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A B S T R A C T   

Here, a proactively optimized fusion model (FM) for predicting the product yield of coal pyrolysis was developed. 
Eight coal characteristics (including pyrolysis temperature and proximate and ultimate analyses) were chosen as 
input parameters. Multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) 
models were applied as the base models to form the FM. Sixty sets of experimental data from the literature were 
used for training and testing the base models. Different learning weights are assigned to the base models ac
cording to their predictive performance. The FM proactively improve the model outputs by means of the 
dynamical learning weight results. The coefficient of determination (R2) and the root-mean-squared error 
(RMSE) derived from the FM model were better than those of the base models. Moreover, the maximum relative 
error between the experimental data and model outputs was just 0.37%. These results suggest that FMs can be 
used to develop better predictive models for the yields of co-pyrolysis products. The FM proactively optimized 
the outputs base on learning weight algorithm and had better predicted performance than base models with less 
data.   

1. Introduction 

Despite the increasing demand for alternative energy sources, coal 
remains the primary fuel for energy production worldwide (Li et al., 
2022a, 2022b; He et al., 2021; Armin et al., 2021). Humanity has 
depended heavily on coal for over a century due to its abundant reserves 
and the existing energy consumption structure (Zhu et al., 2022). In 
recent decades, large-scale direct combustion of low-grade coal has led 
to serious environmental problems (Kwon et al., 2019), while the 
increased consumption of fossil fuels has caused a continuous increase in 
annual greenhouse gas emissions worldwide (Chen et al., 2021a, 2021b; 
Li et al., 2022a, 2022b; Wang et al., 2023). Therefore, effective utili
zation of coal resources remains an important global challenge. The 
rapid development of coal chemical industry has brought about great 
environmental problems (Ju et al., 2024). Pyrolysis processing repre
sents a convenient method for converting coal into syngas and porous 
carbon materials (Li et al., 2020). It is also has great significance in gas 
and water treatment. As a common conversion method, low- 
temperature pyrolysis can be understood as the thermal decomposi
tion of coal in the temperature range of 600–800 ℃ (Chen et al., 2019). 
Furthermore, pyrolysis coal is one of the main sources of modern 
chemical raw materials (Yang et al., 2022). A large number of studies 
have shown that the regulation and control of coal pyrolysis can 

improve the quality and quantity of syngas, composite carbon materials, 
and high added-value chemicals produced (Yan et al., 2022; Nyakuma 
et al., 2021; Dwivedi et al., 2019). It is also of great significance to 
develop an efficient and environmentally-friendly coal chemicals in
dustry to reduce carbon dioxide emissions (Jiang et al., 2020). However, 
investigating the conditions under which coal pyrolysis is optimized 
using a purely experimental approach is costly and time-consuming. 
There are many factors affecting pyrolysis. Though quite a good num
ber of studies were conducted to analyze the individual impact of many 
parameters on pyrolysis, their interactive effects have not been 
addressed well and the research process is slow (Gopal et al., 2019) 
Therefore, the use of machine learning models to predict the yields of 
pyrolysis products can increase the efficiency and accuracy of experi
ments (Zhu et al., 2019a, 2019b). 

With the evolution of deep learning algorithms, certain documented 
models have predicted experimental results with good effect (Cheng 
et al., 2020). In particular, multiple linear regression (MLR), support 
vector machine (SVM), and random forest (RF) models are widely 
applicable in nonlinear projects. Research has shown that machine 
learning models are capable of accurately predicting pyrolysis products 
(Zhang et al., 2022; Chen et al., 2018). These predicted results also 
contribute to an increased understanding of coal pyrolysis behavior. 
Jiang et al. (Jiang et al., 2022) successfully forecasted the 
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thermogravimetric (TG) data of the mixed pyrolysis of coal slime (CS) 
and cattle manure (CM) at different proportions using an artificial 
neural network (ANN) model. Through adopting bagging integration, 
the RF model combines the predictive advantages of multiple decision 
trees to improve the generalization ability, thereby exhibiting high 
predictive accuracy in resolving pyrolysis projects (Phromphithak et al., 
2021). Hao Wei et al. (Wei et al., 2022) comprehensively studied the 
synergistic effects of co-pyrolysis and successfully predicted the product 
yields using an RF model. Ullah et al. (Ullah et al., 2021) found that an 
ANN model could reliably predict the yield of bio-oil derived from 
biomass pyrolysis. Tang et al. (Tang et al., 2021) successfully used a 
combination of SVM and RF models to predict the composition of 
biomass syngas. Phromphithak et al. successfully used ANN and an SVM 
model to predict the constituents of cellulose-rich materials in terms of 
the cellulose enrichment factor. Allen and Downie (Allen and Downie, 
2020) applied mixed effects logistic regression to predict the biochar 
yield of residual biomass. However, such models still have shortcomings 
due to the limitations of regression model selection. At present, most 
studies on the prediction of pyrolysis products adopt a base model with 
limited accuracy. So in this study, adopt the FM model to optimized the 
outputs proactively base on learning weight algorithm to avoid the 
limitations of the core equations of the base model. 

