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A B S T R A C T   

Ebola virus disease is a deadly pathogenic disease with a fatality rate of 25–90 % as recorded in previous out
breaks. The Ebola Virus glycoprotein (EBOV-GP) plays a crucial role in the entry of viruses into human cells, 
making it an interesting target for therapeutic discovery. Therefore, inhibiting this protein can directly limit the 
virus replication and disease progression at an early stage of infection. The present study focuses on the design of 
novel potent EBOV-GP inhibitors using multiple computational techniques. In this context, two QSAR models 
were built from a set of 86 amodiaquine derivatives as anti-EBOV-GP using Monte Carlo and genetic algorithm 
multiple linear regression methods. Both models confirmed their predictive performance with satisfactory sta
tistical parameters of the validation (R2 = 0.9129; Q2 = 0.8848 for the CORAL model and R2 = 0.8848; Q2 =

0.8148 for the GA-MLR model). From the outputs of the CORAL model, the structural fragments responsible for 
increasing and decreasing the inhibition activity were extracted and interpreted. This molecular information was 
used to design 26 new potentially safe and active candidate drugs. Molecular docking and dynamics simulations 
have affirmed the efficacy of the designed compounds. Specifically, compounds D2 (pIC50_coral = 7.12; pIC50_GA- 

MLR = 7.07), D3 (pIC50_coral = 7.83; pIC50_GA-MLR = 7.10), and D5 (pIC50_coral = 7.26; pIC50_GA-MLR = 7.55) dis
played notable predicted inhibitory activity, according to both models. These compounds also exhibited 
conformational and structural stability, as well as a favorable binding profile. Furthermore, these potential drug 
candidates were found to be non-toxicity and have acceptable pharmacological properties.   

1. Introduction 

Ebola virus disease (EVD) is a severe and rapidly progressing hem
orrhagic fever caused by the Ebola virus (EBOV) (hong Ma et al., 2023). 
Since the virus was first identified in the Democratic Republic of Congo 
in 1976, there have been several outbreaks in which it has been 
responsible for intermittent but highly destructive epidemics, mainly 
affecting regions in Central and West Africa (Dash et al., 2017; Garcia- 
Rubia et al., 2023). The most devastating of these outbreaks occurred 
in West Africa between 2013 and 2016 with over 28,000 infections and 

more than 11,000 deaths (hong Ma et al., 2023). The repeated and se
vere outbreaks have emphasized the significant risk that EBOV poses to 
human health. In the face of this disease, current treatment strategies 
focus on complementary treatment, as there is no specific approved 
antiviral therapy for widespread use. The high mortality rate associated 
with EBOV emphasizes the urgent need to develop drugs that can inhibit 
different stages of the EBOV replication cycle. 

EBOV belongs to the Filoviridae family and is characterized by its 
filamentous structure and an 18 kb single-stranded RNA genome 
encoding seven structural proteins, including viral structural proteins 
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(VP35, VP40, VP30 and VP24), nucleoprotein (NP), RNA-dependent 
RNA polymerase (L) and glycoprotein (GP) (Peng et al., 2022; Mali 
and Chaudhari, 2019; Volchkova et al., 1998; Volchkov and Klenk, 
2018; Lee and Saphire, 2009). The GP gene of EBOV transcribes into 
three different GP forms. Full-length GP chains express the attachment 
protein (GP1) and the entry/fusion protein (GP2) from messenger RNAs 
(mRNAs) containing an additional adenosine that is not present in the 
template (Lee et al., 2008). The soluble GP (sGP), on the other hand, is 
synthesized from the primary RNA transcript. The small soluble GP 
(ssGP) is produced by the insertion of two additional adenosine residues 
(Volchkova et al., 1998). These GPs, which are located on the surface of 
the virion, play a crucial role in promoting membrane fusion and 
penetration into host cells (Lee and Saphire, 2009). Therefore, inhibition 
of this protein can prevent the virus from entering and infecting host 
cells, which is an important strategy for antiviral therapies and vaccine 
development. 

In silico investigations represent a very promising methodology in 
drug discovery to develop new potent and safe anti-EBOV drugs in terms 
of time and cost. This shift towards these methods is evident in the 
growing importance of Computer-Aided Drug Design (CADD) in the 
field. CADD encompasses various computational approaches, including 
structure-based drug design (SBDD) and ligand-based drug design 
(LBDD) (Mallipeddi et al., 2014). Additionally, CADD involves the 
estimation of pharmacokinetics, therapeutic, and toxicological proper
ties in drug discovery journey with computational approaches before the 
experimentations (Lipinski et al., 2012). Despite the advantages of 
CADD in modern drug design, there are still limitations, as many iden
tified candidate molecules do not show the desired activity in biological 
systems. In fact, only 40 % of drug candidates identified via CADD make 
it through clinical trials and receive approval for clinical use. To over
come these limitations, using the most accurate tools available and 
combining multiple CADD techniques can increase the reliability of the 
predictions (Baig et al., 2018). 

In the quest for new treatments for EVD, this study focused on the 
development of quantitative structure–activity relationships (QSAR) to 
design new inhibitors of EBOV-GP. The initial QSAR model employed 
the Monte Carlo optimization using simplified molecular input line 
representations (SMILES) to explore the molecular fragments associated 
with enhancing/reducing of the biological activity. Using this molecular 
information, we designed new molecules with potential inhibition 
against EBOV-GP. Subsequently, a Genetic Algorithm Multiple Linear 
Regression (GA-MLR) based QSAR model was applied to the newly 
designed molecules to confirm their potential inhibition activity. To 
thoroughly evaluate these compounds, we conducted molecular docking 
and molecular dynamics simulations (MD) together with Absorption, 
Distribution, Metabolism, Excretion, and Toxicity (ADMET) assessments 
to ensure a comprehensive evaluation of their interaction with the 
EBOV-GP protein, their stability, and their pharmacokinetic profiles. 

