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Abstract Solid acid catalyst 15 wt%WO3/SnO2 was synthesized and loaded with 15 wt%SO4. The

obtained catalyst was calcined at 400, 500, 650 and 800 �C. The prepared catalysts were character-

ized by TG-DTA, XRD, FTIR and N2 adsorption at �196 �C. The surface acidity was measured by

non aqueous potentiometric titration and FT-IR spectra of chemisorbed pyridine. The catalytic per-

formance was evaluated on the esterification of propionic acid with n-butanol in liquid phase. The

TG-DTA analysis shows that the decomposition of sulfate species occurred at >500 �C. XRD mea-

surements showed that WO3 dispersed completely on the surface of SnO2 and that the sulfating of

WO3/SnO2 tends to hinder the crystallization of SnO2. The specific surface area, total pore volume

and micropore volume are increased with increasing thermal treatment up to 500 �C, and then

decreased gradually with a further increase in calcination temperature. The prepared catalysts pos-

sess very strong acid sites and contain both Brønsted and Lewis acid sites. The total surface acidity

decreased with raising of the calcination temperature. The highest conversion of propionic acid was

for 400 �C product, and decreased with an increase in calcination temperature. The effect of the

reaction parameters, i.e., time of reaction, reaction temperature, and reactant molar ratio and

the weight of the catalyst were also studied. The reaction obeys the second order kinetic equation

with respect to propionic acid concentration. Brønsted and Lewis acid sites appeared to be needed

for catalytic activity in n-butyl propionate formation.
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Many reactions in synthetic organic chemistry are acid-
catalyzed reactions. These reactions include esterification,

etherification, hydration, hydrolysis, alkylation, isomerization
and others. Liquid-phase esterification is an important method
for producing various esters. The esters are used in themanufac-

turing of solvents, plasticizers, plastics, leather, perfumes,
medicine. . .etc. (Ali et al., 2007; Lilja et al., 2002). Conventional
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mineral acids were used as catalysts in esterification reactions.
These homogeneous catalysts suffer from several disadvantages,
such as their miscibility with the reaction medium, which causes

separation problems, the existence of side reactions, corrosion
of the equipment and the need to deal with acidic wastes (Liu
and Tan, 2001). The growing awareness of the unacceptability

of these liquid catalysts and the resulting legislation give amajor
impetus to the search for cleaner technology. Cleaner
technology could be possible by making use of environment

friendly heterogeneous catalysts involving the use of solid acids
(Sharma et al., 2004).

Metal oxides, mixed oxides, cation exchange resins and zeo-
lites were the most used solid acids (Tanabe, 1981). In the last

decade, it is found that the loading of some metal oxides with
sulfate ion or acidic high valence metal oxides such as WO3

and MoO3 causes an increase in the acidity of the catalyst and

produces superacids (Yamaguchi, 1990; Arata, 1996). Also, me-
tal oxides and resins may be supported by heteropoly acids or
sulfonic acid and show a high activity for esterification reactions

(Khder, 2008; Parida andMallick, 2007; Bahatt and Patel, 2005;
Ali et al., 2007; Xi and Cao, 2010). The textural properties, sur-
face acidity and catalytic activity of the catalyst depend on the

percentage of loading, calcination temperature and the method
of preparation (Khder et al., 2008; Sharma et al., 2004).n-butyl
propionate ester was synthesized by the catalytic esterification
of 1-butanol with propionic acid. The catalysts used for this

reaction include sulfuric acid and AlCl3 (Rao et al., 1979), ion-
exchange resins (Dakshinamurty et al., 1984; Liu et al., 2006;
Lee et al., 2002; Ali et al., 2007; Xi and Cao, 2010), 12-tungsto-

silicic acid on hydrous zirconia (Bahatt and Patel, 2005) and
fibrous polymer-supported sulfonic acid (Lilja et al., 2005).

Many papers concerning the preparation, characterization

and catalytic activity of WO3–SnO2 catalysts were reported
(Ai, 1984; Arata and Hino, 1993; Maksimov et al., 2000; Arata
et al., 2000; Ma et al., 2000; Hino et al., 2006, 2007; Pimtong-

Ngam et al., 2007; Khder and Ahmed, 2009; Shouli et al.,
2010; Sarkar et al., 2010). But, no papers concerning sulfated
WO3/SnO2 catalysts were found.

In the present investigation, we have prepared a

15 wt%WO3/SnO2 support loading it with 15 wt%SO4. The ef-
fect of calcination temperature on the structural and textural
properties, as well as on the surface acidity was investigated.

The catalytic activities of the obtained catalysts were tested by
esterification of propionic acid (PA) with n-butanol (B). Fur-
ther, the effect of various reaction parameters on the catalytic

activity was also studied.

2. Experimental

2.1. Materials

Pure tin oxide gelwas prepared by adropwise additionof ammo-
nia solution (10 wt%) to 0.5 M solution of SnCl4.5H2O (Riedel–
deHaen)with vigorous stirring for 4 h, the final pHof the gel was
adjusted to 8. The gel was left overnight washed by decantation

with 1 wt% ammonium acetate solution (Matsuhashi et al.,
1990) until all chloride ions were eliminated (silver nitrate test),
then washed with double distilled water and finally dried at

120 �C. Appropriate amount of ammonium paratungstate
(APT) solution (30 g/L) (Prolabo) was added to the dry tin
hydroxide gel, to obtain 15 wt%WO3 loading, with vigorous
stirring for 4 h. The product was left overnight then dried at
120 �C. The WO3/SnO2 support was sulfated by the addition
of an appropriate amount of 1 M H2SO4 solution, to

obtain 15 wt%SO4 loading, with stirring for 4 h, followed by
drying at 120 �C for 24 h. The prepared catalyst was calcined
in air at 400, 500, 650 and 800 �C for 4 h. The samples were

designated as SWS-x, where x represents the calcination
temperature.

2.2. Techniques

Thermal analysis (TG-DTA) of uncalcined sample was carried
in air atmosphere using Linseis Thermal Analyzer, Type STA

PT-1600 (Germany). A weight of �45 mg was placed in a cru-
cible of 100 lL capacity. The run was followed between 25 and
800 �C at a heating rate of 10�/min.

The X-ray powder diffractograms, of the samples calcined at

500 and 800 �C were recorded on Philips Diffractometer Type
PW (1830). The pattern was obtained with Ni-filtered CuKa
radiation (k = 1.5418 Å) at 40 kV and 30 mA, with a scanning

speed of 1� in 2h, and a scanning range 2h of 20–70�. The spacing
d corresponding to 2h of the peaks was calculated and correlated
with that of ASTM to determine the phases existing.

The FT-IR spectra of the samples were recorded using Jas-
co FT-IR-460 spectrophotometer in the range of 1200–
1700 cm�1, at a resolution of 4 cm�1; by mixing 0.005 g of
the sample with 0.1 g KBr in 30 mm diameter self supporting

disks were used.
The textural properties of all the samples were determined

from the analysis of the data of nitrogen adsorption at 77 K,

using Gemini III 2375 Surface Area Analyzer apparatus. Prior
to any adsorption measurement, the sample was degassed at
200 �C for 6 h under a reduced pressure of 10�4 Torr.

The total acidity of the solid samples wasmeasured bymeans
of potentiometric titration method (Rao et al., 2006; Bennaradi
et al., 2007). The dry solid (0.1 g) was suspended in 10 mL ace-

tonitrile (Lab-Scan), and agitated for 3 h. Then, the suspension
was titrated with 0.1 N n-butylamine (Merck) at 0.05 mL/min.
The electrode potential variation was measured with Inolab
Digital pH–mV model using a double junction electrode. The

nature of acid sites presented on the surface of the catalyst
was determined with FTIR transmission spectra of adsorbed
pyridine (Scharlau) at the range of 1200–1700 cm�1. Prior to

the pyridine adsorption (Khder et al., 2008; Khder and Ahmed,
2009), the samples were degassed at 200 �C for 3 h under high
vacuum followed by suspending in a dried pyridine. Then, the

excess pyridine was removed by evaporation at 70 �C.
The catalytic activity of the prepared catalysts was tested

for the esterification of propionic acid (Merck) with n-butanol
(SRL). The esterification reaction was carried out in a 100 mL

flat-bottomed flask, equipped with a reflux condenser, contain-
ing a stirring mixture of propionic acid (0.05 M), n-butanol
(0.10 M) and the catalyst (0.2 g). The stirring rate in all the

experiments was 600 rpm. The reaction mixture was stirred
at 110 �C for 4 h. After that, the reaction mixture was immedi-
ately filtered and quenched to stop the reaction. Liquid sam-

ples (0.5 mL) were withdrawn and the amount of unreacted
acid was analyzed by titration with 0.1 N NaOH. The effects
of reaction temperature, weight of the catalyst, the initial mo-

lar ratio between the acid and alcohol, calcination temperature
and the time of reaction were studied.
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3. Results and discussion

3.1. Thermal analysis

Fig. 1 shows the TG-DTA curves of the dried catalyst. The TG
curve shows four characteristic steps at 50–200, 200–480, 480–

560 and 560–770 �C with a weight loss of 4.2, 2.0, 7.0 and
4.2 wt%, respectively. These stepswere accompaniedwith endo-
thermic effects in DTA curve, in which their peaks appeared at

135.2, 331, 530.7 and �662 �C, respectively. The first two ther-
mal effects are due to the desorption of physically adsorbed
water, loss of chemically bonded water and decomposition of
APT with the evolution of ammonia, and the second two endo-

thermic effects are due to the decomposition of sulfate species
bonded to the support surface (Gutierrez-Baez et al., 2004;
Khder et al., 2008). The DTA curve does not show any exother-

mic signals at 300–450 �C which characterize the formation of
crystalline phases of WO3 and SnO2. This indicates that the
addition of APT and sulfate ions to tin hydroxide gel would hin-

der the crystallization of SnO2, and WO3 is highly dispersed on
SnO2 surface (Gutierrez-Baez et al., 2004; Khder and Ahmed,
2009).

3.2. X-ray diffraction

The X-ray diffractograms of SWS samples calcined at 500 and
800 �C in the range 2h = 20–70� are shown in Fig. 2. It is ob-

served that the XRD curve for SWS-500 product is poorly crys-
talline which means that loading of SnO2 with WO3 and SO4

inhibits the crystallization of SnO2. The XRD pattern of

SWS-800 sample shows the characteristic peaks of tetragonal
cassiterite structure at 2h = 26.6�, 33.8� and 51.9� (JCPDS
No. 41–1445). This would suggest that the crystallization and
Figure 1 The TG and DTA curve
sintering of SnO2, is due to the loss of sulfate species bonded
to the support (Zhang and Gao, 2004). The characteristic peaks
of crystalline WO3 phase at 2h = 23.12�, 23.59� and 24.38�
(JCPDS No. 46–1096) were not observed, which means that
WO3 crystals were transformed into very small crystals or dis-
persed completely over SnO2 (Khder and Ahmed, 2009). These

results are in good agreement with TG-DTA results. The mean
crystallite size calculated from the broadening of the strongest
peak of SnO2, peak (110) at 2h = 26.6�, and based on Scherrer

equation, is d = 6.95 nm. This value indicates that the prepared
catalyst is of nanocrystalline structure.
3.3. FT-IR spectra

The FT-IR spectra of the calcination products of SWS cata-
lyst are shown in Fig. 3. The spectra show vibration bands
at 523 and 622 cm�1which are assigned to the stretching vibra-

tion of O–Sn–O of tin oxide framework (Zhang and Gao,
2004; Salavati-Niasari et al., 2010). The bands at �820 and
985 cm�1 identify the stretching vibrations of O–W–O and

W‚O, respectively (Khder and Ahmed, 2009; Sarkar et al.,
2010). The spectra show bands in the range of 1025–
1400 cm�1 attributed to chelating bidentate sulfate on the sup-

port (Yamaguchi et al., 1986; Khder and Ahmed, 2009). So,
the peaks at 1029, 1157 and 1394 cm�1 are assigned to asym-
metric stretching vibrations of S‚O and S–O (Sohn et al.,
2006). The bands around 1618 cm�1 are attributed to the

bending vibration of water (Cui et al., 2007). The spectra re-
veal that raising the calcination temperature to >500 �C
causes disappearance of the characteristic bands of S‚O

and S–O due to the decomposition of sulfate species bonded
to the support, which is in good agreement with thermal anal-
ysis results.
s of the dried prepared samples.



Figure 2 XRD curves of SWS-500 and SWS-800 catalysts.

Figure 3 FTIR spectra of SWS catalysts calcined at different temperatures.
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3.4. Textural properties

The textural properties such as BET surface area (SBET), total
pore volume (VT), mean pore radius (ra), micropore volume

(Vo) and pore size distribution of SWS catalysts have been
evaluated using the nitrogen adsorption – desorption measure-
ments at 77 K in a relative pressure ranging from 0.001 to

0.950. Fig. 4 exhibits the N2 adsorption–desorption isotherms.
The adsorption–desorption of samples calcined at 6400 �C are
of Type I, indicating that these samples are microporous

solids, whereas for P500 �C are of Type VI with hysteresis
loops of Type H2 (Sing et al., 1985) indicating that these



Figure 4 Adsorption isotherms of nitrogen at 77 K on SWS catalysts.

Figure 5 The DR plots for SWS catalysts.

Table 1 The textural properties of prepared catalysts.

Sample CBET SBET

(m2/g)

VT

(ml/g)

ra
(nm)

io
(ml/g)

Vo/VT

(%)

SWS-200 304 56.96 0.0309 1.09 0.0229 74.11

SWS-400 192 106 0.0617 1.16 0.0410 66.45

SWS-500 75 120 0.0895 2.38 0.0424 47.37

SWS-650 67 67.45 0.0861 2.55 0.0216 25.09

SWS-800 99 39.92 0.0793 3.97 0.0141 17.78
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samples are mesoporous solids. The hysteresis loops are closed

at P/Po P 0.4. The SBET values were determined from the
analysis of nitrogen adsorption data according to Brunaur–
Emmett–Teller (BET method) (Brunaur et al., 1938). It is

found that the linear plots are in the range of P/Po = 0.02–
0.30 for the P500 �C products, whereas for 6400 �C samples
are less (0.02–0.25) due to the presence of micropores. The to-

tal pore volume values are taken from the amount of N2 ad-
sorbed at P/Po = 0.95 in liquid form. The ra values are
calculated from the equation:

raðnmÞ ¼ 2000VT=SBET

The Vo values are estimated from applying Dubinin–Rad-
ushkevich equation (Gregg and Sing, 1982):

logV ¼ logVo �D log2Po=P

where V represents the volume of N2 adsorbed at P/Po, and D

is the Dubinin constant. Fig. 5 shows the DR plots of the SWS
catalysts. It is obvious that the DR plots show upward devia-
tions at P/Po P 0.04, and the deviation increased with an in-

crease in the calcination temperature, which means that
the catalysts contain wide micropores as well as mesopores.
Table 1 summarizes the textural properties of the prepared
samples.

Examination of Table 1 shows the following: (i) The SBET,
VT andVo values are increased with raising the calcination tem-

perature to show maxima at 500 �C, after that they decreased
gradually. The loading of hydrous stannia with WO3 and
SO2�

4 inhibits sintering. Also, the loss of chemically bonded

water and dehydroxylation leads to the increase of surface area
and porosity up to 500 �C, whereas the decomposition of sul-
fate species bonded to the surface and crystallization of WO3

and SnO2 at >500 �C lead to a decrease in these textural
properties. (ii) The mean pore radii are in the range of microp-
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ores for 6400 �C products and in the range of mesopores for
P500 �C products. The ra is increased gradually with an
increase in the calcination temperature. (iii) The percentage of

microporosity (Vo/VT) decreased gradually with an increase
in the calcination temperature. The loss of water and an
increase in the crystallinity would cause widening of the pores.

The pore size distribution curves (DVp/Drp against rp) for
the P500 �C products were calculated through Orr and Dalla
Valle method (Gregg and Sing, 1982) from the desorption

branches of the isotherms, Fig. 6. It is observed from this fig-
ure that the pore size distribution curves show main peaks in
the range of mesoporosity at 1.58, 2.12 and 3.13 nm for
SWS-500, SWS-650 and SWS-800 catalysts, respectively. The

peak is shifted to higher mean pore radius with an increase
in calcination temperature. The values of rp are in good agree-
ment with ra values.

3.5. Surface acidity measurements

The surface acidity measurements of the prepared catalysts by

means of potentiometric titration with n-butylamine in acetoni-
Figure 6 Pore size distribution from N2 desorption data for

SWS catalysts.

Figure 7 Potentiometric titrati
trile (Bennaradi et al., 2007) were used to estimate the amount of
acid sites and their relative acid strength according to the value
of the initial electrode potential (Ei). n-butylamine is a strong

base and can be adsorbed on acid sites of different strength
and types, thus it titrates bothLewis andBrønsted sites (Tanabe,
1981). On the other hand, the acid strength of these sites may be

classified according to the following scale (Cid and Pecchi, 1985;
Sharma et al., 2004): Ei > 100 mV (very strong sites),
0 < Ei < 100 mV (strong sites), �100 < Ei < 0 mV (weak

sites) and Ei < �100 mV (very weak sites). Fig. 7 shows the
titration curves obtained for the calcined catalysts. The
computed amount of the acid sites (mmol/g) and the number
of the acid sites perm2 (N/m2) aswell as the values ofEi are listed

in Table 2. For comparison, the surface acidity of WS-400 cata-
lyst is represented in the Table.

The results of surface acidity measurements reveal the fol-

lowing points: (i) All the samples presented very strong acid
sites, with Ei values in the range of 337–530 mV. The loading
of WS with sulfate ions enhances the acid strength of the cat-

alyst. The maximum acid strength is for the catalyst calcined at
500 �C. (ii) The calcination of SWS catalyst at 400 �C causes a
sharp decrease in the amount of acidity due to the loss of some

hydrogen ions (Brønsted sites) as water by combination with
OH groups. (iii) The raising the calcination temperature from
400 to 800 �C causes a gradual decrease in the amount and
number of acid sites, due to hydroxylation and decomposition

of sulfate species on the support surface. (iv) The loading of
WS catalyst with sulfate ions causes a remarkable increase of
surface acidity. Since the amount of acidity and N/m2 for

WS-400 catalyst are 0.0203 mmol/g and 0.924 · 1017/m2,
whereas for SWS-400 catalyst are 0.970 mmol/g and
55.12 · 1017/m2, respectively.

The FTIR spectra of adsorbed pyridine on the catalyst sur-
face are shown in Fig. 8. The spectra of the calcined samples
show a characteristic band at 1486 cm�1 attributed to the

adsorption of pyridine on Brønsted or/and Lewis acid sites
(Alaya and Rabah, 2008; Khder and Ahmed, 2009; Tyagi et
al., 2009). The spectra show bands and shoulders at 1457,
1508, 1558 and 1623 cm�1 which are attributed to the pyridine

adsorbed on Lewis acid sites (Tanabe, 1981; Villabrille et al.,
2002; Rao et al., 2006). The bands at 1538 and 1634 cm�1

are due to the pyridine adsorbed on Brønsted acid sites with
on curves of SWS catalysts.



Table 2 The surface acidity of SWS catalysts.

Sample SBET

(m2/g)

Ei

(mV)

Acidity amount

(mmol/g)

Acid sites

number/m2

(N/m2) 10�17

SWS-200 57.0 430 2.960 312.9

SWS-400 106 489 0.970 55.12

SWS-500 120 530 0.365 18.32

SWS-650 67.5 361 0.125 18.86

SWS-800 39.95 337 0.055 4.911

WS-400 132 106 0.020 0.924
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the formation of pyridinum ion (Tanabe, 1981; Villabrille et
al., 2002; Pizzio et al., 2003; Khder and Ahmed, 2009). The

SWS-400 catalyst shows bands at 1400–1440 cm�1 due to the
pyridine adsorbed by hydrogen bonds (Maksimov et al.,
2000; Pizzio et al., 2003). These bands disappeared completely

with raising the calcination temperature to P500 �C. The
intensities of all bands decreased sharply with an increase in
the calcination temperature due to dehydroxylation and

decomposition of sulfate species. The generation of strong Le-
wis acidity by sulfate species may be due to the presence of sur-
face complexes which has a covalent S‚O bond, that act as
electron-withdrawing species followed by the inductive effect.

This effect makes the Lewis acid strength of Sn4+ stronger
(Furuta et al., 2004). On addition, the presence of water mol-
ecules or OH-surface groups on the surface of the catalyst

gives Brønsted acid sites, and the adsorption of water molecule
would convert Lewis acid sites to Brønsted acid sites. The pres-
ence of SO4 on WO3/SnO2 followed by calcination would

cause changes in textural and acidic properties of the support
since SO4 may be bonded directly to the surface of SnO2 or to
WO6 surface species. The calcination at >500 �C shows loss of
the textural properties and acidity that is probably due to the

agglomeration of crystalline WO3 on the surface of SnO2,
decomposition of sulfate species and sintering effect.
Figure 8 FTIR spectra of pyridine adsorbed on S
3.6. Catalytic activity

The esterification of carboxylic acid with various alcohols is an
electrophilic substitution reaction. The reaction is relatively
slow and needs activation by acid catalyst, Brønsted acid (Lilja

et al., 2002; Sharma et al., 2004) or Lewis acid (Rao et al.,
1979; Khder et al., 2008). In general, the esterification reaction
is dependent on: (i) temperature of the reaction, (ii) catalyst
amount, (iii) proportion of the reactants, (iv) stirrer speed

and (v) pressure of operation (Rao et al., 1979). It was found
in the esterification of propionic acid (PA) with n-butanol (B)
and other alcohols that the conversion of the acid was indepen-

dent of stirrer speed except at 100 rpm since the external diffu-
sion limitation is negligible at stirrer speeds of 200 rpm and
above (Ali et al., 2007). Therefore, a stirrer speed of 600 rpm

was maintained during all the experiments.

3.6.1. Effect of reaction time

The influence of reaction time on PA conversion is given in

Fig. 9 using SWS-400 catalyst under the reaction conditions:
0.2 g catalyst, molar ratio A:B = 1:2 at 110 �C. A gradual in-
crease in the conversion is observed with the increase in the

duration of the reaction period. As seen from Fig. 9, in 2 h
of the reaction time 80.48% of conversion was obtained, and
in 4 h the conversion was 86.58%, whereas at the end of 6 h
only 87.24% of the reaction was completed. The selectivity to-

ward n-butyl propionate on the other hand remains the same,
i.e. 100%. This suggests that 4 h is sufficient to optimize the
reaction parameters.

Kinetic data reported on esterification of propionic acid
with n-butanol are relatively scarce in the open literature.
Study of this reaction in a stirred reactor using sulfuric acid

as catalyst (Venkateswarlu et al., 1976), sulfuric acid and AlCl3
(Rao et al., 1979) and cation exchange resins (Liu and Tan,
2001) indicates that the reaction obeys a second order equation

with respect to propionic acid concentration. The kinetic data
WS catalysts calcined at different temperatures.



Figure 9 Effect of reaction time on the PA conversion over

SWS-400 catalyst.
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of this reaction using SWS-400 catalyst are shown in Fig. 10.
The plot of 1/[PA] with time is linear over a considerable range
of conversion, up to 2 h. The slope of linear line is a measure of

the specific reaction rate constant, which is calculated to be
k= 0.54925 M�1h�1.

3.6.2. Effect of reaction temperature

The reaction was studied over SWS-400 catalyst at reaction
temperatures between 70–110 �C. The conditions of the
reaction were: the molar ratio acid/alcohol equal to 1:2, the

weight of the catalyst was 0.2 g and the time of reaction was
4 h. The percentage conversion of propionic acid at different
reaction temperatures are given in Table 3. It is obvious that
the conversion of PA increases gradually with an increase in

the reaction temperature. The increase in the temperature
brings more collisions and therefore more successful collisions.
These successful collisions have sufficient energy (activation

energy) to break the bonds and form products and thus result
in higher values of conversion of PA (Ali et al., 2007). On the
other hand, the increase in reaction temperature favors the for-

mation of ester (Khder, 2008).

3.6.3. Effect of catalyst amount

The effect of the weight of SWS-400 catalyst (0.05–0.30 g) at

110 �C for a reactant molar ratio A:B = 1:2 and a reaction
time of 4 h was studied. The percentage conversion of
Figure 10 Kinetics of esterification of
propionic acid is given in Table 3. It is shown that the
PA conversion increased gradually with an increase in the
weight of the catalyst from 0.05 to 0.20 g, after that the con-

version is constant. The increase of the catalyst weight
means more available active sites for this reaction. It
appeared that 0.20 g of the catalysts is sufficient to bring

the highest conversion of the amount of propionic acid used
in the experiment.

3.6.4. Effect of reactant molar ratio

The esterification results of PA with B over 0.2 g SWS-400 cat-
alyst at 110 �C after 4 h with different initial molar ratios of
A:B are shown in Table 3. It is clear that an increase of alcohol

concentration leads to an increase of the final conversion. The
conversion of PA increased remarkably from 42.40% to
70.78% with the decrease of the molar ratio from 2:1 to 1:1.

A further decrease in A:B to 1:2 is accompanied with a gradual
increase in conversion, after that the increase of conversion is
slight when the A:B attained 1:3. The use of excess alcohol is
typical in order to shift the equilibrium toward the formation

of the ester (Dakshinamurty et al., 1984; Yadav and Thathagar,
2002). Furthermore, a high initial amount of acid has a retard-
ing effect on the esterification kinetics (Lilja et al., 2005).

3.6.5. Effect of calcination temperature

Table 4 and Fig. 11 show the PA conversion over SWS cal-
cined at different temperatures (400–800 �C) at reaction tem-

peratures 90 and 110 �C. The PA conversion over SWS
catalysts was decreased with raising the calcination tempera-
ture. At 90 �C reaction temperature, the conversion decreased

from 80.03% to 62.85% when the calcination temperature rose
from 400 to 500 �C, the conversion decreased sharply to 7.58%
on 650 �C product, and attains 3.87 on 800 �C product.

Whereas at 110 �C reaction temperature, the PA conversion
decreased slightly from 86.58% to 83.49% for 400 and
500 �C products, respectively, then decreased gradually with
raising the calcination temperature. The remarkable decrease

of catalytic activity for calcined products at >500 �C may be
due to the loss of Brønsted acid sites, decomposition of sulfate
species and sintering effect. The loading of WS catalyst with

sulfate ions causes a remarkable increase in the catalytic activ-
ity toward the PA esterification, since the PA conversion on
WS-400 attains only 16.2% and 35.67% at 90 and 110 �C,
respectively, under the same reaction conditions.
PA with B over SWS-400 catalyst.



Table 4 Effect of calcination temperature on PA conversion

over SWS catalysts.

Calcination temp.(�C) Con.%* Calcination temp.(�C) Con.%**

400 80.03 400 86.58

500 62.85 500 83.49

650 7.58 650 55.11

800 3.87 800 39.11

* Reaction Temp. 90 �C; catalyst weight 0.2 g; A:B = 1:2; reaction

time 4 h.
** Reaction Temp. 110 �C; catalyst weight 0.2 g; A:B = 1:2; reac-

tion time 4 h.

Figure 11 Effect of calcination temperature on the PA conver-

sion over SWS catalyst at RT of 90� and 110 �C.
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Table 3 The effect of reaction temperature, reactant molar

ratio and weight of catalyst on PA conversion.

Reaction

temp.(�C)
Con.%* Molar

ratio A:B

Con.%** Catalyst

weight (g)

Con.%***

70 67.49 2:1 42.40 0.05 72.65

80 70.59 1:1 70.78 0.10 82.46

90 80.03 1:2 86.58 0.20 86.58

110 86.58 1:3 87.40 0.30 86.58

* Catalyst weight 0.2 g; A:B = 1:2; reaction time 4 h.
** Reaction temp. 110 �C; catalyst weight 0.2 g; A:B = 1:2; reac-

tion time 4 h.
*** Reaction temp. 110 �C; A:B = 1:2; Reaction time 4 h.
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3.6.6. Mechanism of the reaction

The esterification reaction is a straight forward reaction sub-

ject to general Brønsted acid catalysis (Liu and Tan, 2001;
Sharma et al., 2004; Lilja et al., 2005; Ali et al., 2007). However,
according to other authors (Kirumakki et al., 2006; Barbosa et

al., 2006) esterification can also be catalyzed by Lewis acid
sites. On the other hand, many authors (Wang and Li, 2004;
Samantaray and Parida, 2003; Khder et al., 2008) reported that

both the Brønsted and Lewis acid sites are responsible for cat-
alyzing the esterification reactions. According to the above re-
sults the mechanism of the reaction follows a Rideal–Eley
mechanism in which propionic acid molecules are adsorbed
on the active sites of the catalyst, Brønsted and Lewis acid
sites, forming protonated propionic acid or carbocation inter-
mediate, as shown in Schemes 1 and 2, and then reacted with

n-butanol molecules from the bulk liquid. The products
formed, namely, n-butyl propionate and water, are then des-
orbed from the surface. The adsorption and protonation of

PA or carbocation formation on the catalyst surface is
assumed to be the rate-controlling step. More details on the
derivation of this model can be found in the literature (Lilja

et al., 2005; Kirumakki et al., 2006; Khder et al., 2008).
Some authors (Chu et al., 1996; Dash and Parida, 2007;

Parida and Mallick, 2007) proposed that the esterification

mechanism of n-butanol with acetic acid and other carboxylic
acids catalyzed by strong Brønsted acid sites proceeds via a
protonated alcohol intermediate. The reaction following the
Rideal–Eley mechanism takes place between alcohols
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chemisorbed on active Brønsted acid sites of the catalyst sur-
face, forming a stable carbocation. Then, the carbocation at-
tacks the nucleophilic center of carboxylic acid to form an

unstable intermediate. