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KEYWORDS Abstract In molecular science, one of the key problem is to model a chemical compound and pre-
Keywords; dict its chemical characteristic. Numerous hypothetical methods have been created by various ana-
Chemical graph theory; lysts in this respect and one of them is concerned with the topological indices. A topological index is
Zigzag polyhex nanostruc- a numerical value attached with the structural graph of a molecule and is expected to predict certain
ture; chemical/physical properties of molecule [6]. Among the classes of topological indices, degree based
Topological indices topological indices play a vital role in chemical graph theory. In the current study, we compute the

neighborhood second Zagreb index and the first extended first-order connectivity index of Planar
zigzag nanotube PTUZCg, polyhex zigzag nanotube H, = TUZCy, polyhex zigzag nanotori
TTUZCg,CyCs(S)[m,n] nanosheets, C4Cs(S)[m,n] nanotubes, C4Cs(S)[m,n] nanotori and arm-
chair polyhex nanotubes TUAC|p, q].
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1. Introduction

Graph theory has played a significant role in chemistry in the
last decades. Topological indices are essential in identifying the
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The QSAR and QSPR studies are undoubtedly of major
importance in material sciences. Topological indices provide
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erty under investigation (Randic, 1991; Tavakoli et al., 2013).
To overview the structure—activity relationship, topological
indices are required to effectively characterize structural fea-
tures and bioactivity of chemical compounds (Balaban, 1979;
Balaban et al., 1983; Balaban, 1988).

Let G be a finite, simple connected graph. In chemical
graph theory, a molecular structure is a simple graph(a graph
portraying chemical compounds) in which vertices correspond
to the atoms and the edges corresponds to the bonds between
the atoms. A numerical quantity of a chemical structure
(molecular graph) which remains invariant under graph iso-
morphism is recognized as graph invariant. Topological index
is an example of graph invariant. The most significant and
widely used topological indices are degree-based topological
indices. They have a remarkable application in mathematical
chemistry.

For a vertex w € V(G), we use the notation N(w) for the set
containing the vertices adjacent to w. The degree of a vertex w
is the cardinality of the set N(w) and is denoted by d,,. Let S(w)
denote the sum of degrees of the vertices adjacent to w. In
other words, S(w) = > e and
N(t) = {v e V(G)|tv € E(G)}. For undefined terminologies
related to graph theory, the author can read the following
books (Gross and Yellen, 2000; Trinajstic, 1992; Godsil and
Royle, 2001; Harary, 1969).

Consider the following general graph invariant

1(G) = Y AIS(v),S(w)).

vweE(G)
Some special cases of the above invariants 7 have already been
appeared in mathematical chemistry. For example, if we take
{ ) = 1 1 1 -
S(S(v), S(w)) = S(v)S(w) and S then I gives neighbor
hood second Zagreb index(Réti et al., 2019) and the first
extended first-order connectivity index (Bonchev and Kier,

1992; Toropov et al., 1997; Wang and Zhou, 2014; Zhou and
Trinajstic, 2009), respectively. These indices are defined as:
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e = Y e 1)
weE(G) Sy
NMy(G) = > Su)S(v). (2)
uveE(G)

In this paper we compute the first extended first-order connec-
tivity index of polyhex zigzag nanotube TUZCj, 2D lattice of
polyhex zigzag nanotube and polyhex zigzag nanotori
TTUZCg. The same topological invariants are also computed
for carbon nanosheet C,Cs(S)[m,n], carbon nanotube
C4Cs(S)[m, n], carbon nanotori C4Cg(S)[m,n] and armchair
polyhex nanotubes TUAC[p, q]. Detail about theoretical and
computation aspects of some families of carbon nanotubes
can be view in (Eliasi and Salehi, 2008; Eliasi and Taeri,
2008; Eliasi and Taeri, 2008; Kanabur, 2018; Diudea et al.,
2004; Monajjemi et al., 2008; Xiao et al., 2010; Editorial,
2007; Wang et al., 2001; Stover and Normile, 1993;
Chakrabarty et al., 2015; Zhang et al., 2014; Qiad et al.,
2014; Mahmiani et al., 2012; Farahani, 2012; Zhang et al.,
2019; Zhang et al., 2020; Shao et al., 2018; Liu, 2021).

2. Motivation

Topological indices are useful to predict certain physical and
chemical properties of the underline molecule. To check the
chemical applicability of 'y, and NM,, we find their correla-
tion coefficient with different physical/chemical properties of
octane isomers. The values of acentric factor and entropy
obtained from experiments and the computed values of 'y,
and NM, for octane isomers are depicted in Table 1. The cor-
relation coefficients between the entropy, acentric factor and
%1, NM, are presented in Table 2. Observe that both the topo-
logical indices 'y, and NM, shows a very good correlation
with entropy and acentric factor of octane isomers and thus
can be used to predict these properties.

Table 1 Values of Acentric factor, Entropy, NM, and 'y, of octane isomers.

Molecule Acentric Factor Entropy NM, o

2,2,3,3-Tretramethyl-butane 0.255294 93.06 217 0.068
2,4-Dimethyl-hexane 0.344223 106.98 121 0.091
2-Methyl-heptane 0.377916 109.84 98 0.101
2-Methyl-3-ethyl-pentane 0.332433 106.06 137 0.085
3-Ethyl-hexane 0.362472 109.43 115 0.093
2,2-Dimethyl-hexane 0.339426 103.42 132 0.087
3-Methyl-heptane 0.371002 111.26 106 0.097
2,3-Dimethyl-hexane 0.348247 108.02 129 0.088
2,5-Dimethyl-hexane 0.35683 105.72 113 0.094
2,2,4-Trimethyl-pentane 0.30537 104.09 147 0.082
4-Methyl-heptane 0.371504 109.32 107 0.096
3,3-Dimethyl-hexane 0.322596 104.74 148 0.082
3-Methyl-3-ethyl-pentane 0.306899 101.48 163 0.078
2,2,3-Trimethyl-pentane 0.300816 101.31 171 0.076
3,4-Dimethyl-hexane 0.340345 106.59 136 0.086
2,3,3-Trimethyl-pentane 0.293177 102.06 179 0.074
Octane 0.397898 111.67 84 0.104
2,3,4-Trimethyl-pentane 0.317422 102.39 151 0.081
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Table 2 The square of correlation coefficient of NM,, 'y, with
entropy and acentric factor.

NM, ]XI
Accentric factor 0.9708 0.9667
Entropy 0.8989 0.8418

One of the important use of topological indices is their dis-
crimination power against octane isomers. The ability of dis-
crimination of an index has applications within the coding
and computer processing of molecular structures (isomers).
The graphs of 18 octane isomers are depicted in Fig. 1. Let
G,, be the number of edges in a graph G having end vertices
of degree p and ¢ respectively. Two graphs H and K are said
to be edge equivalent iff H,, = K,,. Observe that the graph
O; and O, are edge equivalent having different values of 'y,
and NM, (1y,(03) =0.097,'%,(04) = 0.096, NM,(03) = 106
and NM,(04) = 107). Similarly Oy, and O, are edge equiva-
lent with different values of 'y, and NM,
(1X1(011) = 00867 1)(1(012) = 00877 NMz(Oz) =136 and
NM,(04) = 137). By using the definition, one can check that
all the octane isomers have different values of 'y, index. The
same holds for NM, index. Hence the discriminatory power
of these indices is much better than other bond incident degree
indices.

3. Results and Discussion

The most valuable nanomaterials available to scientists to
achieve various experimentation and control objectives are
carbon nanotubes(CNT). CNTs are important object to study
because of their growing application in different fields espe-
cially in medical sciences. They have excellent features which
include outstanding penetration capacity on the cellular mem-
brane, strong drug load and therapeutic discharge capabilities
dependent on pH. This make them fit for cancer and brain
medications. CNTs as a medicine could attain great effective-
ness, improve specificity and reduce side effects. Some investi-
gations makes CNTs center of attention to treat and diagnose
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Fig. 2 2D structure of zigzag polyhex Lattice (PTUZCs[m, n)).

the central nervous system but the fundamental use of CNTs is
in cancer treatment. (See Fig. 2).

