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KEYWORDS Abstract A chemical graph represents a chemical or molecular compound in the form of a graph.

The vertex set of the chemical graph contains the atoms or molecules of the compound while the
edge set comprises of the bonding between the molecules or atoms. In this paper, we compute var-
ious connectivity indices based on degrees of vertices of chemical graph of Indium Phosphide (InP)
including general Randi¢, hyper Zagreb and redefined Zagreb indices etc. Afterwards, we calculate
the physical measures such as entropy and heat of formation of InP. We fit curves between different
indices and the thermodynamical properties namely heat of formation and entropy by using
MATLAB through different methods based on linearity and non-linearity. The performance of
the method is tested using root mean square error, the sum of squared errors or R*>. Furthermore,
we give graphical representations of these indices. These mathematical frameworks might provide a
way to study the thermodynamical properties of the chemical structure of InP at different condi-
tions which will assist to comprehend the relationship between system dimension and these mea-

sures.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction logical index is invariant under graph isomorphisms. Mostly, the

degree or distance measure is used to capture the topology of a graph-

The term used to illustrate a molecular/chemical compound in the
form of a graph is known as molecular/chemical graph (Baig et al.,
2017; Gao et al., 2018). Molecules are shown as vertices while their
bondings or interactions are shown by edges in a molecular graph.
Usually, molecule graphs are simple graphs and the measure of topo-
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ical structure so the most common indices are based on either degree or
distance between the vertices. Indices comprising of degree measure-
ments perform a vigorous part in molecular graph theory. Two iso-
morphic graphs have same connectivity index and the cardinalities of
vertex and edge sets of a graph are considered as the topological/con-
nectivity indices as well. A connectivity index explains some helpful
details about structure and analysis of molecular graph. An applica-
tion of graph theory in the field of chemistry is to study the molecular
structures of chemical compounds. Graph theory tools are imple-
mented to classify fundamental features entailed in structure—property
activity interactions of molecules. Many chemical compounds have
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been analyzed through topological indices in the past few decades.
Topological/graphical index is a numeric measure related to chemical
compositions asserting the association of chemical structures through
numerous physicochemical properties or chemical reactivity (Baig
et al., 2017).

A. Balaban, A. Graovac, I. Gutman, H. Hosoya, M. Randi¢, and
N. Trinajsti (Randi¢, 2004) are originators of the field of chemical
graph theory. It was acknowledged in 1988 that a lot of researchers
had worked in this field and published roughly 500 publications per
year see details (Ahmad et al., 2019; Ahmad et al., 2020; Aslam
et al., 2019; Li et al., 2021). Chemical graph theory, a 2-volume com-
prehensive treatise by Trinajsti, that conveyed the research up to the
mid of 1980’s, is one of many monographs in the discipline (Das and
Gutman, 2004). Zhang et al. (2018), Zhang et al. (2019), Zhang
et al. (2020) discuss the topological indices of generalized bridge molec-
ular graphs, Carbon Nanotubes and product of chemical graphs.

Chemical compounds are represented by graphs in chemical graph
theory, and mathematical tools are employed to address chemistry
issues. A topological/connectivity descriptor is a numerical measure
which describes the topology of a graph (Gutman et al., 2015). These
are sensitive to symmetry, heteroatom content, magnitude, form, con-
necting style, and the degree of intricacy of atomic regions, among
other structural features of molecules (Hayat and Imran, 2015;
Manzoor et al., 2021). Connectivity descriptors have gained consider-
able popularity recently, due to their simple nature. Chemical graph
theory relies considerably on these graph descriptors. As a conse-
quence, a topological index may be quantitatively characterizes a
chemical network that is topologically invariant to labelling as well
as distinguish between isomers (Gao et al., 2017; Shannon, 1948).
Zhang et al. (2018, 2021) provided the physical analysis of heat for for-
mation and entropy of Ceria Oxide.

In theoretical chemistry and nanotechnology, there are several
graphs associated numerical descriptors that are significant. Degree-
based, distance-based, and counting-related graph descriptors are
among the most common types (Furtula et al., 2010). The degree-
based graph descriptors have a prominent place among these descrip-
tors and may be used to characterises chemical substances and forecast
their specific physio-chemical characteristics (Amic¢ et al., 1998;
Bollobs and Erdos, 1998; Dosli¢, 2008; Furtula and Gutman, 2015;
Gutman and Trinajsti, 1972; Khalid et al., 2022; Siddiqui et al., 2016).