In the present study, the effectiveness of FM models in the prediction 
of coal pyrolysis products is explored. To this end, sixty sets of experi
mental results on coal pyrolysis in a fixed bed were used to form the 
dataset. The proximate and ultimate analyses and the pyrolysis tem
perature were selected as the model input parameters. As the common 
model algorithm, RF model was good at investigating the feature 
importance of datasets. SVM and MLR model was skilled in the 
nonlinear problems caused by complex reaction. Therefore, RF, SVM, 
and MLR algorithms were used to build the base models. An FM derived 
from the base models was then applied to predict the yield of coal py
rolysis products. The FM regulated the base models to optimize outputs 
spontaneously through applying learning weights. The results from this 
study are expected to provide machine learning assistance for expanding 
the understanding of coal pyrolysis behavior and aiding in the direc
tional preparation of high value-added chemicals. 

2. Methods 

2.1. Data selection 

In this study, 29 types of coal were considered, including 6 kinds of 
lignite, 19 kinds of bituminous coal, and 4 kinds of anthracite coal. The 
ultimate and proximate analyses of the samples are shown in Tables 1 
and 2. Sixty sets of experimental data on coal pyrolysis were obtained 

from the literature (Wu et al., 2022; Qian et al., 2019; Zhao et al., 2011; 
Zhang et al., 2014; Ban et al., 2022; Chen et al., 2021a, 2021b; Qiang 
et al., 2021), all of which were carried out in a fixed bed at various 
pyrolysis temperatures, and the yields of water, tar, syngas, and char in 
the pyrolysis products were measured. 

2.2. Data analysis and pretreatment 

Considering the ultimate and proximate analysis of the coal samples, 
and the different pyrolysis temperatures, nine characteristic parameters 
were selected as the inputs, namely moisture (M), ash (A), volatile 
matter (V), carbon (C), hydrogen (H), nitrogen (N), sulphur (S), oxygen 
(O), and temperatue (T). Detailed information on the dataset is provided 
in the Supplementary data. 

The Pearson correlation coefficient (PCC), denoted as r, is used to 
describe the linear correlation between two variables, and its value 
ranges between − 1 and 1, and is calculated as follows (Abnisa and 
Daud, 2014): 

r =
Cov(X, Y)

σXσY
(1)  

where Cov(X, Y) is the covariance between variables X and Y and σX and 
σY are the standard deviations of X and Y, respectively. The PCC is 
subject to a two-tailed t-distribution with (n − 2) degrees of freedom. 
Therefore, the significance level can be tested as follows (Were et al., 
2015): 

t =
r

̅̅̅̅̅̅̅̅̅̅̅
n − 2

√

̅̅̅̅̅̅̅̅̅̅̅̅
1 − r2

√ (2)  

where t is the value of the test statistic and n is the total number of 
samples in the dataset. This allows the p-value, i.e., the significance level 
indicator, to be obtained. The closer p is to 1, the greater the correlation 
between the two characteristic variables. 

2.3. Base models 

This study uses suitable regression algorithms for MLR, SVM, and RF. 
Adequate testing and training were implemented to build the three base 
models via the scikit-learn library of the Python programming language. 
All inputs were normalized in advance using the equation (Fletcher 
et al., 2012): 

Xz =
X − X

σ (3)  

Table 1 
Proximate analyses of coal samples (wt.%).  

Sample M A V FC Sample M A V FC 

Huainan  2.18 26.34  42.12  57.88 Honglaiwa 6.27 4.69 38.67 61.33 
Shenmu  3.78 8.63  37.97  62.03 LD 7.68 6.38 37.62 62.38 
Daliuta  9.58 4.98  35.21  64.79 Shenmu 5.39 8.07 36.83 63.17 
Heishan  3.9 3.31  35.61  64.39 Qianshuta 5.3 13.14 39.3 60.7 
Neimeng  8.89 14.38  57.88  42.12 Pingshuo 2.23 17.93 37.19 62.81 
Shengli  9.58 14.41  46.48  53.52 Lignitous 10.53 8.68 38.9 61.1 
Xiaolongt  16.68 10.21  55.62  44.38 Yilan 4.61 34.97 51.83 48.17 
Zhundong  5.84 5.14  35.75  64.25 Changyan 5.64 17.44 39.81 60.19 
Xianfeng  10.35 8.42  52.58  47.42 Shendong 11.53 10.88 40.55 59.45 
Zhungeer  4.76 19.88  41.16  58.84 Pulverize 4.61 5.13 37.97 62.03 
Shengl  15.78 17.31  47.97  52.03 Pingshuo 1.2 39.55 42.38 57.62 
Xilinhot  3.88 11.19  44.32  55.68 Hongshaqu 2.15 7.17 36.22 63.78 
Naomaohu  0.72 4.9  51.39  48.61 Zaozhuang 3.16 39.61 46.07 53.93 
Shaerhu  15.64 12.13  40.56  59.44 Shenfu 9.37 7.09 39.41 60.59 
Daliuta  9.34 5.04  36.47  63.53 Hami 7.46 10.73 64.17 35.83 
Yushuwan  5.95 6  38.17  61.83 Naomaohu 4.51 7.5 48.99 51.01 
Hongliuli  5.1 5.63  36.21  63.79 Shendong 15.32 9.53 35.61 64.39 
Haiwankua  6.2 9.14  38.68  61.32 – – – – –  

S. Yu et al.                                                                                                                                                                                                                                       



Arabian Journal of Chemistry 17 (2024) 105562

3

where X and X are the normalized and mean values, respectively, of the 
variable, and σ is the standard deviation. 

The RF model is an integrated learning method based on decision 
trees, and can deal with high-dimensional feature samples with high 
degree of accuracy (Leng et al., 2021). The importance of features can be 
calculated and ranked using the average impurity removal method 
(Tang et al., 2020). Every partition makes a local optimal choice during 
the generation of the decision tree. Hence, the result cannot ensure that 
each choice is globally optimal, which can easily lead to overfitting. 

The SVM model is a supervised learning model that uses classifica
tion and regression analysis to analyze data. It is adept at the cross 

validation of selection parameters, weighting of unbalanced samples, 
and probability estimation of class problems (Bai et al., 2017). Never
theless, the use of larger datasets commonly lowers its predictive ac
curacy. For the resolution of nonlinear problems with no general 
standard for the selection of the kernel function, the predictive accuracy 
of the base model depends largely on the effectiveness of the kernel 
function, which for SVM is defined as follows: 

K
(
xi, xj

)
= exp

(
− γ‖xi − xj‖

2) (4)  

where x is the eigenvector of the sample, K(xi, xj) is the transvection of 
two input vectors, and γ is the argument of the kernel function. The 

Table 2 
Ultimate analyses of coal samples (wt.%).  