3.1. Results for Zigzag Polyhex Nanostructures

Graphene is a crystalline allotrope made from pure carbon
atoms arranges in the form of two dimensional hexagonal lat-
tice. It has unique properties containing best heat conductivity
at room temperature and high optical transparency. zigzag
polyhex lattice is a graphene lattice with m and n number of
hexagons in each row and column respectively. We denote
the graph of zigzag polyhex lattice by PTUZCs. The graph
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Fig. 3 The 3D
(TUZCgm, n)).
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Graphs of Octane isomers.
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Fig. 5 The 3D structure

(TTUZCs[m, n)).

of polyhex

zigzag nanotori

of PTUZCg is depicted in Fig. 4. A zigzag polyhex nanotube
denoted by TUZCs[m,n] is obtained by rolling the graphene
sheet into seamless tube such that vertical axis of the tube is
parallel to the carbon—carbon bonds. We denote the Zigzag
polyhex nanotorus by TTUZCg[m,n] and is obtained by join-
ing the two ends of zigzag polyhex nanotube. The graphs of
TUZCg|m,n] and TTUZCg[m,n] are depicted in Fig. 3 and
Fig. 5 respectively. The order and size of each of these nanos-
tructures is shown Table 3.

In the next Theorems, we compute the two connectivity
indices (neighborhood second Zagreb index and the first
extended first-order connectivity index) for the famous nanos-
tructure PTUZCy[m, n], TUZCg[m,n] and TTUZC4[m,n]. For
this we need to partition the edge set of each nanostructure
depending on the sum of the degree of neighbors of the end
vertices of each edge.

Theorem 1. Let G be the graph of zigzag polyhex lattice, then

Table 3 Types of zigzag polyhex Nanostructures.

TypesofNanostructures order size
PTUZCs 2n(2m+1) 6mn+n—m
TUZCg 4mn 6mn — 4m
TTUZCq 4mn 6mn

Table 4 The edge partitions of PTUZCs[m, n].

E,, Cardinality
E41 5 8

E 5.5 2n-4

E 5,7 4

E 5.8 4n-4

E6,7 4 m-8

E7.9 2 m-4

Egyg 2n-2

Eg.g 4n-4

Eoy (m-3)(7n-9)

NM,(G) = 567mn — 1075n — 435m + 1223.

Proof. Let E, ,(G)(or simply E,,) denotes the set containing
those edges e =uv of graph G such that S(u) =p and
S(v) = g. To compute 'y, (G) and NM,(G), we need to parti-
tion the edge set into the sets of the form E,, and compute
the its cardinality. This information is presented in the Table 4.
To have a good understanding of this computation, we have
colored the edges with same color that lies in the same set
E, ,(see Fig. 4). Now using the values from the Table 4 in
the definition of !y, (G) and NM,(G), we get

Lo 1
(@)= 3 S()S(m)

yWEeE(G)

1 1 1 1
——+2(n-2
V5x4 (2(n=2)

+(4(m-2))

Il
—

0
=

+_+2(n—1)+4(m—2)+2(m—2)
V35 V10 Va2 V63
n—1 2(n—1)+(m—3)(7n—9)
4 V18 9
_7 n 4 i—l)m—l—( 2 L—ﬁ)n
9 Va2 /63

——+
V10 /18 180
4 4 2 8 4 2 39

NMy(G)= > S(v)S(w)

WeE(G)
=(8)(5x4)+(2(n—2))(5x5)+(4)(Tx5)+(4(n—1))(8x5)
+(@4(m—2))(6x7)+(2(m—2))(9%7)+(2(n—1))(8 x8)
+(4(n—1))(8x9)+(m—3)(7Tn—9)(9x9)
=160+50n—100+140+160n—160+168m—336+126m—252
+128n—128+2881n—288+567mn—1701n—729m+2187
=567mn—1075n—435m+1223.

O
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Table 5 The edge partition of TUZCg[m, n].

E,q Cardinality
Eg7 4 m

Ery 2 m

Ego 6mn-10 m

Theorem 2. Let G be the graph of zigzag polyhex nanotube, then

2 2 10
3mn +(— —)m.

Ve

NM,(G) = 486mn — 516m.

IXI (G) =

Proof. The edge sets of the form E,, of G and their cardinal-
ities are depicted in Table 5. To have a good understanding of
this computation, we have colored the edges with same color
that lies in the same set E, ,(see Fig. 3). Now using the values
from the Table 5 in the definition of 'y, (G) and NM,(G), we
get

| 1
O o U
= (4m) 1 + (2m) . + (6mn — 10m) !
\/m VO X7 V9 x9
2 2 10
3 mn + (\/—_ +— W g)m.
NMy(G) = ) S(v
yWeE(G)
= (4m)(6 x 7) + (2m)(9 x 7) + (6mn — 10m)(9 x 9)
= 168m + 126m + 486mn — 810m
= 486mn — S516m.
O

Theorem 3. Let G be the graph of zigzag polyhex nanotorus,
then

mn

3

(G) =
NM,(G) = 243mn.

Proof. In G, all the edges are of the form Eyy. Hence we have
6mn edges in the set Eyy and

Lo I
u(@)= >, S()S(m)

weE(G)
= (6mn) !
VI x9
_ 2mn
=3

NMy(G) = > S(v)S(w)
YWEE(G)
= (6mn)(9 x 9)
= 486mn.
O

3.2. Results for Nanosheets, Nanotubes and Nanotori covered by
C4 and C,g

A mutual decoration created by alternating squares Cy4 and
octagons Cy is referred to as C4Cs nanosheet. C,Cs(S) and
C4Cs(R) nanosheets are obtained by the positioning of Cy4
squares and Cg octagons. We denote the nanosheet with n
hexagon in each row and m hexagons in each column by
C4Cs(S)[m, n]. The order and size of C4Cs(S)[m,n] nanosheet
are 8mn and 12mn —2m — 2n respectively. Similarly, the
nanosheet with m squares in each row and n squares in each
column is denoted by C4Cs(R)[m,n]. The order and size of
C4Cs(S)[m,n] nanosheet are 4mn+4m+4n+4 and
6mn + Sm + 5n + 4 respectively. Fig. 6 and Fig. 7 depicts the
graphs of C,Cs(R)[3,5] and C4Cs(S)[3,4] nanosheets respec-
tively. These nanosheets have uniform thickness and are
important due to their novel characteristics such as stability
and flexibility. Significant application of nanosheets can be
viewed in sensors, filtration membranes and even conductive
coatings (Turchanin et al., 2009). The chemical, mechanical
and thermal stability of these nanosheets is equally strong.
For more information on the computation of different topo-
logical indices of these nanosheets, we refer the readers to
(Al-Fozan et al., 2014; Manuel et al., 2013; Arockiaraj et al.,
2016). In the next Theorems, we compute the two connectivity
indices of these nanosheets.

Theorem 4. Let G be the graph of C4Cs(S)[m, n] nanosheet, then

2 163 2 2 163

\/_ U 0" e T v 180"

4 4 4 61

VATV VIS o0

4
(G =3 M+ (=

NM,(G) = 972mn — 508m — 508n + 168.

Fig. 6 Structure of C,Cs(R)[3,5] nanosheet.
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n=1 n=2 n=3 n=4
m=3
m=2
m=1
Fig. 7  Structure of C4Cs(S)[3,4] nanosheet.

Table 6 Edge partition of CyCs(S)[m, n]

B Cardinality

E4,4 4

E4‘5 8

E5,5 2m + 2n-8

E5‘g 4m + 4n-8

Egyg 2m + 2n —4

Eg‘g 4m + 4n-8

Ego 12mn - 14 m - 14n + 16

Proof. The edge sets of the form E,, of G and their cardinal-
ities are depicted in Table 6. Now using the values from the
Table 6 in the definition of 'y,(G) and NM,(G), we get

'1(6) = Z

1

yWeE(G) S(V) S(W)
() (8)——— + (2m + 20— §)—
Vi x4 V4 x5 Sx5
1 1
+@4m+4n —8)——=+ (2m+2n—4
( )\/5><8 ( )\/8><8
1 1
+ (4m +4n — 8 + (12mn — 14m — 14n + 16
( )\/8><9 ( )\/9><9

2 2 163 2 2 163

4

= omn A (= e — )+ (et e —

3 (\/m V18 130 (\/m VI8 180
4 4 4 6l

n

VATV Vis 90
NMy(G)= Y S(v)S(w)
wekE(G)

=(4)(4x4)+(8)(4x5)+(2m+2n—8) (5% 5)+ (4m+4n—8)(5%8)
+(2m+2n—4)(8x8)+(4m+4n—8)(8x9)
+(12mn—14m—14n+16)(9%9)

=972mn—508m—508n+168.

Table 7 Edge partition of C4Cs(R)[m, n].

Epq Cardinality

E5,5 4

E5.g 8

Ess 4m + 4n-8

E&g 2m + 2n + 4
Ego 4m + 4n-8

Eyg 6mn-5Sm —5n + 4

O

Theorem 5. Let G be the graph of Cy4Cs(R)[m,n] nanosheet,
then

! (G)—%mn—k(L—l—i—E)m—O—(L—O—i—E)n
1y =3 /3 VIS 36 /3 /I8 36
4 2 4 157
==t .
VATORRVARRVAT I

NM,(G) = 486mn + 203m + 203n + 40.

Proof. The edge sets of the form E,, of G and their cardinal-
ities are depicted in Table 7. Now using the values from the
Table 7 in the definition of 'y,(G) and NM,(G), we get

1
1u(G) =
YWeE(G) S( V) S(W)
() (8) e+ (4 + 4 — 8)—
- V5x5 5% 38 6x38
1 1
+(2m+2n+4 + (4m+4n -8
( )\/8x8 ( )\/8><9
1
+ (6mn — Sm — 5Sn + 4
( )\/9><9
SR IR B | NRPE I B L
3 V3 /18 36 V3 V18 36
4 2 4 157
i St R
V10 V3 V18 90
NMy(G) = > S(v)S(w)
wekE(G)

=@4)(5%x5)+(8)(5x8)+ (4m+4n—8)(6 x 8)
+(2m+2n+4)(8 x 8) + (4m+4n—8)(8 x9)
+ (6mn — 5m — 5n+4)(9 x 9)

= 486mn + 203m + 203n + 40.

O

The nanotube TUC,Cs(S)[m,n] is obtained from the lattice
C4Cy(S)[m, n] by joining the dangling edges from the right to
the leftmost vertex on the same row. The order and size of
TUC4Cs(S)[m,n] nanotube are 8mn and 12mn — 2n respec-
tively. The graph of TUC,Cs(S)[3,4] nanotube is depicted in
Fig. 8. Similarly, the nanotube TUC4Cs(R) is obtained from
the lattice C,Cs(R) by joining the dangling edges from the
right to the leftmost vertex on the same row. The order and

Fig. 8 Structure of TUC4Cs(S)[3,4].
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Fig. 9 2D structure of TUC4Cs(R)|[3,5].

Table 8 Edge partition of TUC4Cs(S)[m, n].

E,, Cardinality
E5,5 2n
Esg 4n
ngg 2n
Eg,9 4n
Eog 12mn - 14n

size of TUC4Cs(R)[m, n] nanotube are 4mn + 4m + 4n + 4and
6mn + 6m+ 5n+5 respectively. The graph of
TUC4Cs(R)[3, 5] nanotube is depicted in Fig. 9. Next we com-
pute the connectivity indices of these two nanotubes.

Theorem 6. Let G be the graph of TUC4Cs(S)[m, n] nanotube,
then

2 2 163
V10 VI8 180

NM,(G) = 972mn — 508n.

—-)n.

0(G) = g+ (o

Proof. The edge sets of the form E,, of G and their cardinal-
ities are depicted in Table 8. Now using the values from the
Table 8 in the definition of 'y, (G) and NM,(G), we get

1 | G —
g ( ) wekE(G) S(V)S(W)
= (2n) ! + (4n) ! + (2n) ! + (4n) !
Vx5 V5x8 V8 x 8 8x9
1
+ (12mn — 14n) T
4 2 2 163
3 At s 180

Table 9 Edge partition of TUC,Cs(R)[m,n].

E,q Cardinality

Esg 4n + 4

Egg 2n + 2

Eg)g 4n + 4

Eog 6mn + 6 m-5n-5

NMy(G) = > S(v)S(w)

YWEE(G)

= (2n)(5x 5) + (4n)(5 x 8) +
+ (12mn — 14n)(9 x 9)

= 972mn — 508n.

(2n)(8 x 8) + (4n)(8 x 9)
O

Theorem 7. Let G be the graph of TUC4Cs(R)[m,n] nanotube,
then

1 V2 11
1 _ —
1 2 11
+—+£f—,
V3 3 36

NM,(G) = 486mn 4 486m + 203n + 203.
Proof. The edge sets of the form E,, of G and their cardinal-

ities are depicted in Table 9. Now using the values from the
Table 9 in the definition of 'y, (G) and NM,(G), we get

PRGN p——

weE(G) S(V) S(W)
1 1 1
=(4n+4 +(2n+2 + (4n + 4
( )\/6><8 ( )\/8><8 ( )\/8><9
1
+ (6mn+ 6m — 5n — 5) ——
( )\/9><9
2 I V2 11
7§mn+§m+(7§+T—%)n
1 2 11
FREREERIY
V3 3 36
NM,(G Z S(v
WEeE(G

= (4n+4)(6 x 8) (2n+2)(8 x 8) +
+ (6mn + 6m — 5n—5)(9 x 9)

(4n+4)(8 x 9)

= 486mn + 486m + 203n + 203.
O
n=1 n=2 n=3 n=4
m=3
m=2
m=1

Fig. 10  Structure of TUC4Cs(S)[3,4].
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8
n=1 n=2 n=3 n=4 n=5
m=1
m=2
m=1
Fig. 11 2D structure of TUC,Cs(R)[3, 3].