Researchers are working in the field of connectivity/topological
indices in different ways; some are just developing them as graph
descriptors (Furtula et al., 2014; Gao et al., 2017; Shao et al., 2018;
Siddiqui et al., 2016) while some are relating them with certain mole-
cules to analyze their chemical properties (Gao et al., 2018).

To construct a thermodynamical structure we need to measure
some physical quantities, entropy (Ent) and heat of formation (HoF)
are two of them.

Ent measure tells us how much heat energy we need to produce
more in order to perform some valued work. Since this measure is
describing the lack of energy due to which performing valuable work
is not possible so it is also termed as measure of disorder (Dehmer
and Mowshowitz, 2011; Estrada et al., 2014). An isolated system has
the highest Ent according to the second law of thermodynamics.
Non-isolated systems can lose Ent if they enhance the Ent of their sur-
roundings by at least the same amount. Because Ent is a state function,
every process that moves a system from one state to another, whether
reversible or irreversible, will change its Ent.

During per unit formation, the heat absorbed or retained is referred
as HoF provided all the elements persist in normal state. Kilojoules per
mole (kJ/mol) is the unit for the measure of HoF. The term enthalpy is
also used for HoF.

Defining a system in the form of a mathematical framework pro-
vides us an efficient approach to analyze the dynamics of the system.
Experimental work is mostly expensive and very time consuming so
transforming the system into a set of mathematical form makes this
study very coherent. Many softwares like MATLAB or Python are
easily available which provide a very friendly environment to construct

mathematical models and study them. As we may fit many mathemat-
ical models to the same set of data so it is difficult to decide which one
is best suitable for us. There are several statistical tests which might
help us to decide which mathematical model or framework is a best
fit for our data but we will just consider RMSE, and SSE.

In (Chu et al., 2021; Siddiqui et al., 2021; Ma et al., 2021; Zhang
et al., 2022; Zhao et al., 2020), authors estimated the mathematical
frameworks to detect relationships between physical measures includ-
ing Ent and HoF and degree based topological indices of ceria oxide,
graphite carbon nitride and terbium IV. In (Khalid et al., 2022), Kha-
lid et al. found a network of indices to capture the subnetwork consist-
ing of highly most connected indices of the drug Astragaloside IV. Gao
et al. (2018) introduced the concept of HoF and Ent measures for Cop-
per (I) Oxide and Copper (II) Oxide based on the topological indices.
Nadeem et al. (2019) extended this idea for 2-Dimensional Silicon Car-
bons. Manzoor et al. (2020) provided detailed information about this
idea and applied for new structures namely carbon nanosheets.

2. Crystal structure of indium phosphide

The binary semiconductor indium phosphide (InP) is made up
of the elements indium besides phosphorus. Its structure is
similar to other crystal structure of majority of group
IIT — V semiconductors which have face-centered cubic config-
uration (Vurgaftman et al., 2001) as shown in Fig. 1. Indium
phosphide is either synthesized by reacting red phosphorous
powder with indium iodide at 400 °C or by combining refined
high temperatures and pressures elements, or by thermal disin-
tegration of a combination of trialkyl indium compounds and
phosphine as shown in Fig. 2 (Zafar and Igbal, 2016). Electro-
chemical etching of indium phosphide nano-crystalline surface
was viewed by scanning electron microscope.

Because of their large direct current, Group /7/4 phosphide
nano-crystalline semiconductors are of great interest among
the significant inorganic materials. They have fundamental
physical properties and band differences (Zafar and Igbal,
2016). Its unique properties like low dielectric, low density
and high thermal conductivity in comparison to the common
semiconductors like Si, Ga and As (Ozkendir, 2020; Souza,
1996) makes it more useful in high power and high-
frequency electronics. Conventionally Cd and Pb halides are
being used in display technology but their toxicity limits their
use in color technology. Because of their reduced toxicity and
emission tunability range from visible to near-infrared, indium
phosphide quantum dots (QDs) are an appealing option. Semi-
conductor nanocrystals, also known as quantum dots, are
nanometer-sized fluorescent materials that can have their opti-
cal properties fine-tuned by changing the core size or expand-
ing a shell around the core (Mushonga, 2012). Because of its
superior electron velocity to the more popular semiconductors
Si, Ga and As, it is used in high-power and high-frequency
electronics. InP is also used as a medium for epitaxial materials
(Kerkouri et al., 2011). The QDs of indium phosphide are now
being used in heavy metals detection as an alternative to
cadmium-based materials (Bouarissa, 2011).

Lasers and LEDs based on InP can emit light with a wave-
length range of 1200nm to 12uwm. This light is used in all parts
of the digitalized world for fibre-based telecom and datacom
applications. Light can also be utilized for sensing purposes.
On the one side, there are spectroscopic applications in which
a certain wavelength is used to interfere with matter, such as in
the detection of highly diluted gases. In the automobile indus-
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Fig. 1  Crystal structure of indium phosphide (InP).
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Fig. 2 Scheme for the synthesis of InP QDs.
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try, optoelectronic terahertz is used for ultra-sensitive spectro-
scopic analysers, polymer thickness tests, and multilayer coat-
ing identification. Relevant InP lasers have a tremendous
advantage in terms of eye protection. The radiation is
absorbed by the human eye vitreous body which has little
effect on the retina.

3. Methods

This section is devoted to discuss the methods used to establish
the relationships between thermodynamics properties of InP
and the graphical properties of its corresponding chemical
graph. Firstly, various topological indices are found based
on the degrees of the vertices including Randic¢ index, redefined
Zagreb and hyper-Zagreb indices, general forms of few of
them are listed below. Let G(77, &) be a graph and ¢(u) denote
the degree of a vertex u.

General Randi¢ index introduced in (Randic,
Soleimani et al., 2015) is as follows:

R(9) = > (c(u) x c(v)".

uveé (%)

1975;

Shirdel et al. introduced hyper-Zagreb index in (Ghorbani and
Azimi, 2012) as given below.

HM(9) = > [c(w) + ()]

wed (%)

Afterwards, HoF and Ent of InP are obtained for different
formula unit cells of InP. For one formula unit standard
molar HoF and Ent are calculated by dividing them by Avo-
gadro’s number. The HoF and Ent of a cell are calculated
by multiplying the obtained values by the number of for-
mula units within the cell. Topological indices vs different
formula unit cells are shown by graphical illustrations.
Non-linear graphical models are fitted by considering topo-
logical indices as input variables and enthalpy and entropy
as output variables. Finally, various curves are fitted using
curve fitting app in MATLAB. Several built in methods
are available in the curve fitting app, we implement most
of them on our data. The statistical tests are the best tools
to select the best mathematical model for the given data. Let
(X, Y) be our data set and n be the number of observations.
Suppose that g(X) be the set of fitted values corresponding
to Y. The standard deviation is an important feature and
shows how much deviation we have in our values from
mean and keeping this value in consideration provides a
more accurate fit to our data. To calculate an error using
standard deviation we use root mean squared error (RMSE),
which is defined as following:

1 >
RMSE = |- (v — &)
\/” m;m
RMSE shows standard deviation of the residuals (i.e. differ-
ence between the model predictions and the true values). This
test provides an estimate of how large the residuals are being
dispersed. It can be easily interpreted in the form of mean
squared error (MSE) as RMSE is just the square root of MSE.
Another statistical test is sum of squared error (SSE)
defined as following:

SSE= 3 (r—g).

(xp)e(X,Y)

R2-test is used to analyze how observed values are scattered
from our fitted curve. The value of R* approaching to 1 shows
good fit while approaching to zero shows poor estimation. R>
is the ratio between calculated and actual variance. Suppose
that S is the variance of fit and ¢ is actual variance then the
formula of R? is given below:

=5

¢
There are few other statistical tests in the literature as well but
the curve fitting app in MATLARB selects the model based on

RMSE, SSE and R* only so we will consider these three tests.

4. Degree based indices for indium phosphide

The number of vertices and edges of InP[s, t] are 10st + 3s +
3t + 2 and 16st, respectively for s x ¢ unit cells. Furthermore,
Table 1 gives details about the edge partition whereas the com-
parisons of the indices for InP[s, t] are given in Table 2 and
Table 3.
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Theorem 1. Let G = InPls,t] with s,t = 1. Then the Randi¢
indices for o =1, 71,%, f% are as follows:

R (%) = 160st — 165 — 161 — 16
R_,(%) = 43.313708s¢ + 3.313708s + 3.313708¢ — 8

R\(%) = 43.313708st + 3.313708s + 3.313708¢ — 8

1
2

R

(9) = 3.414214st + 2.4142145 + 2.4142141 — 2.

1
Proof. For o =1

Ri(%) = > (clw) xs(v)

wed(9)

weé (%)

+ (s(u) x ¢(v))
uve&3(9)

(45441 —4)(1 x 4) + (4st +4s +41)(2 x 4)

(8st — 4s — 41)(4 x 4)

160st — 165 — 161 — 16.

uveéH (%)

J’_

For o = —1

R.\(%)

uveé(9)
1 1 1
Y.t X wmet X
uveé | (9) uveés (%) uved3(9)
= (@s+dt—4) g+ @st+4s+40) 5y
+ (8st—ds—4t) gy
= st+3s+3t-1

R(9) = Y Vel x<)

wed (%)

- ¥

wed | (9)

+ ) V) x50

uved3(9)

Sy x <+ Y Vel x <)

uveds (%)

= (4s+4r—4)/(1 x4)+ (4st+4s+41)\/(2 x 4)

+ (8st—4s—41)\/(4x4)

= 43.313708st + 3.313708s + 3.3137087 — 8.

Table 1
vertices.

(s(u), <(v))

Edge partition of InP[s, t] based on degrees of end

Frequency(Total Number of Edges)  Set of Edges

(1,4) 4s + 4t —4 &1
(2,4) 4st + 4s + 4t &>
(4,4) 8st —4s — 4t &3

Table 2 Comparison of Randi¢ indices for « =1, 1,3,

for InP[s,t].

1
2

[s.1] Ri(%) R_1(9) R\(%) R_\(9)
(1, 1] 12 25 41.94 6.24
[2,2] 560 8 178.50 21.31
3,3] 1328 155 401.70 521
[4,4] 2416 25 711.52 71.94
[5,5] 3824 36.5 1107.97 107.49
(6, 6] 5552 50 1591.05 149.88
(7,7 7600 65.5 2160.76 199.09

Table 3 Comparison of ReZG(%9), ReZG,(¥Y), ReZG:(9),
HM (%) indices for InP[s, t].

[s, 1] ReZGi(9)  ReZGy(9)  ReZGy(%)  HM(Y)
[1,1] 14 19.2 656 532
[2,2] 47 84.26 3824 2476
[3,3] 94 192 9424 5732
[4,4] 155 342.4 17456 10300
[5,5] 230 535.46 27920 16180
[6,6] 319 771.2 40816 23372
17,7 422 1049.6 56144 31876
For o = —1
R (9) = 1
+4(%) Z S0
weé(9)
I 1 I
= X Tt X Tt X T
it VAR Lt ) || et )
= (4s+4t—4)—~ 45t + 45 4 41) —
( + )\/(1x4)+( + T )1/(2><4)
+ (8st—ds—41)—+

(4x4)
3.414214st +2.4142145 4+ 2.414214¢ — 2.

O

The numerical representation of above computed results
are depicted in Table 2.

Theorem 2. The hyper Zagreb index for the graph of
G = InP[s, 1] with s,t = 1 is corresponding to

HM(%) = 25651 — 125 — 121 — 100.

Proof. Let & denote InP crystallographic structure. The fol-
lowing is the hyper Zagreb index result:

wveé(9)
= Z (c(u) + ()’ + Z (c(w) +<(v)’
weé | (9) uveé»(9)
+ > s+
uved3 (%)
= (4s+4r—4)(1+4) + (dst+4s+4)(2+4)
+(4st + 4s + 41) (4 + 4)
= 2565t — 125 — 127 — 100.
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Theorem 3. The redefined Zagreb indices for the graph of
G = InP[s, 1] with s,t = 1 is corresponding to

ReZG\(%9) ="st+6s+6t—5

64 8 8 16
4G\ — _
ReZG,(9) 3st+155+]51 T
ReZG;5(%9) = 1216st — 2405 — 2401 — 80.

Proof. Let & denote InP crystallographic structure. The rede-
fined Zagreb indices are as follows:

ReZG\(9) =} S
wed (9)
_ s(u)+5(v) s(u)+5(v)
ReZG\(%) = e T 2 Saee)
uved| uveds
() +¢(v)
D e
uveds

= 2(4s+4r—4)+8(4st+ 45+ 41)
+ 5 (85t — 4s — 41)
= Tst+ 65+ 6t —5.

ReZGy(9)= Y s
uved (9)

ReZGr(9) = > SFid+ > fry
uved uveds

c()xs(y)
R
uves’3
= $(4s+4r—4)+ 545t + 45+ 40)
+18(8s1 — 4s — 41)

= §t+fv+gtff

ReZG4(%) =

wved (9)

ReZGy(9) = Y (c(u) x <(v)) x (c() +<(v))

uveds

+ ) (sw) x e(v) x (s(u) +<(v)

uvess

= 204+ 41— 4) + 48(4st + 45 + 41)
+128(8st — 4s — 41)

= 1216st — 240s — 2407 — 80.

O

The numerical representation of above computed results
are depicted in Table 3. Graphical behaviours of Randi¢
indices and redefined Zagreb indices for different formula unit
cells of InP are illustrated in Fig. 3, Fig. 4 and Fig. 5
respectively.

5. Heat of formation and entropy of indium phosphide

The standard molar HoF of InP is —69.3kJmol™", whereas the
standard molar Ent of indium phosphide is 59.8Jmol 'K~".
The enthalpy of indium phosphide is inversely proportional

to its crystal size, and increases as the number of unit cells
increases. If the number of cells grows larger, the Ent value
decreases. The downward trend is the exact opposite of HoF.
These numerical findings are represented in Table 4.

6. Results and discussion

In this section, results of this article are presented which
include the estimation of the mathematical frameworks
describing the relationships between each index found in Sec-
tion 4 and each physical measure found in Section 5. Few of
the results are presented here while remaining results are pro-
vided in the supplementary material. A mathematical model
between the index R; and HoF is estimated in (1).

SI(RI)Z +5(R1) + 53
(R))’ + 61(R)’ + 12(R1) + 13

HoF(R)) = (1)
The graphical behaviour of model (1) is shown in Fig. 6. To
obtain a better relationship between R, and HoF, the values
of R are normalized by mean = 3056 and standard deviation
(std) =2762 while s = —0.0556(—0.2698,0.1586), s, =
—0.03933(—0.1834,0.1047), s3 = 0.005921(—0.0726,0.08445),
t; = 2.005 (1.382,2.627),1, = 1.141(0.4866, 1.795), t;
=0.1528(0.116,0.1897) represent the parametric values of
the model along with their confidence interval. Several meth-
ods of curve fitting are applied in MATLAB and the best esti-
mate is chosen based on the statistical errors including sum of
squared error (SSE) or root mean squared error (RMSE). The
errors found in the case of R, vs HoF are SSE = 4.575¢ — 05
and RMSE = 006764. The graphical behaviour of the model
in Fig. 6 depicts a rapid decrease and increase on the curve
around the values R; = 0, 1000 and 2500.

In the case of entropy, the values of R; are again normal-
ized by the same mean = 3056 and std = 2762. The estimated
model is presented in (2) where S| =
0.01231(—0.03604,0.06066), 1, = 1.061(—4.148,6.27), 1, =
—0.3193(—8.513,7.874), t; = —0.3508(—2.787,2.085),

14 = 0.01283(—0.6346,0.6603), 5 = 0.03481 (—0.2218,0.2914)
with SSE = 0.0003498, RMSE = 0.0187.

51
Enl(Rl) = 5 7 3 3 s
(Rl) + f](R]) + fz(Rl) + I3(R1) =+ t4(R1) + 15
2
8000+
-
7000 + 4
/
6000 4 /
/-(
5000 »
%34000 + o o
£ 7
3000+ ’
F
2000 + > -~ Lt
" 2 >
1000 + P s =
e
04 E=E#- g e apm =g == ==3F
1 2 3 4 5 & 7
Unit cells
Fig.3 Comparison of Randi¢ indices for «= 1,—1,1, —1for InP

[s, t].
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Graphical representation of HM(G) for unit cells of InP

Table 4 HoF and Ent for different formula units of InPJ[s, t].

[s,1] Formula units HoF x 1072 kJ Ent x 1072 kJ
[1,1] 4 —4.6044 3.973
2,2] 16 —0.18841 0.1589
3,3] 36 —0.4143 0.3576
[4,4] 64 —0.7367 0.6357
5,5] 100 —0.0151 0.9933
[6, 6] 144 —0.0165 0.0143
[7,7) 196 —0.0225 0.0194

Graphical behaviour of the model in Fig. 7 shows a rapid
change in the curve near the value R, = 0. Few peaks might
be seen at R; = 2000 and R; = 4000 in Fig. 7 as well.

To estimate the models of index ReZG, vs HoF and ReZG,
vs Ent, the values of ReZG, are normalized by mean = 183
and std 149.2 in both cases. The estimated models are pre-
sented in (3) and (4) with parametric values s =
—0.05698(—0.2602,0.1462), 5, = —0.03555(—0.1695,0.0984),
s3 = 0.007077(—0.07641,0.09056), 1, = 1.975(1.42,2.53), 1, =
1.054(0.4639,1.644),t; = 0.1189(0.06831,0.1694 for (3) and
51 =0.01939(—0.08849,0.1273), t, = 1.239(—5.593,8.071),
t, = —0.04695(—10.3,10.21), 1 = —0.2278(—2.436, 1.98),
ty = —0.01716(—1.08, 1.045), ts = 0.03369(—0.3394,0.4067)
for (4).

51(ReZG\)’ + 5:(ReZG)) + s

HoF(ReZG)) = 3 3
(R@ZG]) -+ ll(R(’ZGl) + lz(RC"ZGl) + 13

(3)
S
(ReZG\)’ + 11(ReZG))' + r(ReZG)'r (4
+15(ReZG)* + 14(ReZG)) + 15

Ent(ReZG)) =

The model of ReZG, vs HoF gives SSE = 4.141¢ — 05 and
RMSE = 0.006435 while in the case of ReZG, vs
Ent, SSE = 0.0003363 and RMSE = 0.01834. In Fig. 8, graph-
ical behaviour of the model (3) shows a rapid change in the
values of HoF near the values ReZG, = 10,90, 160. In
Fig. 9, a sudden fall and rise might be seen at the value
ReZG) =0 while small peaks also occur between (100, 150)
and (200,250). At ReZG, > 320, the graph shows almost a
constant behaviour. In Figs. 10-15, all the graphs of indices
vs HoF in supplementary material, we can see almost 3 instant
high and low jumps in the values of HoF while after some
specific values all the graphs show constant behavior and
approach to 07. In the case of entropy, the behaviours of
curves in Figs. 16-21 are bit different comparatively to the
curves in Figs. 10-15. In Figs. 16-21, some changes occur
instantly whereas some changes are comparatively slow but
finally the values of entropy approach to 0%.

The mathematical connections between indices and HoF
and Ent are provided in the following along with the paramet-
ric values and confidence interval (CI), and their goodness of
fit.

6.1. HoF vs Indices

The general models for all the indices are given in (5)-(10)
while graphical representation for all the indices vs HoF are
shown in Figs. 10-15.

e General model between R_; and HoF

S (R—l)z + 52(R-1) + 53
(R—l)3 + 4 (R—l)z +6(R) + 1 ’

where R_; is normalized by mean 29 and std 22.99.

Coefficients with CI:

s1 = —0.05749(—0.2573,0.1423), 5, =
—0.03421(—0.165,0.0966), s; = 0.007372(—0.07745,
0.0922), 1, = 1.966(1.429,2.502), t, = 1.026(0.4527,1.598),
t; =0.1085(0.05173,0.1652).

Goodness of fit:

SSE : 4.008¢ — 05, R* : 1, RMSE : 0.006331.

HoF(R_)) =

e General model between R% and HoF

HoF(R,) = Sl(R%)2 +52(Ry) + 53 ‘o
o (R + 01 (Ry)” + (R + 13

1
2

where R, is normalized by mean 884.8 and std 779.9.
Coefficients with CI:
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Fig. 6 R, (x-axis) vs HoF (y-axis).
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Fig. 9 ReZG, vs Ent.