Sample H O S N C Sample H O S N C 

Huainan  6.07  8.61  0.66  1.54  83.12 Honglaiwa 4.71 11.02 0.38 1.12 82.75 
Shenmu  5.49  9.37  0.32  1.08  84.24 LD 4.84 10.32 0.78 1.15 82.85 
Daliuta  4.96  12.59  0.34  1.09  81.02 Shenmu 4.7 10.98 0.27 1.11 82.91 
Heishan  4.86  11.22  0.38  0.81  82.73 Qianshuta 5.07 9.89 0.63 1.12 83.2 
Neimeng  5.92  18.53  1.4  1.16  72.99 Pingshuo 5.2 11.95 1.06 1.38 80.41 
Shengli  4.65  19.8  1.4  1.16  72.99 Lignitous 3.18 21.22 0.34 1.26 54.82 
Xiaolongt  4.72  23.26  1.21  1.86  68.94 Yilan 6.23 20.61 0.63 1.57 70.96 
Zhundong  3.3  15.39  0.55  0.4  80.36 Changyan 3.95 14.45 2.87 0.65 78.08 
Xianfeng  5.06  20.49  0.94  2.25  71.26 Shendong 3.68 9.94 0.42 0.71 64.56 
Zhungeer  4.41  16.44  0.5  1.34  77.31 Pulverize 4.28 10.83 0.29 0.99 74.11 
Shengl  4.49  24.54  1.14  1.11  68.48 Pingshuo 2.16 11.66 2.47 0.94 42.49 
Xilinhot  4.26  21.74  0.61  1.13  72.18 Hongshaqu 4.66 17.71 0.29 1.95 75.39 
Naomaohu  5.89  19.53  0.2  0.99  73.53 Zaozhuang 5.05 24.25 3.76 1.2 65.74 
Shaerhu  3.8  19.38  0.2  0.89  76.67 Shenfu 5.86 8.79 0.28 0.77 66.64 
Daliuta  4.66  12.72  0.32  1.08  81.21 Hami 5.46 17.58 1.51 0.92 74.36 
Yushuwan  4.91  10.96  0.73  1.03  82.32 Naomaohu 5.67 18.36 0.27 0.93 74.77 
Hongliuli  4.63  11.59  0.22  1.06  82.48 Shendong 4.47 16.26 0.39 1.04 77.84 
Haiwankua  4.95  10.98  0.36  1.19  82.49 – – – – – –  

Fig. 1. Structure of the fusion model.  
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smaller the value of K(xi, xj), the more continuous the classification 
interface, while the higher its value, the better the classification effect. 

The MLR model is a kind of subsection method, which converges 
more stably with the structural priors of pre-training and the optimi
zation training of full-space parameter. However, the calculation and 
storage complexity of the model is high, and it is difficult to set the 
hyperparameters. The multiple linear regression equation is as follows 
(Xing et al., 2019): 

y = β0 + β1x1 + β2x2 +⋯+ βpxp (5)  

where y is the model output, xi(i = 1,2,…,p) are the inputs, and βi are the 
coefficients. The goal of MLR is to obtain the best coefficient values for 
the regression model. 

2.4. Fusion models 

The limited algorithms of base models limit their predictive perfor
mance in finding the optimal solution. However, integrating multiple 
machine learning models can improve overall predictive ability. Fig. 1 
illustrates the structure of the FM. The 60 sets of coal pyrolysis data were 
randomly divided into training sets and test sets in a ratio of 2:1. Nine 
parameters were selected as inputs based on the results of Pearson 
correlation analysis. The training data were imported into the Python 
scikit-learn library to build the SVM and MLR models, while the RF 
model was established using the NumPy library. The predicted outputs 
of the base models were further optimized using the test data. Moreover, 
the predicted performance of the base models was quantified using a 
learning weight algorithm with 5-fold cross-validation. The quantified 
performance ulteriorly regulated the weights of the base models in the 
output of the FM. The better the base model performs, the higher its 
weighting in the FM. The FM was then trained and evaluated using the 
training data until its predictive performance reached the presupposed 
accuracy level. 

2.5. Performance evaluation 

The quality of a linear regression model may be evaluated using a 
variety of measures. In this study, the determination coefficient (R2) and 
the root mean square error (RMSE) were used, which are calculated as 
follows (Xue et al., 2020): 

R2 = 1 −
∑N

i=1

(
Yexp

i − Ypred
i

)2

∑N
i=1(Y

exp
i − Yexp

)
2 (6)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1

(
Yexp

i − Ypred
i

)2
√

(7) 

In the Eqs. (6) and (7), Yexp
i , Ypred

i , and Yexp are the experimental, 
predicted, and average experimental values, respectively, and N is the 
total quantity of data in the test set. R2 varies between 0 and 1 and 
represents the goodness of fit of the model, while RMSE is the mean of 
the square root of the error between the predicted and experimental 
values. Hence, having R2 close to 1 and RMSE close to 0 means that the 
model achieved the expected results. 

3. Results and discussion 

3.1. Statistical analysis of the dataset 

Fig. 2 shows box and whisker plots of data obtained from the prox
imate and ultimate analyzes of the coal samples and the yields of py
rolysis products. The main parameters in the Fig. 2 include the coal 
characteristics of moisture (M), ash (A), volatile matter (V), and fixed 
carbon (FC) and the elemental content of carbon (C), hydrogen (H), 
oxygen (O), and nitrogen (N). The distribution of the experimental data 
shows that A has the largest spread, with a range of 3.29 wt% to 44.11 
wt%, while N. has the smallest (0.40 wt% to 2.25 wt%). In addition, the 
contents of N and H obtained from ultimate analysis were lower than 
that of other elements, and were mainly concentrated from 1.00 wt% to 
5.00 wt%. In terms of the yield of pyrolysis products, the values of water 
yield and tar yield have outliers above the upper limit, which reflects the 
fact that altering the pyrolysis conditions has a greater effect on the 
yields of these two products. In terms of the proximate analysis, the 
difference between the mean and median of A (3.10 wt%) is higher than 
that of M (1.28 wt%), V (2.25 wt%), and FC (2.25 wt%). Moreover, in 
terms of the ultimate analysis, the mean value of C is 76.42 wt% and its 
median is 78.08 wt%. In terms of the product distribution, the difference 
between the mean and median of the char yield is 2.18 wt%, which is 
close to that of syngas (2.18 wt%), while the yields of water and char 
ranged from 1.27 wt% to 19.67 wt% and 54.1 wt% to 83.4 wt%, 
respectively. These results show that the divergence of the data is in the 
order of proximate analysis > yields of pyrolysis products > ultimate 
analysis, suggesting that the thermochemical properties of coal have a 
more pronounced effect on the pyrolysis product distribution than the 
elemental compositions. 

Fig. 3 illustrates the linear relationships between two arbitrary var
iables. As the figure shows, FC (p < 0.01) is perfectly negatively corre
lated with V (p < 0.01), with a correlation coefficient of − 1. Here, the p- 
value indicates the reliability of the linear correlation, which is 

Fig. 2. Distributions of proximate analysis, ultimate analysis, and yield of pyrolysis products.  
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associated with the equation FC = 100 – (V + A + M) for the estimation 
of fixed carbon. Moreover, Fig. 3 also shows that FC is significantly 
influenced by A, C, H, N, and O, and that the pyrolysis temperature is 
positively correlated with most of the variables. On the other hand, 
Fig. 3 reveals a less significant linear relationship between the proximate 
and ultimate analyses of the experimental data. Oppositely, there is a 
positive correlation between C and H with a correlation coefficient of 
0.26, while that of C and V is negative, at − 0.45. S, however, is only 
positively correlated with A and V, with correlation coefficients of 0.31 
and 0.15, respectively. In general, V and FC are moderately correlated 
with H and N and strongly correlated with O. There is also a clear cor
relation between FC and C, while M is unaffected by the elemental 
composition of coal. These results also indicate that the thermochemical 
properties of coal have a weak relationship with its S content. 

3.2. Predictive performance of base models and FM 

Table 3 shows the R2 and RMSE values of the predicted results from 
the different models. It is evident that all models perform well for the 
prediction of tar, water, and syngas yields. But none of the models do 
well in predicting the char yield due to the moderate correlation be
tween FC and the elemental composition of coal. When all models have 
poor prediction effect on Char, RF and FM model have relatively good 
prediction effect. Although the R2 value of FM model is only higher than 
that of RF model 0.0198. Overall, the prediction effect of FM model is 
better than base models. Nevertheless, the FM has better predictive 

accuracy than the base models in forecasting the tar and syngas yield. 
Further, the water yield is also well predicted by the FM, which is only 
marginally behind the MLR model. However, the maximum R2 of the 
base models for the prediction of the char yield is just 0.5017, which is 
far lower than those for the tar, water, and syngas yields, which suggests 
that the base models are less effective in predicting coke yield. It is also 
worth noting that the FM has the best predictive ability for the char yield 
of all the models, with the highest R2 (0.5215) and the lowest RMSE 
(5.2134). As a result, the FM performs consistently well in predicting the 
pyrolysis yields of coal. This is because, even when the base models 
perform poorly, the FM is still able to proactively adjust the model 
output of the model via the learning weight method, resulting in greater 
predictive accuracy. 

Fig. 4 shows a comparison between the experimental data and the 
predicted output of the different models, with the parity line indicated in 
blue. The results show that all the models achieve acceptable accuracy in 
predicting the tar, water, and syngas yields, with the predictive accuracy 
of the FM model being higher than the other base models. On the con
trary, a noticeable deviation is observed between the predicted and 
experimental values of the char yield. The point-cloud distribution of all 
models is concentrated when the char yield is from 70 wt% to 80 wt%, 
and the prediction effect is acceptable. Within this range, as Fig. 4D 
shows, the point-cloud of char for the FM is more intensive and nearer 
the blue line than that of the base models, indicating that its a predictive 
performance is more reliable than the base models. The final result 
shows that the prediction performance of FM model is better than the 

Fig. 3. Matrix of Pearson correlation coefficients between the different variables.  

Table 3 
R2 and RMSE scores of the three base models and the FM.  

Models MLR SVM RF FM 

Performance R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Tar  0.9766  0.4803  0.9696  0.5471  0.9769  0.4771  0.9780  0.4648 
Water  0.9543  0.6932  0.9483  0.7369  0.9521  0.7092  0.9527  0.7007 
Syngas  0.9797  0.8956  0.9821  0.8414  0.9792  0.9058  0.9834  0.8101 
Char  0.1349  7.0162  0.4806  5.4364  0.5017  5.3249  0.5215  5.2134  

S. Yu et al.                                                                                                                                                                                                                                       



Arabian Journal of Chemistry 17 (2024) 105562

6

base model. 

3.3. Relative error analysis of the models 

Fig. 5 shows the relative error between the experimental data and the 
predicted results. The Y-axis on the left represents the relative error, 
while that on the right represents the experimental yield of the pyrolysis 
products. The X-axis represents the number of sample groups in the test 
set. A smaller relative error indicates a more accurate prediction result, 
meaning that the predictive performance of the model is better. Fig. 5A 
indicates that all models do well in predicting the tar yield, with the 
predictive performance of the RF model being better than the SVM and 
MLR models. The relative errors between the RF model and the exper
imental data range from − 0.083 % to 0.251 %, with the maximum 
relative error corresponding to the experimental dataset labelled as No. 
1. Meanwhile, the maximum relative error of the FM was the lowest 
among all the models, at 0.247 %, indicating that the predictive per
formance of the FM model is superior to all the base models in predicting 
the tar yield. 

Fig. 5B shows that, just as for the tar yield, the maximum relative 
errors of all models occurred for the experimental dataset No.1. The 
relative error of the FM was the lowest among all the models, at 0.370 %. 
When the water yield was in the range of 3.01 wt% to 6.80 wt%, the FM 
and SVM models showed the best predictive accuracy. Further, when the 
water yield is > 6.80 wt%, the FM still possesses excellent predictive 
accuracy, with a relative error range from − 0.136 % to 0.006 %. Hence, 
compared with the base models, the FM better predicts the water yield. 

Fig. 5C shows the relative errors of the char yield. The MLR model 
has the largest relative error range. The maximum relative error of RF 
model is 0.193 %. It appears that the RF model exhibits the best pre
dicted accuracy for char yield among the base models. When the char 
yield is < 70.25 wt%, however, all models show worse predicted 

performance than for the other pyrolysis products (water, tar, and 
syngas). On the other hand, when the char yield is > 70.25 wt%, the 
predictive results for the base models are lower than the experimental 
data values. Further, the predictive accuracy of the FM for the char yield 
is lower than that of the RF model due to the poor predictive perfor
mance of the MLR and SVM models. However, the predictive perfor
mance of FM model is still comparatively excellent in the same 
condition. The relative error range of FM was − 0.132 % to 0.244 %, 
which was very close to that of the RF model (− 0.120 % to 0.193 %). As 
Fig. 5D shows, the maximum relative error for the syngas yield was 
0.351 %, obtained from the RF model. The predictive accuracy of the 
SVM model was the best of the base models, ranging from − 0.065 %. to 
0.251 %. Furthermore, the percentages of model outputs that were 
higher than the corresponding experimental data values are 80 %, 50 %, 
and 40 % for RF, MLR, and SVM, respectively. The relative error of the 
FM is in the range of − 0.132 % to 0.244 %, meaning it has better 
predictive accuracy than the base models. Moreover, two-thirds of the 
predicted outputs from the FM model are, higher than the corresponding 
experimental values. Since the FM is derived from a combination of the 
base models, this indicates that it actively regulates the base model by 
training the weighting algorithm, which results in better predictive 
performance. 

These results demonstrate that the FM is superior to the base models 
in predicting the yields of tar, water, and syngas, while coming a close 
second to the RF model for the char yield. Further, a maximum relative 
error of only 0.244 % indicates that the FM effectively utilizes the 
learning weight algorithm to proactively improve the predicted outputs. 

3.4. Feature importance 

Fig. 6 illustrates feature importance of input variables among the FM 
and base models. The feature importance indicates the extent of 

Fig. 4. Comparison between the experimental data and predicted outputs for different models: (A) SVM; (B) RF; (C) MLR; (D) FM.  
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influence of input characteristics on the predicted yield of pyrolysis 
products. Fig. 6A shows that the oxygen content has the greatest influ
ence on predicting the tar yield for each model. Moreover, the FM 
significantly enlarges the feature importance of oxygen content and 
reduces that of carbon content during the modelling process. As Fig. 6B, 
the most feature important input in predicting the water yield for each 
model is also the oxygen content, with the feature importance of oxygen 
content from the FM being larger than that of the base model. Mean
while, the FM significantly lowers the feature importance of carbon 
content and volatile matter. The feature importance of input variables 
for predicting syngas is quite different from those for predicting tar and 
water. 

Fig. 6C shows the inconsistency in the feature importance variation 
of moisture content. The feature importance of moisture content in the 

FM (41.45 %) is much lower than that of the base models (57.59 %). 
Fig. 6D shows that the FM significantly decreases the feature importance 
of moisture content, while that of oxygen content in the FM (22.07 %) is 
larger than that of the base models (12.40 %). In terms of the results 
From Figs. 5 and 6, it is evident that the FM proactively varies the 
feature importance of inputs to improve the predicted outputs. 

4. Conclusion 

In this study, sixty groups of fixed-bed coal pyrolysis data were used 
to establish an FM, with MLR, RF, and SVM base models. Based on 
Pearson correlation analysis, nine input parameters were selected from 
ultimate and proximate analyses of coal. The models were first tested 
and trained before being incorporated, into the FM using a weighting 

Fig. 5. Relative error between predicted outputs and experimental data: (A) tar yield; (B) water yield; (C) char yield; (D) syngas yield.  
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algorithm. The results of the study were as follows: 
(1) The predictive results for pyrolysis product yield were analyzed 

via the coefficient of determination (R2) and root mean square error 
(RMSE). The results suggest that the FM improved the output compared 
with the base models. 

(2) A comparison of the relative error between predicted outputs and 
experimental data showed that the FM dynamically used the weighting 
algorithm to regulate the output weights of different base models ac
cording to their predictive performance. The maximum relative error of 
the FM model was only 0.37 %. 

(3) Further analysis of the input characteristic changes of the FM 
showed that it can analyze the predictive performance of the base 
models independently during operation and optimize the output by 
adjusting the learning weight. By actively changing the weights of input 
features, the output results were regulated and optimized. 

(4) The use of FMs provides new insight into prediction of coal py
rolysis product yields and aids in the optimization of pyrolysis products. 
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