The nanotori TC4Cs(S)[m,n] is obtained from the nanotube
TUC4Cs(S)[m, n] by joining the dangling edges from the right
to the leftmost vertex of same row and dangling edges from the
bottom to the top vertices of the same column. The order and
size of TC4Cy(S)[m, n] nanotori are 8mn and 12mnrespectively.
The graph of TUC,Cs(S)[3,4] nanotube is depicted in Fig. 10.
Similarly, the nanotube TUC,Cs(R) is obtained from the nan-
otube TUC,Cg(R) by joining the dangling edges from the right
to the leftmost vertex on the same row and dangling edges
from the bottom to the top vertices of the same column. The
order and size of TC,Cs(R)[m,n] nanotori are
4mn+4m+4n+4 and 6mn+m—+n+1 respectively. The
graph of TUC4Cs(R)[3, 5] nanotori is depicted in Fig. 11. Next
we compute the connectivity indices of these two nanotori.

Theorem 8. Let G and H be the graphs of TC4Cs(S)[m,n] and
TC4Cs(R)[m, n] nanotori, then

NM,(G) = 972mn.

2 1 1 1
Yy (H) == —m4—n—+—.
¥ (H) 3mn—§—9m—§—9n—§—9

NM,(H) = 486mn + 81m + 81n + 81.
Proof. Note that all the edges of G and H belongs to the set

Eyg. The results follow from the definition of 'y, and
NM,. O

Fig. 12 Armchair Polyhex Nanotube TUACg[m,n] for m = 10
and n = 6.

Table 10 Edge partitions of TUACs[m, n] (depends on degree
summation of neighbors of end vertices).

B Cardinality
E5.5 m

Es,g 2m

E&g m

Eg,g 2m

Ego 3mn-4 m

3.3. Armchair Polyhex Nanotubes

An Armchair Polyhex Nanotube denoted by TUZCg is
obtained by rolling the graphene sheet into seamless tube such
that horizantal axis of the tube is parallel to the carbon—carbon
bonds. We use the notation TUZCs[m,n] for the armchair
polyhex nanotube with m and n hexagons in each row and col-
umn respectively. The graph of TUZCg[10, 6] is depicted in
Fig. 12. The order and size of TUZCgm,n] are 2m(n+ 1)
and 3mn + 2mrespectively. Now, we compute the connectivity
indices of TUZCy[m, n].

Theorem 9. Let G be the graph of TUACs|m, n| nanotube, then

(1+1 43
V10 /18 360

NM,(G) = 243mn — 11m.

1
1 (G) :gmn—&— ym.

Proof. The edge sets of the form E,, of G and their cardinal-
ities are depicted in Table 10. Now using the values from the
Table 10 in the definition of 'y, (G) and NM,(G), we get

1

w@= 2. Sesm

wekE(G)

1 1
—+ (2m +
VvV5ix5 ( )\/5><8

1

+ (3mn — 4m) —.
( )\/9x9
1 1 43

Vo VIS 360
NMy(G) = Y S(v)S(w)

vweE(G)
= (m)(5 x 5) + (2m)(5 x 8) + (m)(8 x 8) +
+ (3mn —4m)(9 x 9)
=243mn — 11m.

(2m) 2

— (m) )
=V m\/8x8+ 8% 9

(

_l +(
—3mn

)m.

(2m)(8 x 9)

O

4. Conclusion

In this paper, we have analyzed different nanotubes graphs
such as zigzag nanotures, C4Cs(S)[m,n] nanostructure and
armchair polyhex nanotubes TUAC;[p, ¢] through newly intro-
duced topological indices. Topological indices consequently
determined can assist us with understanding their physical
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characteristics, synthetic reactivity and natural exercises. These
findings are precious and useful for scientists to comprehend
profound behavior and construction of some carbon nan-
otubes. These findings are also significant contributors to the
study of chemical graph theory, quantum chemistry, QSPR
and QSAR.

5. Data availability statement
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