2. Materials and methods 

2.1. Data collection and preparation 

A dataset of 86 amodiaquine derivatives with EBOV-GP inhibitory 
activity were collected from the published work by Sakurai et al. 
(Sakurai et al., 2018). After drawing the chemical structures of these 
derivatives using ChemDraw software (PerkinElmerInformatics, Inc, 
ChemDraw, 2021), their geometries were optimized in the gas phase 
using the AM1 semi-empirical method. The optimization procedure was 
performed using the Gaussian 09 software package (Gaussian 09, n.d.). 
The optimized molecular structures were converted into isomeric 
SMILES notations for the modeling process of the CORAL model using 
the Openbabel program (O’Boyle et al., 2011). For the GA-MLR model, 
the molecular descriptors of the optimized 3D structures were calculated 
using AlvaDesc (Mauri and Bertola, 2022). To avoid multicollinearity in 
the QSAR model, we reduced the number of generated variables by 

removing descriptors with a correlation coefficient greater than 0.95 
and retaining only one of the pairs. As a result, a total of 832 descriptors 
were selected from the original set of 4149 descriptors. The experi
mental data value of each molecule (half-maximal inhibitory concen
tration: IC50) was converted into negative logarithmic scale (pIC50). 
These converted data were then utilized as variables for building QSAR 
models. The molecular structures and corresponding IC50 data are listed 
in Table S1 and their SMILES notation and converted pIC50 can be found 
in Table S2. 

2.2. CORAL QSAR model 

CORAL QSAR modeling software (Toropova and Toropov, 2014) 
utilizes SMILES attributes for endpoint prediction, based on optimal 
descriptors, namely correlation weights (CWs), along with the balance- 
of-correlation approach. Four splits were randomly made from the entire 
dataset with each split in turn divided into four partitions: Training (Tr: 
35 %), Invisible Training (Inv-Tr: 35 %), Calibration (Calib: 15 %), and 
Validation (Valid: 15 %). The specific functions of each set in the 
development of QSAR models are described in detail in the literature 
(Toropova and Toropov, 2014; Oubahmane et al., 2023). Table 1 illus
trates the distribution and percentage of the identity of the compounds 
in the four splits. 

The development of QSAR models based on SMILES notation uses the 
equation of the optimal descriptor of correlation weights (Eq.1). 

SMILESDCW
(
T,Nepoch

)
=

∑
CW(SK)+

∑
CW(SSK)

+
∑

CW(SSSK)+CW(HARD)+CW(Cmax)+CW(Nmax)+CW(Omax)

(1)  

SMILESDCW(T, Nepoch) integrates the attributes derived from SMILES with 
a correlation weight. The parameters T and Nepoch represent the 
threshold and the total number of epochs determined by the Monte Carlo 
optimization technique during the model construction (Oubahmane 
et al., 2023). The threshold coefficient is utilized to categorize molecular 
attributes derived from SMILES into two classes: (i) the active class, 
where CW is incorporated in model development, and (ii) the rare class, 
where CW is not employed in model development. The optimal statis
tical quality for the calibration set is determined by Nepoch. A detailed 
description of the SMILES attributes can be found in Table S3. 

Table 1 
Percentage distribution of compounds in the four splits.  

Split Set Split 1 (%) Split 2 (%) Split 3 (%) Split 4 (%) 

Split 1 Total 100 29.1 25.6 32.6 
Tr 100 36.7 26.7 40.0 
Inv-Tr 100 33.3 33.3 36.7 
Calib 100 15.4 15.4 30.8 
Valid 100 15.4 15.4 7.7  

Split 2 Total  100 33.7 24.4 
Tr  100 40.0 33.3 
Inv-Tr  100 33.3 23.3 
Calib  100 30.8 23.1 
Valid  100 23.1 7.7  

Split 3 Total   100 33.7 
Tr   100 33.3 
Inv-Tr   100 43.3 
Calib   100 23.1 
Valid   100 23.1  

Split 4 Total    100 
Tr    100 
Inv-Tr    100 
Calib    100 
Valid    100  
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Following the calculation of all CWs, the linear regression technique 
was then employed to develop QSAR models, as indicated in equation 
(Eq.2). 

pIC50 = C0 +C1
SMILESDCW

(
T,Nepoch

)
(2)  

C0 and C1 are the intercept and slope of the regression equation 
respectively. 

In order to optimize the QSAR modeling, based on the Monte Carlo 
method, two different target functions, namely TF1 (without the IIC) and 
TF2 (with value WIIC = 0.3) were used to generate the models. TF1 was 
calculated using the equilibrium of the correlation method (according to 
equation (Eq.3)), and the Index of Ideality of Correlation (IIC) (Liman 
et al., 2022; Toropov et al., 2019; Toropova and Toropov, 2017) was 
combined with TF1 to formulate the modified target function TF2 (Eq.4). 

TF1 = RTr +RInv.Tr − |RTr − RInv.Tr| × 0.1 (3)  

TF2 = TF1 + IIC × WIIC (4)  

RTr, RInv-Tr, and Rset represent the correlation coefficients for the 
observed pIC50 versus the predicted pIC50 within the training set, 
invisible training set, and a specified set, respectively. 

The IIC, given in equation (Eq.5), was proposed as a measure for 
evaluating the predictive ability of the developed QSAR models. In 
particular, it improves the precision of the model, which is determined 
by the determination coefficient (R2) and the mean absolute error 
(MAE). The WIIC coefficient, which represents the IIC weight, can 
change the extent of the influence of the IIC on the Monte Carlo opti
mization process. The optimal value of WIIC is influenced by two aspects: 
the diversity of the molecules and the characteristics of the endpoint. 

IIC = Rset ×
min( − MAEset, +MAEset)
max( − MAEset, +MAEset)

(5)  

− MAEset =
1
N

∑N

k=1
|Δk| (Δk < 0, N isthe the number ofΔk (6)  

+MAEset =
1
+N

∑N+

k=1
|Δk| Δk ≥ 0, +N is the number of Δk ≥ 0

(7) 

Where; 

Δk = pIC50(observed) − pIC50(predicted) (8) 

Δk measures the quality prediction of the kth molecule. 
To construct robust QSAR models, the optimal threshold (T*) and the 

number of epochs (N*) had to be determined by evaluating the most 
favorable statistical metrics for the calibration set. In the search for the 
ideal T* and N*, ranges from 1 to 10 were used for the threshold and 1 to 
30 for the number of epochs in the optimization process, using three 
optimization probes. For this study, the WIIC was set to 0 for TF1 and 
adjusted to 0.3 for TF2. 

2.3. GA-MLR QSAR model 

The selection of the most relevant descriptors, from the entire 
computed ones, is a crucial step in QSAR modeling. This selection was 
achieved by stepwise MLR technique via XLSTAT (Addinsoft, 2020). A 
total of 832 molecular descriptors were filtered out to get a final selec
tion of five relevant molecular descriptors. Using these descriptors, the 
MLR method with the ordinary least squares (OLS) algorithm, imple
mented in the QSARINS software (Addinsoft, 2020; Gramatica et al., 
2013) was applied to establish a linear correlation between the pIC50 
endpoints of the molecules and their corresponding molecular de
scriptors. The dataset was divided into a training set with 60 molecules 
and a test set consisting of 26 molecules, with a distribution ratio of 70 % 
and 30 % accordingly. The GA-MLR models were developed using the 

following parameters: all subsets up to a maximum of 5, a maximum 
generation of 10 000, and a mutation probability of 0.05. The remaining 
settings were configured with their default values. 

2.4. QSAR model validation 

The validation process is a crucial stage in QSAR establishment to 
assess the accuracy of the model and to make reliable predictions about 
the activity of new molecules. This process is considered the most 
important aspect in testing the robustness, predictability, and reliability 
of a QSAR model. Four steps are typically used to validate the generated 
model, including (a) internal validation or cross-validation using the 
training set, (b) Y-randomization, (c) independent validation using the 
test set, and (d) applicability domain (AD) evaluation. The validation 
procedures and criteria for the CORAL-based QSAR and GA-MLR QSAR 
models are well discussed in our earlier works (Gramatica et al., 2014; 
Hdoufane et al., 2019, 2022; Oubahmane et al., 2023; Toropova and 
Toropov, 2014). 

2.5. EBOV-GP structure preparation 

The experimental 3D structure of EBOV-GP (PDB ID: 5JQ7) has some 
missing residues that are essential for its functional mechanism in three 
regions (LYS191-SER210, THR284-GLY286 and LYS294-ARG302). To 
fill these missing residues and facilitate subsequent molecular docking 
and MD simulations, we used the SWISS-MODEL web server for ho
mology modeling to reconstruct the full structure of EBOV-GP (Schwede 
et al., 2003). The server applies a rigorous protocol that includes the use 
of BLAST and HHblits to find structural templates from its extensive li
brary, the SWISS-MODEL Template Library (SMTL), which is sourced 
from the PDB. This ensures that high quality templates are provided, as 
determined by the Global Model Quality Estimate (GMQE) and the 
Quaternary Structure Quality Estimate (QSQE). After selecting the most 
suitable template, which in this case was the same PDB ID due to its high 
similarity to the target structure, the incomplete EBOV-GP structure was 
aligned with the template. Subsequently, the missing loop regions were 
carefully filled in using OpenStructure and the ProMod3 modeling al
gorithm (Studer et al., 2021). The accuracy and reliability of the final 
EBOV-GP model was checked using the Qualitative Model Energy 
ANalysis (QMEAN) assessment function to ensure that the final model 
was of high quality and suitable for the intended advanced computa
tional analyses (Benkert et al., 2011). 

2.6. Molecular docking 

Molecular docking analysis was performed to investigate the 
ligand–protein interactions of the designed compounds and the refer
ence lead compound (78) within the binding site of the modeled EBOV- 
GP protein. Prior to the docking process, the co-crystallized ligand 
(Toremifene: TOR) was used to generate the grid-box coordinates of the 
binding site of the EBOV-GP protein. The grid box coordinates are as 
follows: xyz coordinates of − 45, 16.75, − 9, and grid box dimensions of 
24 Å3. The protein was then prepared by removing water molecules and 
the co-crystallized ligand and adding polar hydrogens and Gasteiger 
charges using AutodockTools (Morris et al., 2009). The protein and 
compounds were saved in PDBQT format using the same software. 
Molecular docking analysis were performed using AutoDock Vina soft
ware (Trott and Olson, 2010) with exhaustiveness of 20. The docking 
results were analyzed by the Discovery Studio visualizer and Pymol 
softwares (BIOVIA Discovery Studio Visualizer, n.d.; Yuan et al., 2017). 

2.7. Molecular dynamics simulations 

The apo form of the EBOV-GP protein and the designed compounds 
complexed with the EBOV-GP protein were subjected to all-atom mo
lecular dynamic simulations using GROMACS 2021.3 software (Van Der 
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Spoel et al., 2005). Prior to the MD simulations, the CHARMM-GUI web 
server (Jo et al., 2008) was utilized to generate initial input parameters, 
implementing the CHARMM36 force field (Huang et al., 2017). Each 
complex was solvated in TIP3P water within a rectangular grid box 
(Jorgensen et al., 1983) and counterions (Na+, Cl-) were added to 
maintain a 0.15M salt concentration through Monte Carlo ion 
displacement. The size and shape of the systems were considered when 
the periodic boundary conditions (PBC) were imposed. Non-bound in
teractions were addressed using Lennard-Jones and Coulomb potentials 
with a cut-off distance of 12 Å, and the Verlet cut-off strategy was used 
to buffer the neighbor search list. The Particle-Mesh Ewald (PME) 
method (Darden et al., 1993) was used to address the long-range elec
trostatic interactions. The novel Linear Constraint Solver (LINCS) algo
rithm (Hess et al., 1997) constrained all covalent bonds, including 
hydrogen atoms. Energy minimization of each system was carried out 
using the steepest descent algorithm with a maximum of 50,000 steps 
and a maximum force of 10.0 KJ/mol. The systems were equilibrated 
using a two-step process: first, a canonical (NVT) ensemble was 
employed to equilibrate the temperature at 303 K for 500 ps, followed 
by an isothermal-isobaric (NPT) ensemble for another 500 ps to equili
brate the pressure, both set at 303 K and 1.01325 bar respectively. The 
Nose-Hoover thermostat (Hess et al., 1997; Nosé, 1984) and Parrinello- 
Rahman barostat (Parrinello and Rahman, 1981) were used to regulate 
the temperature and pressure respectively. 

The production run was conducted for 100 ns to analyze the struc
tural stability of the designed molecules within the binding site of EBOV- 
GP protein. The structural stability of the designed molecules within the 
EBOV-GP was assessed using the root mean square deviation (RMSD), 
the radius of gyration (Rg), the root mean square flexibility (RMSF), and 
the solvent accessibility area (SASA) based on the dynamics trajectory 
results. The data obtained were visualized using Xmgrace software 
(GRACE - GRaphing, Advanced Computation and Exploration of data, 
(n.d.). https://plasma-gate.weizmann.ac.il/Grace/ (accessed March 4, 
2024). 

2.8. Drug likeness and ADMET prediction 

The evaluation of ADMET has a great importance in the initial phases 
of pharmaceutical exploration. It is expected that a therapeutic drug of 
better quality would demonstrate exceptional activity at the target re
ceptor, as well as better ADMET profile at therapeutic dosage. Therefore, it 
is fundamental to assess the pharmacokinetic properties of hit compounds 
to minimize the risk of subsequent medication failure. The qualities related 
to drug-likeness are important to understand the distribution of a molecule 
in an organism, which in turn affects its pharmacological effectiveness. 
ADMET predictions for the designed compounds were performed via the 
AdmetLab2, ProTox-II, and Osiris Property Explorer servers (Xiong et al., 
2021; Banerjee et al., 2018; Property explorer, 2024). 

Table 2 
Statistical parameters of the built QSAR models and their corresponding equations.  

Split TF Set n R2 CCC IIC Q2 Q2
F1 Q2

F2 Q2
F3 S MAE F Avg 

Rm2 
Δ Rm2 Equation 

1 TF1 Tr 30 0.9472 0.9729 0.7442 0.9395    0.106 0.085 502   pIC50 = 3.853 
(±0.015) + 0.129 
(±0.001) × DCW 
(3,30) 

Inv- 
Tr 

30 0.9289 0.7204 0.5278 0.9211    0.328 0.261 366   

Calib 13 0.8191 0.8338 0.7272 0.7058 0.7926 0.7414 0.7161 0.275 0.233 50 0.5578 0.2363 
Valid 13 0.7919 0.8259 0.3625 0.7251     0.250  0.5721 0.2334 

TF2 Tr 30 0.8196 0.9009 0.6923 0.7922    0.197 0.148 127   pIC50 = 3.498 
(±0.040) +
0.110 (±0.002) ×
DCW(3,30) 

Inv- 
Tr 

30 0.8209 0.8609 0.4263 0.7952    0.246 0.188 128   

Calib 13 0.8623 0.8863 0.9285 0.7672 0.8538 0.8176 0.7998 0.231 0.181 69 0.6406 0.1787 
Val 13 0.8807 0.9333 0.7306 0.8463     0.158  0.8260 0.0745  

2 TF1 Tr 30 0.9684 0.9839 0.4920 0.9628    0.082 0.051 857   pIC50 = 3.210 
(±0.018) + 0.142 
(±0.001) × DCW 
(1,30) 

Inv- 
Tr 

30 0.9476 0.7806 0.4236 0.9433    0.298 0.237 506   

Calib 13 0.6199 0.7704 0.5066 0.4494 0.6947 0.6193 0.5820 0.333 0.258 18 0.4752 0.2594 
Valid 13 0.5718 0.7471 0.6509 0.2983     0.311  0.4290 0.1397 

TF2 Tr 30 0.8484 0.9180 0.6141 0.8243    0.180 0.139 157   pIC50 = 4.152 
(±0.027) + 0.079 
(±0.001) × DCW 
(3,30) 

Inv- 
Tr 

30 0.8352 0.8236 0.3810 0.8190    0.267 0.206 142   

Calib 13 0.8731 0.8782 0.9344 0.7877 0.8524 0.8159 0.7978 0.232 0.188 76 0.5765 0.2120 
Valid 13 0.8115 0.8836 0.8700 0.7540     0.207  0.6947 0.1769  

3 TF1 Tr 30 0.9223 0.9596 0.7344 0.9099    0.153 0.102 332   pIC50 = 2.322 
(±0.038) + 0.173 
(±0.002) × DCW 
(4,30) 

Inv- 
Tr 

30 0.9219 0.9432 0.4511 0.9130    0.167 0.127 330   

Calib 13 0.5525 0.6907 0.2647 0.3255 0.1773 0.1755 0.3708 0.428 0.309 14 0.3950 0.2702 
Valid 13 0.7982 0.8892 0.7386 0.7127     0.252  0.7116 0.1171 

TF2 Tr 30 0.8618 0.9258 0.8123 0.8287    0.204 0.157 175   pIC50 = 2.043 
(±0.078) + 0.061 
(±0.001) × DCW 
(1,30) 

Inv- 
Tr 

30 0.7631 0.8716 0.7205 0.7376    0.261 0.203 90   

Calib 13 0.8369 0.9116 0.9148 0.7713 0.8296 0.8293 0.8697 0.195 0.143 56 0.8369 0.9116 
Valid 13 0.9129 0.9512 0.5608 0.8848     0.147  0.8288 0.0885 

4 TF1 Tr 30 0.9103 0.9530 0.7296 0.9008    0.149 0.099 284   pIC50 = 3.214 
(±0.020) + 0.158 
(±0.001) × DCW 
(6,30) 

Inv- 
Tr 

30 0.9353 0.9664 0.8614 0.9267    0.154 0.113 405   

Calib 13 0.3941 0.6212 0.5782 0.1323 0.1718 0.1364 0.3877 0.435 0.335 7 0.2448 0.1002 
Valid 13 0.6518 0.7316 0.5470 0.3660     0.405  0.3837 0.3548 

TF2 Tr 30 0.7843 0.8791 0.3795 0.7608    0.231 0.163 102   pIC50 = 2.543 
(±0.044) + 0.089 
(±0.001) × DCW 
(1,30) 

Inv- 
Tr 

30 0.8346 0.8992 0.5306 0.8139    0.260 0.201 141   

Calib 13 0.7857 0.8661 0.8863 0.6641 0.7449 0.7340 0.8114 0.241 0.176 40 0.6958 0.0742 
Valid 13 0.7846 0.8787 0.3273 0.7097     0.201  0.6899 0.1885  
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3. Results and discussion 

3.1. CORAL-based QSAR model 

A total of eight QSAR models were created by performing four 
random splits. The two different target functions, namely TF1 and TF2, 
were used to generate these models. The obtained statistical parameters 
from the analysis of these QSAR models suggest that the inclusion of 
WIIC = 0.3 significantly increases the influence of IIC in the Monte Carlo 
optimization process. Table 2 presents the statistical parameters for all 
splits, indicating the robustness and validity of the models according to 
the criteria established by Tropsha et al. (Golbraikh and Tropsha, 2002) 
and Ojha et al. (Ojha et al., 2011). Fig. 1 displays the correlation be
tween the experimental and predicted pIC50 values across the four splits. 
The QSAR model derived from split 3 was chosen as the optimal model 
based on its superior validation metrics (R2 = 0.9129; Q2 = 0.8848). 
The mathematical model equation for split 3 is given below (Eq.9): 

pIC50 = 2.043(±0.078)+ 0.061(±0.001)DCW(1, 3) (9)  

Regarding the AD, all compounds are within the domain of the CORAL 
model built from split 3, with the exception of compound 2. The AD 
details for all four model splits are provided in Table S4. 

3.2. GA-MLR QSAR model 

The GA-MLR model was built based on five selected descriptors from 
a comprehensive set of descriptors, namely IC2, SpMin7_Bh(s), 
P_VSA_Charge_7, CATS2D_05_DD, and T(O..O). The description of each 
descriptor was given in Table S5. These descriptors were found to 
significantly explain the structure activity relationship (SAR) between 
the pIC50 activity and the studied compounds and were subsequently 
used to construct the QSAR model. The generated model using the GA- 

MLR approach (Eq.10) and its corresponding statistical parameters are 
shown below: 

pIC50 =2.0530+0.4612(IC2)+1.3754(SpMin7 Bh(s))
+0.0105(P VSA charge 7)+0.2552(CATS2D 05 DD)− 0.0132(T(O..O))

(10)   

NTr = 60, R2 
Tr = 0.8490, Q2

LOO = 0.8148 
Next = 26, R2

ext = 0.8661, MAEext = 0.2135. 
Q2

F1 = 0.8681, Q2
F2 = 0.8599, Q2

F3 = 0.8840, CCCext = 0.9229, F =
77.6036, s = 0.3138. 

NTr and Next indicate the total number of samples used for the 
training and the test sets, respectively. CCCext is the external concor
dance correlation coefficient, while F refers to F-statistic. Additionally, 
the standard deviation is represented by “s” and the external validation 
criteria are expressed through Q2

F1, Q2
F2 and Q2

F3 (Chirico and Gramatica, 
2012; Hess et al., 1997; Nosé, 1984). 

The evaluation of the indicated parameters in the established GA- 
MLR model satisfies the validation requirements outlined in the OECD 
guidelines. Moreover, the scatter plot shown in Fig. 2a displays a good 
correlation between the experimental and predicted pIC50 endpoints. To 
confirm the reliability of the built model, the AD was evaluated using the 
leverage method, and presented through the Williams plot in Fig. 2b. 
The graphic includes dashed lines to indicate the cutoff value of ±3 s.d., 
and the warning line for the outliers (h*) was found to be 0.29. The 
findings from the Williams plot provide definitive evidence that the AD 
covers all compounds, except for compound 65. This observation can be 
attributed to the low activity of compound 65, as evidenced by its high 
value (IC50 = 20 μM), which is 69-fold higher than that of the lead 
compound (IC50 = 0.29 μM). 

Fig. 1. Experimental vs. calculated pIC50 values for the four Splits.  

N. Ait Lahcen et al.                                                                                                                                                                                                                             



Arabian Journal of Chemistry 17 (2024) 105870

6

3.3. Mechanistic interpretation 

The integration of mechanistic interpretations is a pivotal compo
nent within the framework of the OECD. These interpretations are 
helpful for identifying and evaluating the chemical features that 
contribute to the increase or decrease of a defined endpoint value. To 
provide a comprehensive understanding of the mechanistic interpreta
tion of the CORAL model, numerous iterations of Monte Carlo optimi
zation were used. The chemical features, obtained from SMILES 
descriptors, display positive (CWs) and recognize factors that support an 
increase in the pIC50 value. In contrast, negative CWs identify factors 
that encourage a reduction in the pIC50 value. While SMILES qualities 
that include both positive and negative CWs values remain undefined. 
Table S6 presents a complete summary of the main factors that 
contribute to the increase or decrease of pIC50 values, associated with 
their corresponding correlation weights (CWs). These results are derived 
from the three separate runs of the established QSAR model for split 3. 

Based on the SAR study of Sakurai et al. (Sakurai et al., 2018) and on 
the insights obtained from Table S6, the factors increasing the inhibitory 
activity were incorporated into the lead compound 78 along with 
compounds 80 and 83. These two molecules exhibit low cytotoxicity and 
high pIC50 values and are closely aligned with the lead compound. While 
the promoters associated with a decrease were omitted. The influential 
promoters were systematically investigated at three distinct sites (R1, R2, 
R3) within the lead compound to strategically design novel inhibitors 
targeting the EBOV-GP, as depicted in Fig. 3. Therefore, 26 novel mol
ecules were designed (Table S7). Table S8 gives the calculated activities 
of the newly designed molecules by the two QSAR models. The CORAL 
model predicted a pIC50 range [7.1239–7.9595] for all the designed 

compounds. The GA-MLR QSAR model confirmed the inhibitory po
tential of the newly developed compounds. 

3.4. Modeling missing residues as loop regions 

The loops are involved in many biological functions and constitute 
key components of protein structure. The loop modeling of the EBOV-GP 
(PDB ID: 5JQ7), successfully filled the missing residues in three critical 
regions (LYS191-SER210, THR284-GLY286 and LYS294-ARG302). 
These regions are essential for the functional mechanism of the EBOV- 
GP as depicted in Fig. 4. The process involved aligning the incomplete 
structure of EBOV-GP with its corresponding higher-resolution tem
plate, and the missing residues were completed using the ProMod3 
modeling algorithm. The accuracy and reliability of the reconstructed 
EBOV-GP was confirmed by QMEAN and GMQE values of 0.69 and 0.85, 
respectively. Importantly, the loop model of the missing residues in re
gion 1 is positioned and oriented upwards to allow the ligands to access 
the binding site. This structural arrangement is in agreement with the 
findings of previous research (Ren et al., 2018), suggesting that the 
modeled loop does not obstruct the binding pocket and thus facilitates 
potential inhibitor interactions. These findings indicate that the 
completed EBOV-GP structure is well constructed, confirming its suit
ability for subsequent molecular docking and MD simulations. 

3.5. Molecular docking 

To validate the efficacy of our design approach, we employed mo
lecular docking methodology to explore the ligand–protein interactions 
involving the newly designed compounds, the reference lead compound, 

Fig. 2. (a) Experimental vs. predicted pIC50 values; (b) William’s plot.  

Fig. 3. Scaffold chemical structure derived from the lead compound with highlighted substitution sites (R1, R2, R3) maintaining crucial Iodine for inhibition activity.  
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and the co-crystallized ligand (TOR) with the modelled EBOV-GP pro
tein. A crucial step in this validation process was the re-docking analysis 
of the TOR ligand to assess the accuracy of the docking protocol. The 

RMSD between the x-ray and predicted poses of TOR was determined to 
be 0.664 Å (Figure S1), confirming the appropriateness of the docking 
protocol in reproducing native poses within the acceptable range of less 

Fig. 4. (a) The alignment of the uncompleted structure of EBOV-GP (PDB ID: 5JQ7, light pink) and the modeled EBOV-GP (light blue) containing the co-crystalized 
ligand (TOR). The modeled structure of the missing residues in the three regions: (b) Region 1 (LYS191-SER210, blue), (c) Region 2 (THR284-GLY286, magenta) and 
Region 3 (LYS294-ARG302, orange). 

Fig. 5. Chemical structures of the top five newly designed compounds.  
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than 2 Å. Subsequently, a comprehensive docking study was conducted 
for all designed compounds against the modelled EBOV-GP, and the 
resulting binding affinity values are detailed in Table S8. Notably, ten 
designed molecules exhibited higher binding affinity values compared 
to both the co-crystallized ligand (TOR: − 8.4 Kcal/mol) and the lead 
compound (78: − 7.4 Kcal/mol). The chemical structures of the top five 
newly designed compounds (D1-D5) ranked based on their binding af
finities are presented in Fig. 5. While, Fig. 6 illustrates their 2D and 3D 
representations within the binding site of EBOV-GP. Their binding af
finity values and ligand–protein interactions details are provided in 
Table 3 and Table S9, respectively. Analysis of the docking results elu
cidates that compound D1 exhibited a high binding affinity (− 9.9 kcal. 
mol− 1), forming stable interactions with the key residues of the active 
site of EBOV-GP. The interactions formed by compound D1 were three 
hydrogen bonds (with GLY B:45, TYR B:16, and VAL A:176), one Pi- 
Sulfur interaction with MET B:47, and three Alkyl and Pi-Alkyl inter
action involving (ALA A:74), (LEU B:14), and (VAL A:39) residues. 
Compound D2 exhibited stability through three hydrogen bonds (two 
conventional with (PRO A: 160) and (TYR B:16), one carbon hydrogen 
bound with (LEU B:46), one pi–sulfur interaction with (MET B:47), one 
pi-pi Stacked interaction with (TYP B: 16), and seven alkyl and pi-alkyl 
interactions. Similarly, compound D3 formed interactions with (ARG 
A:37) and (VAL A:176) via conventional hydrogen bonds and with (GLY 
B:45) via carbon hydrogen bond. Furthermore, it engages in Pi-Donor 
hydrogen bonds with (TYR B:16), contributing to its structural stabil
ity. Additionally, D3 exhibits hydrophobic interactions with (ALA A:74), 
(LYS A:163), (LYS A:164), (VAL A:39), and (LEU B:14), further 
enhancing its binding affinity and molecular interactions. Compound D4 
was stabilized by the formation of one carbon hydrogen bond with (LYS 
A:163) and eight hydrophobic interactions with (ALA A:74), (VAL A:39), 
(LEU A:41), (LEU B:14), (MET B:47) and (PHE A:167). Compound D5 
formed one conventional hydrogen bond with (THR B:18) and seven 
hydrophobic interactions with (ALA A:74), (LEU B:14), (LYS A:163), 
(MET B:47), (VAL A:39), (THR B: 18), and (TYR B:16). 

3.6. Molecular dynamics simulations 

Molecular dynamics simulations were employed to assess the sta
bility of interactions between proteins and ligands, as well as to quantify 
the binding affinity of ligands. MD simulations were run for the top five 
compounds (D1-D5). The study included the computation of diverse 
parameters (Table 4) such as RMSD, RMSF, Rg, and SASA metrics. The 
best three stable systems (D2, D3, and D5) that showed good stability 
with Apo form of the EBOV-GP and the EBOV-GP-lead compound 
complex are presented in the Table 4. 

The RMSD serves as a measure to quantify the degree of deviation in 
a protein’s backbone from its initial to final conformation during a 
simulation, providing valuable insights into its structural stability. A 
protein with consistent stability will exhibit minimal backbone devia
tion, while a less stable protein will show greater variation. Analysis of 
the MD results, as depicted in both the Fig. 7 and Table 4, reveals var
iations in the RMSD values for the Apo form of EBOV-GP and its com
plexes with different compounds. Interpreting these findings, the 
compound with the lowest average RMSD, namely compound D2, sug
gests a higher degree of stability compared to the complex protein-lead 
compound. Similarly, compound D3 and compound D5 also exhibit 
greater stability, as evidenced by their lower RMSD values. This implies 
that these compounds potentially contribute to maintaining the struc
tural integrity of the protein during the simulation. 

To further investigate the ligand stability within the binding site of 
EBOV-GP, the RMSD values of the ligands were monitored (Fig. 8). 
Monitoring these trajectories would provide valuable information about 
the conformation and orientation of the simulated ligands within the 
binding site of EBOV-GP throughout the simulation period. The RMSD 
plot shows that compound D3 exhibits the most consistent and stable 
behavior, showing the least variation throughout the 100 ns MD 

simulation. In contrast, compounds D2 and D5 show higher RMSD 
values than the lead compound, indicating greater mobility within the 
binding site before reaching a semblance of stability later at the end of 
the simulation. 

Analyzing the RMSF is essential for identifying flexible areas within 
protein–ligand complexes. Higher RMSF values in regions with lower 
structural organization, such as loops and turns, contrast with lower 
fluctuations in more ordered segments like alpha helices and beta sheets. 
It is crucial to note that the RMSF assessment covered C-alpha atoms 
across the entire simulation for both the complexes and the EBOV-GP 
Apo form. In evaluating the flexibility of the top five compounds bind
ing to the EBOV-GP, RMSF values from the lead compound complex 
served as a reference baseline. Remarkably, compound D3 demonstrated 
the lowest RMSF (Table 4 and Fig. 9), corroborating the findings 
observed in the RMSD analysis. This underscores the consistent behavior 
of compound D3, not only in terms of structural stability (as indicated by 
the RMSD) but also in terms of exhibiting minimal fluctuations in flex
ible regions, further highlighting its potential as a stable and structurally 
sound ligand for EBOV-GP. 

Radius of gyration, serving as an indicator of protein structure 
compactness, is employed to evaluate changes induced by ligand bind
ing through a comparison of Rg values before and after binding. A lower 
radius of gyration signifies a more compact protein structure. Fig. 10 
presents the Rg plot for the Apo state, lead compound, compound D2, 
compound D3, and compound D5 unveiled average Rg values of 2.268, 
2.293, 2.312, 2.291, and 2.277 nm, respectively. Particularly note
worthy is that compound D5 exhibited Rg values slightly lower than 
those of the EBOV-GP bound to the lead compound. This suggests that 
compound D5 may lead to a protein structure that is more densely 
packed compared to the lead compound, implying potential implica
tions for the binding process and overall stability of the protein–ligand 
complex. 

The SASA parameter refers to the surface area of a protein that en
gages with solvent molecules, measuring the fraction of a protein’s 
surface available to such molecules. 

The SASA values for the EBOV-GP Apo state, lead compound, com
pound D2, compound D3, and compound D5 are 198.266, 205.813, 
206.417, 203.612, and 204.020 nm2, respectively. The Apo structure 
inherently represents solvent accessibility, and the marginal increase in 
SASA with the lead compound indicates alterations upon ligand binding. 
Notably, compound D2, as showed in Fig. 11, exhibits higher SASA 
values, suggesting modifications in the protein’s surface accessibility, 
likely attributed to the binding of distinct ligands. These SASA variations 
offer insights into the protein’s dynamic nature, highlighting structural 
adaptations and potential functional implications associated with spe
cific ligand interactions. 

3.7. ADMET 

In drug discovery and development, the ADMET emerges as a pivotal 
phase and plays a vital role in circumventing potential complications 
during clinical trials. A successful drug candidate must not only exhibit 
efficacy against the targeted therapeutic endpoint but also demonstrate 
favorable drug-like qualities and pharmacokinetic characteristics. In the 
present study, in silico ADMET analysis results of our newly compounds 
are summarized in Table 5. All the five compounds exhibit a reassuring 
absence of risks of tumorigenicity, irritancy, mutagenicity, reproductive 
effects, carcinogenicity, or hepatotoxicity, underscoring their potential 
safety and efficacy in the drug development pipeline. The human in
testinal absorption (HIA) of an oral drug is a critical determinant of its 
apparent efficacy. The scale of the five compounds ranges from excellent 
(0–0.3) to poor (0.7–1.0), as it is represented in red in Table 5. Caco-2 
cell permeability, expressed as a log cm/s value, is a critical index for 
evaluating the potential in vivo drug permeability of a compound, with a 
predicted value >-5.15 log cm/s indicating adequate permeability 
across intestinal cell membranes via various transport processes. With 
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Fig. 6. 2D and 3D representation of the interactions of ligands D1-D5 within EBOV-GP binding pocket.  
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the exception of compounds D3 and D5, all compounds described have 
shown good predicted permeability (Barrett et al., 2022). In addition, 
solubility is a critical factor that influences the ADME of a drug candi
date. The solubility is often expressed as the logarithm of its solubility in 
water (logS). A more negative logS value indicates lower solubility, 
while a less negative (or more positive) logS value indicates higher 
solubility. Compared to the lead compound, all the new compounds 
have higher solubility than the starting lead compound (− 5.671), as 
indicated by their less negative logS values. This suggests an improve
ment in solubility, which is beneficial for drug development since higher 
solubility typically correlates with better bioavailability. D5, with the 
lowest permeability, had the highest solubility value (− 4.409) as the 
permeability is inversely correlated with the solubility (Barrett et al., 
2022). For drugs targeting the central nervous system (CNS), traversing 
the blood–brain barrier (BBB) is imperative to reach their molecular 
targets, while drugs with peripheral targets may require minimal or no 
BBB penetration to avoid CNS side effects. The evaluation criteria for 
BBB penetration are categorized as excellent (0–0.3), medium (0.3–0.7), 
and poor (0.7–1.0). As detailed in the table below all the proposed 
structures had excellent to medium values of BBB. Another essential 
parameter in ADMET analysis is the half-life of a drug (T1/2), a com
posite measure of both clearance and volume of distribution. It is a 
better assessment with reliable estimates of these two properties. 
Excellent categorization was attributed to all molecules as they are in 
the range 0–0.3. Additionally, these drug-like molecules are easy to 
synthesis according to their excellent Synthetic Accessibility scores (SA 

Table 3 
Top five designed compounds and their predicted pIC50 using the Monte Carlo 
optimization and the GA-MLR models and their docking scores.  

Ligand CORAL pIC50 GA-MLR pIC50 Docking Score (kcal/mol) 

Lead compound  6.84  6.77  − 7.4 
D1  7.63  7.04  − 9.9 
D2  7.12  7.07  − 9.8 
D3  7.83  7.10  − 9.6 
D4  7.68  7.04  − 9.5 
D5  7.26  7.55  − 9.4  

Table 4 
Calculated average parameters for all the systems throughout 100 ns MD 
simulations.  

System RMSD (nm) RMSF (nm) Rg (nm) SASA (nm2) 

Apo 0.399 ±
0.075 

0.145 ±
0.117 

2.268 ±
0.021 

198.266 ±
31.119 

Lead 
compound 

0.532 ±
0.111 

0.164 ±
0.149 

2.293 ±
0.013 

205.813 ±
32.156 

D2 0.374 ±
0.081 

0.181 ±
0.167 

2.312 ±
0.018 

206.417 ±
32.365 

D3 0.416 ±
0.075 

0.162 ±
0.146 

2.291 ±
0.015 

203.612 ±
31.916 

D5 0.414 ±
0.078 

0.178 ±
0.173 

2.277 ±
0.014 

204.020 ±
32.163  

Fig. 7. Time-dependent RMSD of c-α backbone of EBOV-GP Apo, lead compound, compound D2, compound D3, and compound D5.  

Fig. 8. RMSD of the ligands (reference compound 78 and designed compounds D2, D3 and D4).  
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score ≤ 6). This score was estimated based on a combination of fragment 
contributions and a complexity penalty (Ertl and Schuffenhauer, 2009). 
Furthermore, neither inhibitory nor substrate interactions with the 
human cytochrome P450 family CYP450- 2C9 were observed, suggest
ing a favorable safety profile with minimal impact on drug metabolism 
mediated by CYP450-2C9, which is a positive characteristic in drug 

development. Regarding toxicity, all compounds pose no risk except 
compound D5, which may have an irritant effect. 

4. Conclusion 

This study was focused on designing novel and potent inhibitors for 

Fig. 9. Plot of RMSF for c-α atoms of EBOV-GP Apo, lead compound, compound D2, compound D3, and compound D5.  

Fig. 10. Plot of Rg vs. time for EBOV-GP Apo, lead compound, compound D2, compound D3, and compound D5.  

Fig. 11. The SASA profile of EBOV-GP Apo, lead compound, compound D2, compound D3, and compound D5.  

Table 5 
ADMET properties of the lead and the top five designed compounds.   

Cmpd. Lead compound D1 D2 D3 D4 D5 

Physicochemical and ADME properties TPSA (Å2) 48.39 68.62 67.76 88.85 58.97 63.66 
HBA 4 5 5 6 5 6 
HBD 2 3 4 4 3 3 
BBB 0.182 0.121 0.343 0.250 0.543 0.085 
HIA 0.004 0.010 0.029 0.784 0.028 0.004 
Solubility (log(S)) − 5.671 − 4.969 − 4.953 − 4.677 − 4.694 − 4.409 
Caco-2 Permeability − 4.730 − 5.267 − 5.585 − 5.105 − 5.071 − 5.614 
CYP2C9 inhibitor/ CYP2C9 substrate N/N N/N N/N N/N N/N N/N 
T1/2 0.068 0,02 0,03 0,057 0,031 0,026 

Medicinal Chemistry SA score 2.47 3.557 3.942 3.356 3.936 3.132 
Drug score Reference 0.100 0.200 0.220 0.310 0.050 

Toxicity properties AMES Toxicity N N N N N N 
Tumorigenic N N N N N N 
Irritant N N N N N Y 
Reproductive affective N N N N N N 
Carcinogenicity N N N N N N 
Hepatotoxicity N N N N N N 

N: No risk. 
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the Ebola virus, specifically targeting EBOV-GP, the crucial protein 
involved in attachment and fusion. Utilizing a series of amodiaquine 
derivatives, two QSAR models, CORAL and GA-MLR were developed to 
gain insights into the design of potent inhibitors for EBOV-GP. The first 
model, the CORAL QSAR model, was employed to identify the key fea
tures involved in increasing and decreasing the inhibition activity 
against EBOV-GP. Using these features, 26 new molecules were designed 
with better inhibition activity than the lead compound. The second 
model, a GA-MLR model, served to confirm the predicted inhibition 
activity of the designed compounds. Computational validation through 
molecular docking and dynamics simulations confirmed the efficacy of 
the designed compounds. Before conducting the molecular docking 
study, homology modeling was used to fill the missing residues in the 
EBOV-GP structure. The modeled and completed EBOV-GP structure 
was docked against the designed compounds where three designed 
compounds (D2, D3, and D5) showed remarkable binding affinity pro
files. Furthermore, molecular dynamics simulations corroborated the 
docking results, revealing their stability when they are complexed with 
EBOV-GP protein. Moreover, these drug candidates demonstrated non- 
toxic and acceptable pharmacological properties. The combined 
computational methods employed in this study facilitated the identifi
cation of new drug candidates, paving the way for further evaluation of 
their efficacy and safety. Further studies may explore in vitro experi
ments to validate and reinforce our computational modeling results. 
Nevertheless, the computational methods, showcased in this study, un
derscore their potential utility in expediting drug discovery and guiding 
future research endeavors against the Ebola virus. 
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