work-up conditions, unlike other conventional

Lewis acids. Thus, recyclization of the Gadolinium triflate is
often possible and renders the procedure relatively environ-
mentally acceptable by utilizing these properties; this catalyst

has been successfully applied to several synthetic reactions.
However, there is no report on the use of Gadolinium triflate
for the synthesis of polyhydroquinoline derivatives.

In continuation of our interest towards the development

of new routes to the synthesis of heterocyclic compounds,
such as 3,4-dihydropyrimidin-2(1H)-ones/-thiones/imines
(Mansoor et al., 2016), b-amino ketone compounds (Mansoor

et al., 2012a), amidoalkyl naphthols (Mansoor et al., 2012b)
and 2-amino-4,6-diphenylpyridine-3-carbonitrile derivatives
(Mansoor et al., 2012c) by multi-component reactions, we

turned our attention towards the one-pot synthesis of polyhy-
droquinoline derivatives through Hantzsch a four component
coupling reaction of aldehyde, dimedone, ethyl acetoacetate,
and ammonium acetate in the presence of a reusable Gadolin-

ium triflate catalyst at room temperature. In this paper, we
wish to highlight our finding about the Gd(OTf)3 catalysed
four-component Hantzsch reaction using ethanol as a solvent

at ambient temperature.
2. Experimental

2.1. Methods and apparatus

All reactions were performed at room temperature. All chem-
icals were purchased from Aldrich Chemical Co. and solvents

were used without further purification. Analytical thin-layer
chromatography was performed with E. Merck silica gel 60F
glass plates. Visualization of the developed chromatogram
was performed by UV light. Melting points were determined

with Shimadzu DS-50 thermal analyser. 1H NMR spectra were
recorded at Bruker AM 300 (300 MHz) in CDCl3 using TMS
as internal standard. FT-IR spectra were obtained as KBr

discs on Shimadzu spectrometer. Mass spectra were deter-
mined on a Saturm 2000GC/MS instrument. Elemental analy-
sis was measured by means of Perkin Elmer 2400 CHN

elemental analyser flowchart.

2.2. General experimental procedure for the synthesis of
polyhydroquinolines

Aldehyde (2 mmol), dimedone (2 mmol), ammonium acetate
(2 mmol), ethyl acetoacetate (2 mmol) and Gd(OTf)3
(5 mol%) in ethanol (5 mL) were successively charged into a
50 mL round bottomed flask, equipped with a magnetic
stirrer. Then the reaction mixture proceeded at room

temperature for about 5–6 h and a solid product was gradu-
ally formed. After completion of reaction as indicated by thin
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layer chromatography (TLC), the resulting solid product was

filtered and recrystallized to give the pure product. The filtrate
was concentrated and then diluted with ethyl acetate, washed
with water and the aqueous layer containing the catalyst
could be evaporated under reduced pressure to give a white

solid, which could be reused without losing catalytic activity.

2.3. Spectral data for the synthesized compounds

2.3.1. 2,7,7-Trimethyl-5-oxo-4-phenyl-1,4,5,6,7,8-
hexahydroquinoline-3-carboxylic acid ethyl ester (compound

4a)
IR (KBr): 3285, 3080, 2960, 1696, 1610, 1530 cm�1; 1H NMR

(CDCl3, 300 MHz) d: 0.93 (s, 3H), 1.07 (s, 3H), 1.19 (t,
J= 7.1 Hz, 3H), 2.13–2.32 (m, 4H), 2.37 (s, 3H), 4.05 (q,
J= 7.2 Hz, 2H), 5.05 (s, 1H), 6.21 (s, 1H), 7.06–7.31 (m,
5H). MS (EI): m/z 339 (M+). Anal. Calcd. for C21H25NO3:

C, 74.34; H, 7.37; N, 4.13. Found: C, 74.45; H, 7.40; N, 4.10%.

2.3.2. 2,7,7-Trimethyl-5-oxo-4-(4-chlorophenyl)-1,4,5,6,7,8-

hexahydroquinoline-3-carboxylic acid ethyl ester (compound
4b)
IR (KBr): 3275, 3075, 2965, 1705, 1650, 1605 cm�1; 1H NMR

(CDCl3, 300 MHz) d: 0.93 (s, 3H), 1.07 (s, 3H), 1.19 (t,
J= 7.2 Hz, 3H), 2.12–2.35 (m, 4H), 2.37 (m, 3H), 4.00 (q,
J= 7.2 Hz, 2H), 5.02 (s, 1H), 6.13 (s, 1H), 7.15 (d,

J= 8 Hz, 2H), 7.31 (d, J = 8 Hz, 2H). MS (EI): m/z 374
(M+). Anal. Calcd. for C21H24ClNO3: C, 67.48; H, 6.43; N,
3.75. Found: C, 67.45; H, 6.38; N, 3.80%.

2.3.3. 2,7,7-Trimethyl-5-oxo-4-(4-hydroxyphenyl)-1,4,5,6,7,8-
hexahydroquinoline-3-carboxylic acid ethyl ester (compound
4c)
IR (KBr): 3365, 2955, 1700, 1645, 1590, 1480, 1385,
1220,782 cm�1; 1H NMR (CDCl3, 300 MHz) d: 0.93 (s, 3H),
1.07 (s, 3H), 1.19 (t, J= 7.2 Hz, 3H), 2.09–2.22 (m, 3H),

2.20–2.34 (m, 4H), 4.06 (q, J = 7.8 Hz, 2H), 4.98 (s, 1H),
5.61 (s, 1H), 6.10 (s, 1H), 6.65 (d, J = 8.0 Hz, 2H), 7.17 (d,
J= 7.8 Hz, 2H). MS (EI): m/z 355 (M+). Anal. Calcd. for

C21H25NO4: C, 70.99; H, 7.04; N, 3.94. Found: C, 70.96; H,
7.00; N, 3.90%.

2.3.4. 2,7,7-Trimethyl-5-oxo-4-(4-methylphenyl)-1,4,5,6,7,8-
hexahydroquinoline-3-carboxylic acid ethyl ester (compound
4d)
IR (KBr): 3275, 3080, 2960, 1700, 1650 cm�1; 1H NMR
(CDCl3, 300 MHz) d: 0.94 (s, 3H), 1.08 (s, 3H), 1.21 (t,
J= 7.1 Hz, 3H), 2.10–2.24 (m, 4H), 2.26 (s, 3H), 2.37 (s,

3H), 4.06 (q, J = 7.1 Hz, 2H), 5.03 (s, 1H), 5.96 (s, 1H), 7.02
(d, J = 8 Hz, 2H), 7.19 (d, J= 8 Hz, 2H). MS (EI): m/z 353
(M+). Anal. Calcd for C22H27NO3: C, 74.79; H, 7.65; N,
3.97. Found: C, 74.84; H, 7.69; N, 3.95%.

2.3.5. 2,7,7-Trimethyl-5-oxo-4-(4-methoxyphenyl)-1,4,5,6,7,8-
hexahydroquinoline-3-carboxylic acid ethyl ester (compound

4e)
IR (KBr): 3275, 3085, 2960, 1705, 1605, 1498, 1382, 1217,
1032, 766 cm�1; 1H NMR (CDCl3, 300 MHz) d: 0.94 (s, 3H),

1.07 (s, 3H), 1.21 (t, J= 7.2 Hz, 3H), 2.13–2.27 (m, 3H),
2.31–2.37 (m, 4H), 3.74 (s, 3H), 4.06 (q, J = 7.2 Hz, 2H),
5.00 (s, 1H), 6.01 (s, 1H), 6.72–6.75 (m, 2H), 7.20–7.26 (m,
2H). MS (EI): m/z 369 (M+). Anal. Calcd. for C22H27NO4:

C, 71.54; H, 7.32; N, 3.79. Found: C, 71.50; H, 7.28; N, 3.83%.

2.3.6. 2,7,7-Trimethyl-5-oxo-4-(4-bromophenyl)-1,4,5,6,7,8-
hexahydroquinoline-3-carboxylic acid ethyl ester (compound 4f)
IR (KBr): 3285, 2960, 1702, 1605, 1510, 1380, 1230, 1020,
764 cm�1; 1H NMR (CDCl3, 300 MHz) d: 0.93 (s, 3H), 1.07

(s, 3H), 1.19 (t, J = 7.2 Hz, 3H), 2.19–2.27 (m, 3H), 2.34–
2.41 (m, 4H), 4.05 (q, J = 7.2 Hz, 2H), 5.03 (s, 1H), 5.78 (s,
1H), 7.19 (d, J = 8 Hz, 2H), 7.34 (d, J = 8 Hz, 2H). MS
(EI): m/z 417 (M+). Anal. Calcd. for C21H24BrNO3: C,

60.30; H, 5.74; N, 3.35. Found: C, 60.35; H, 5.78; N, 3.33%.

2.3.7. 2,7,7-Trimethyl-5-oxo-4-(4-nitrophenyl)-1,4,5,6,7,8-

hexahydroquinoline-3-carboxylic acid ethyl ester (compound
4g)
IR (KBr): 3288, 3077, 2964, 1705, 1605, 1530 cm�1; 1H NMR

(CDCl3, 300 MHz) d: 0.93 (s, 3H), 1.07 (s, 3H), 1.22 (t,
J= 7.1 Hz, 3H), 2.12–2.41 (m, 4H), 2.12–2.32 (m, 3H) 3.99
(q, J = 7.1 Hz, 2H), 5.15 (s, 1H), 6.86 (s, 1H), 7.35 (t,

J= 7.9 Hz, 1H), 7.72 (d, J = 7.9 Hz, 1H). MS (EI): m/z 384
(M+). Anal. Calcd. for C21H24N2O5: C, 65.62; H, 6.25; N,
7.29. Found: C, 65.60; H, 6.22; N, 7.32%.

2.3.8. 2,7,7-Trimethyl-5-oxo-4-(4-fluorophenyl)-1,4,5,6,7,8-
hexahydroquinoline-3-carboxylic acid ethyl ester (compound
4h)
IR (KBr): 3290, 2960, 1695, 1610, 1490, 1380, 1220, 1025,
764 cm�1; 1H NMR (CDCl3, 300 MHz) d: 0.93 (s, 3H), 1.07
(s, 3H), 1.19 (t, J= 7.2 Hz, 3H), 2.12–2.35 (m, 4H), 2.37 (m,

3H), 4.06 (q, J = 7.2 Hz, 2H), 5.02 (s, 1H), 6.13 (s, 1H), 7.15
(d, J = 8 Hz, 2H), 7.31 (d, J = 8 Hz, 2H). MS (EI): m/z 357
(M+). Anal. Calcd. for C21H24FNO3: C, 70.59; H, 6.72; N,

3.92. Found: C, 70.64; H, 6.70; N, 3.88%.

2.3.9. 2,7,7-Trimethyl-5-oxo-4-(3-bromophenyl)-1,4,5,6,7,8-

hexahydroquinoline-3-carboxylic acid ethyl ester (compound 4i)
IR (KBr): 3290, 2960, 1700, 1612, 1500, 1385, 1220, 1020,
764 cm�1; 1H NMR (CDCl3, 300 MHz) d: 0.93 (s, 3H), 1.07

(s, 3H), 1.19 (t, J= 7.2 Hz, 3H), 2.12–2.35 (m, 4H), 2.37 (m,
3H), 4.06 (q, J = 7.2 Hz, 2H), 5.02 (s, 1H), 6.13 (s, 1H), 7.15
(d, J = 8 Hz, 2H), 7.31 (d, J = 8 Hz, 2H). MS (EI): m/z 417

(M+). Anal. Calcd. for C21H24BrNO3: C, 60.30; H, 5.74; N,
3.79. Found: C, 60.25; H, 5.70; N, 3.75%.

2.3.10. 2,7,7-Trimethyl-5-oxo-4-(4-dimethylaminophenyl)-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylic acid ethyl ester
(compound 4j)
IR (KBr): 3285, 3080, 2960, 1705, 1605, 1530 cm�1; 1H NMR
(CDCl3, 300 MHz) d: 0.93 (s, 3H), 1.07 (s, 3H), 1.19 (t,
J= 7.2 Hz, 3H), 2.12–2.35 (m, 4H), 2.87 (s, 6H), 2.37 (m,
3H), 4.06 (q, J = 7.2 Hz, 2H), 5.02 (s, 1H), 6.13 (s, 1H), 7.15

(d, J = 8 Hz, 2H), 7.31 (d, J = 8 Hz, 2H). MS (EI): m/z 382
(M+). Anal. Calcd. for C23H30N2O3: C, 72.25; H, 7.85; N,
7.33. Found: C, 72.30; H, 7.88; N, 7.32%.

2.3.11. 2,7,7-Trimethyl-5-oxo-4-(2,4-dichlorophenyl)-
1,4,5,6,7,8-hexahydroquinoline-3-carboxylic acid ethyl ester

(compound 4k)
IR (KBr): 3285, 3080, 2960, 1705, 1650, 1600, 1520 cm�1; 1H
NMR (CDCl3, 300 MHz) d: 0.93 (s, 3H), 1.07 (s, 3H), 1.19

(t, J = 7.2 Hz, 3H), 2.12–2.35 (m, 4H), 2.37 (m, 3H), 4.06
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Table 2 The reaction of benzaldehyde, ethyl acetoacetate,

dimedone and ammonium acetate: effect of solvent.

Entry Solvent Time (h) Yield%

1 Ethanol 5 89

2 Methanol 5 78

3 Acetonitrile 5 80

4 t-BuOH 8 58

5 1,4-Dioxane 8 53

6 Acetone 5 50

7 Toluene 24 24

8 DCM 24 34

9 Cyclohexane 24 20
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Scheme 1 Optimizing the reaction conditions.

Table 1 The reaction of benzaldehyde, ethyl acetoacetate,

dimedone and ammonium acetate: effect of catalysis.a

Entry Catalyst Amount of

catalyst (mol%)

Time (h) Yieldb

1 None 24 32

2 ZnCl2 100 24 42

3 AlCl3 100 24 48

4 FeCl3 100 24 40

5 NdCl3 25 12 70

6 La(OTf)3 10 12 76

7 Nd(OTf)3 20 24 60

8 Yb(OTf)3 10 6 80

9 Gd(OTf)3 10 5 82

10 Gd(OTf)3 5 5 89

11 Gd(OTf)3 1 5 72

12 Gd(OTf)3 5 5 89, 90, 91, 89c

a All reactions were carried out in ethanol at room temperature.
b Isolated yields.
c Catalyst was reused four times.

An efficient one-pot multi component synthesis of polyhydroquinoline derivatives S549
(q, J = 7.2 Hz, 2H), 5.02 (s, 1H), 6.13 (s, 1H), 7.22 (d,

J = 8 Hz, 1H), 7.31 (d, J= 8 Hz, 2H). MS (EI): m/z 407
(M+). Anal. Calcd. for C21H23Cl2NO3: C, 61.78; H, 5.64; N,
3.43. Found: C, 61.80; H, 5.68; N, 3.40%.

2.3.12. 2,7,7-Trimethyl-5-oxo-4-(3,4-dichlorophenyl)-
1,4,5,6,7,8-hexahydroquinoline-3-carboxylic acid ethyl ester
(compound 4l)
IR (KBr): 3282, 3080, 2960, 1710, 1650, 1600, 1490 cm�1; 1H
NMR (CDCl3, 300 MHz) d: 0.93 (s, 3H), 1.07 (s, 3H), 1.19
(t, J= 7.2 Hz, 3H), 2.12–2.35 (m, 4H), 2.37 (m, 3H), 4.06

(q, J = 7.2 Hz, 2H), 5.02 (s, 1H), 6.13 (s, 1H), 7.25 (m,
J = 8 Hz, 1H), 7.31 (d, J= 8 Hz, 2H). MS (EI): m/z 407
(M+). Anal. Calcd. for C21H23Cl2NO3: C, 61.78; H, 5.64; N,

3.43. Found: C, 61.75; H, 5.62; N, 3.45%.

2.3.13. 2,7,7-Trimethyl-5-oxo-4-(3,4-dimethoxyphenyl)-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylic acid ethyl ester
(compound 4m)
IR (KBr): 3245, 2955, 1696, 1650, 1605, 1505, 1380, 1217,

1027, 753 cm�1; 1H NMR (CDCl3, 300 MHz) d: 0.93 (s, 3H),
1.07 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H), 2.12–2.35 (m, 4H),
2.37 (m, 3H), 4.06 (q, J= 7.2 Hz, 2H), 3.87 (s, 3H), 3.78 (s,

3H), 5.02 (s, 1H), 6.13 (s, 1H), 7.08 (m, J = 8 Hz, 1H), 7.31
(d, J= 8 Hz, 2H). MS (EI): m/z 399 (M+). Anal. Calcd. for
C23H29NO5: C, 69.17; H, 7.27; N, 3.51. Found: C, 69.20; H,
7.30; N, 3.46%.

2.3.14. 2,7,7-Trimethyl-5-oxo-4-(4-hydroxy-3-methoxyphenyl)-
1,4,5,6,7,8-hexahydroquinoline-3-carboxylic acid ethyl ester

(compound 4n)
IR (KBr): 3385, 2954, 1701, 1644, 1509, 1497, 1385, 1218,
1025, 782 cm�1; 1H NMR (CDCl3, 300 MHz) d: 0.93 (s, 3H),

1.07 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H), 2.12–2.35 (m, 4H),
2.37 (m, 3H), 5.61 (s, 1H), 3.80 (s, 3H),4.06 (q, J = 7.2 Hz,
2H), 5.02 (s, 1H), 6.13 (s, 1H), 7.10 (m, J = 8 Hz, 1H), 7.31

(d, J= 8 Hz, 2H). MS (EI): m/z 385 (M+). Anal. Calcd. for
C22H27NO5: C, 68.57; H, 7.01; N, 3.64. Found: C, 68.56; H,
7.06; N, 3.60%.

2.3.15. 2,7,7-Trimethyl-5-oxo-4-cinnamyl-1,4,5,6,7,8-
hexahydroquinoline-3-carboxylic acid ethyl ester (compound
4o)
IR (KBr): 3300, 2966, 1695, 1602, 1502 cm�1; 1H NMR
(CDCl3, 300 MHz) d: 0.93 (s, 3H), 1.07 (s, 3H), 1.19 (t,
J = 7.2 Hz, 3H), 2.12–2.35 (m, 4H), 2.37 (m, 3H), 4.06 (q,

J = 7.2 Hz, 2H), 5.02 (s, 1H), 6.13 (s, 1H), 7.10–7.38 (m,
5H) 7.18 (m, 1H), 7.38(d, 1H). MS (EI): m/z 365 (M+). Anal.
Calcd. for C23H27NO3: C, 75.62; H, 7.40; N, 3.83. Found: C,

75.60; H, 7.45; N, 3.85%.

2.3.16. 2,7,7-Trimethyl-5-oxo-4-(4-methoxycinnamyl)-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylic acid ethyl ester
(compound 4p)
IR (KBr): 3285, 2966, 1704, 1605, 1530 cm�1; 1H NMR

(CDCl3, 300 MHz) d: 0.93 (s, 3H), 1.07 (s, 3H), 1.19 (t,
J = 7.2 Hz, 3H), 2.12–2.35 (m, 4H), 2.37 (m, 3H), 3.68 (s,
3H), 4.06 (q, J= 7.2 Hz, 2H), 5.02 (s, 1H), 6.13 (s, 1H), 7.15

(d, J = 8 Hz, 2H), 7.31 (d, J = 8 Hz, 2H) 7.18 (m, 1H),
7.38(d, 1H). MS (EI): m/z 395 (M+). Anal. Calcd. for
C24H29NO4: C, 72.91; H, 7.34; N, 3.54. Found: C, 72.90; H,
7.38; N, 3.50%.
3. Results and discussion

3.1. Effect of catalysis

In recent years, metal triflates have received considerable
attention as a mild Lewis acid for an array of organic transfor-



Table 3 Synthesis of polyhydroquinolines 4a–4p from the four components aldehydes, dimedone, ethyl acetoacetate and ammonium

acetate at room temperature in ethanol.

Entry R Product Time (h) Yield (%) Melting point (�C)

1 CHO 4a 5 89 204–206

2 CHO

Cl

4b 5.5 83 250–252

3 CHO

HO

4c 6 85 228–230

4 CHO

H3C

4d 5 89 260–262

5 CHO

H3CO

4e 5 88 258–260

6 CHO

Br

4f 5.5 85 252–254

7 CHO

O2N

4g 5 82 244–246

8 CHO

F

4h 6 88 184–186

9 CHOBr 4i 5.5 85 234–236

10 CHO

N
H3C

H3C

4j 6 84 232–234
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Table 3 (continued)

Entry R Product Time (h) Yield (%) Melting point �C

11

CHO

Cl

Cl 4k 5.5 85 242–244

12 CHO

Cl

Cl 4l 5.5 83 214–216

13 CHO

H3CO

H3CO 4m 6 89 197–199

14 CHO

HO

H3CO 4n 5.5 88 211–213

15 CH=CHCHO 4o 6 86 204–206

16 CH=CHCHO

H3CO

4p 6 86 198–200
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mation (Wang et al., 2005; Donelson et al., 2006). Our initial
work started with the screening of catalyst loading so as to
identify optimal reaction conditions for the synthesis of poly-
hydroquinoline derivatives. The mixture of benzaldehyde,

dimedone, ethyl acetoacetate and ammonium acetate was cho-
sen as the model reaction (Scheme 1) to detect whether the use
of Gadolinium triflate was efficient and investigate the opti-

mized conditions. The results were summarized in Table 1.
First of all, a number of Lewis acid catalysts such as ZnCl2,

AlCl3, FeCl3, NdCl3, La(OTf)3, Nd(OTf)3, Yb(OTf)3 and

Gd(OTf)3 have been screened using the model reaction in eth-
anol (Table 1). Gd(OTf)3 was found to be the best catalyst un-
der these conditions. The results show that Gd(OTf)3
(5 mol%) is effective for good yield (Table 1, entry 10).

The Hantzsch condensation of dimedone, benzaldehyde, ethyl
acetoacetate, and ammonium acetate in the presence of
Gd(OTf)3 at room temperature results in the formation of

2,7,7-Trimethyl-5-oxo-4-phenyl-1,4,5,6,7,8-hexahydroquino-
line-3-carboxylic acid ethyl ester in 89% yield (Scheme 2).

After the reaction was completed, the product was filtered

directly and the catalyst can be extracted by water from the
residue. Lanthanide triflates are more soluble in water than
in organic solvents. The catalyst could be recovered almost
quantitatively from the aqueous layer, which could be subse-
quently reused several times. As indicated in Table 1, it showed

almost no loss of activity after four successive runs. The yields
obtained were from 91% to 88% (with yields of product 4a
being 89%, 90%, 91%, 88% in the first, second, third and

fourth run, respectively). In view of environmentally friendly
methodologies, recovery and reuse of the catalyst is highly
preferable.

3.2. Effect of solvent

To handle the procedure more easily, we then continued to

optimize the model process mentioned above by detecting
the efficiency of several classic solvents chosen as the medium
for comparison (Table 2). In each case, the substrates were

mixed together with 5 mol% Gd(OTf)3 agitated with 3–5 ml
solvent. As indicated in Table 2, the polar solvents such as eth-
anol, methanol and acetonitrile (entry 1–3) were much better

than non-polar solvents (entry 4–9). The results could be



S552 S. Sheik Mansoor et al.
interpreted with much better solubility of the catalyst and the

reagents in the polar solvents. When acetone was applied (en-
try 6), it was found that the reaction proceeded quickly but the
obtained yellow solid contained many other by-products which
were probably due to the fast self-assembling of reagents or

some competitive reactions promoted by Gd(OTf)3 in acetone.
Thus, we selected the optimized reaction condition to study the
universality of the application of the catalyst.

3.3. Synthesis of various polyhydroquinoline derivatives

A variety of aromatic aldehydes were selected to undergo the
Hantzsch reaction in the presence of catalytic amount of
Gd(OTf)3 in ethanol at room temperature (Scheme 2). The re-

sults of this study are summarized in Table 3. As can be seen
from the results in Table 3, aromatic aldehydes containing
both electron withdrawing and electron donating groups re-
acted smoothly to produce moderate to high yields of

products.

4. Conclusions

In conclusion, we successfully developed a facile and efficient
method for preparing a variety of 4-substituted-1,4-dihydro-

pyridines from the reactions of different aromatic aldehydes,
dimedone, ethyl acetoacetate and ammonium acetate in the
presence of a catalytic amount of Gd(OTf)3 at room tempera-

ture. The catalytic activity of Gd(OTf)3 is remarkable and the
use of the environmentally benign, commercially available
Gd(OTf)3 as catalyst in the synthesis of 4-substituted-1,4-dihy-
dropyridines in good yield is also significant. The present

method has many obvious advantages compared to those re-
ported in the previous literature, including the avoidance of
discharging harmful organic solvents, the generality, the sim-

plicity of the methodology and recycling of the catalyst.
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