51 = 0.05587(—0.2677,0.156), s, = —0.03858(—0.1805,
0.1033), 53 = 0.006197(—0.07348,0.08588). 1, = 1.998(1.392, )
2.604), 1, = 1122(0.4836, 1.761), 1, = 0.1454(0.1071,0.1837).  prop(g y— KA FoR)Ts

Goodness of fit: 2 (R,%)3 + 1 (R,%)2 + (R + 13

SSE : 4481 — 05, R® : 1, RMSE : 0.006694.

2
o General model between R_; and HoF Coefficients with CI:

where R _; is normalized by mean 85.59 and std 70.6.
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Fig. 18 R_% vs Ent.
s1 = —0.05678(—0.2614,0.1479), s, = —0.0361(—0.1714,
0.09919), 53 = 0.00694(—0.07593,0.08981), 1, = 1.979(1.416, si(HM)? + s,(HM) + s
2.541), 1, = 1.066(0.4681,1.663), 15 = 0.1233(0.07522,0.1714).  HoF(HM) = \(HM) +o(HM) + ®)

Goodness of fit:
SSE :4.199¢ — 05, R* : 1, RMSE : 0.00648.

e General model between HM and HoF

(HM) + t,(HM)* + t;(HM) + t;

where HM is normalized by mean 1.292¢+04 and std
1.155e + 04.
Coefficients with CI:
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Fig. 21

51 = —0.05573(—0.2688,0.1574), 5, = —0.03898(—0.182,
0.104), s3 = 0.006053(—0.07302,0.08513), 1, = 2.002(1.387,
2.616), 1, = 1.132(0.4853,.779), t; = 0.1493(0.1119,0.1867).

Goodness of fit:

SSE : 4.53¢ — 05, R? : 1, RMSE : 0.006731.

e General model between ReG, and HoF
N

(ReZG,)’ + 11(ReZG,)" + 1,(ReZG,)’
+t3(R€ZGz)2 + [4(R€ZG2) + [5,

HoF(ReZG,) =

©)

where ReZG, is normalized by mean 427.7 and std 379.5.

Coefficients with CI:

s1 = —7.53(—1.29¢ + 04, 1.288¢ + 04), 1, = —316.2
(—5.436¢ + 05,5.43¢ + 05), 1, = —36.51(—5.938¢ + 04,
5.931e + 04), t; = 703.4(—1.209¢ + 06, 1.211e + 06), 1, =
479(—8.224¢ + 05,8.233¢ 4 05), 15 = 82.77(—1.42¢ + 05,
1.421e + 05).

Goodness of fit:

SSE: 0.0002183, R*: 1, RMSE : 0.01478.

o General model between ReZG; and HoF

ReG3

%10%

ReZG; vs Ent.

S1 (REZG}) =+ 57
(ReZG:)* + 11(ReZGs)’ + 1,(ReZGs)’
+t3(ReZG3) + l4,

HoF(ReZG;) = (10)

where ReZG; is normalized by mean 2.232¢ 4+ 04 and std
2.049¢ + 04.

Coefficients with CI:

51 = —0.007068(—0.09407,0.07994), 5, = 0.006748
(—0.09949,0.113), ¢; = 0.9454(—2.459,4.35), 1, = —0.7004
(—6.873,5.472), t; = —0.7442(—4.03,2.542), t4 = —0.1392
(—0.7317,0.4534).

Goodness of fit:

SSE : 0.0004847, R* : 1, RMSE : 0.02202.

6.2. Ent vs Indices

The general models between Ent and different indices are given
in (11)—(16) while their graphical representation for all indices
vs Ent are shown in Figs. 16-21.

o General model between R_; and Ent
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(R1)" + 0 (R + 6(R) + 15(R) (11)
+14(R-y) + 15,

EnZ(R,l) =

where R_; is normalized by mean 29 and std 22.99.
Coefficients with CI:
s1 =0.02155(—0.1093,0.1524), 1, = 1.299(—5.82,8.418),
1, = 0.03719(—-10.49, 10.56), t; = —0.2002(—2.178, 1.778),
ty = —0.03163(—1.188,1.125), 5 = 0.03362(—0.3699,0.4372).
Goodness of fit:
SSE :0.0003323, R*>: 1, RMSE : 0.01823.

o General model between Ry and Ent

S
Y+ 6(R) + (R

1 1 1
2 2 2

Ent(R%) =

(R + 1 (R )+ 15

(12)

)+ 1a(R

1
2

where R% is normalized by mean 884.8 and std 779.9.
Coefficients with CI:
s1 = 0.01382(—0.04523,0.07288), #; = 1.097(—4.545,6.74),
t, = —0.2617(—9.05,8.527), t; = —0.3204(—2.783,2.143),
ty = 0.008768(—0.737,0.7545), ts = 0.03451(—0.2492,0.3183).
Goodness of fit:
SSE : 0.0003468, R*>: 1, RMSE : 0.01862.

e General model between R_% and Ent

S
EnZ(R,%) = (R,%)4+[|(R )3+[2(R, )2+[3(R )+[47 (13)

_1 1 _1
2 2 2

where R, is normalized by mean 85.59 and std 70.6.

Coefficients with CI:

51 = 1458(—2.023¢ + 08,2.023¢ + 08), #; = 2.428e+
04(—3.368¢ + 09,3.368¢ + 09), 1, = 2.195¢ + 04(—3.044¢
+09,3.044¢ + 09), 13 = —5914(—8.205¢ + 08, 8.205¢ + 08),
ty = 469.3(—6.512¢ + 07,6.512¢ + 07).

Goodness of fit:

SSE:0.02979, R* : 0.9975, RMSE : 0.122.

o General model between HM and Ent

(HM)* + t,(HM)® + 6,(HM)* + t;(HM) + 1,
(14)

where HM is normalized by mean 1.292¢ +04 and std
1.155¢ + 04.

Coefficients with CI:

51 = 2444(—8.915¢ + 08,8.915¢ 4 08), #; = 4.874¢+
04(—1.778¢ + 10,1.778¢ + 10), t, = 4.45¢ + 04(—1.623e+
10, 1.623e + 10), t; = —8687(—3.169¢ + 09, 3.169¢ + 09, 14, =
269.1(—9.82¢ + 07,9.82¢ + 07).

Goodness of fit:

SSE : 0.03722, R*: 0.9969, RMSE : 0.1364.

Ent(HM) =

e General model between ReZG, and Ent

81
(ReZGy) + 1(ReZG)' + 1(ReZGy)'  (15)
+13(ReZG,)* + 14(ReZG,) + 15,

Ent(ReZG,) =

where ReZG, is normalized by mean 427.7 and std 379.3.

Coefficients with CI:

s1 = 0.01339(—0.04248,0.06927), 1, = 1.087(—4.435,
6.609), 1, = —0.2783(—8.903, 8.347), t; = —0.3289(—2.788,
2.13), 1, = 0.01007(—0.7077,0.7278), t5s = 0.03459(—0.2414,
0.3106).

Goodness of fit:

SSE : 0.0003477, R*: 1, RMSE : 0.01865.

o General model between ReZG; and Ent

S
(ReZG3)' + 11(ReZGs)' + r(ReZGs)'  (16)
+13(ReZGs) + t4(ReZG3) + 15,

Ent(ReZGy) =

where ReZG; is normalized by mean 2.232¢ + 04 and std
2.049¢ + 04.

Coefficients with CI:

s1 =0.01144(—0.03122,0.0541), 1, = 1.041(—3.894,
5.976), t, = —0.3524(—8.159,7.455), t; = —0.3693(—2.767,
2.029), 14 = 0.01454(—0.5747,0.6038), t5 = 0.03499
(—0.2053,0.2753).

Goodness of fit:

SSE : 0.0003515, R* : 1, RMSE : 0.01875.

7. Conclusion

In this paper, we investigated the relationships between the
underlying graphical properties and the thermodynamical
properties of indium phosphide. At first the topological degree
based indices were calculated which were lately integrated with
thermodynamical properties of indium phosphide InP[s, t] to
form mathematical formulations. Such links had been estab-
lished by fitting curve between each index and each thermody-
namical property. FEnt and HoF are two types of
thermodynamical properties which were indulged in this study.
Rational fitting method was applied using MATLAB software
as this method was providing the least root mean squared error
or sum of squared error among all built in methods. The
graphical behaviours of such established connections were also
shown which provided the values of the indices where HoF and
Ent measure changed their behaviours. Such a multidisci-
plinary approach would provide a comprehensive insight to
understand the structural properties of indium phosphide
InP[s, t] in more detail and depth.
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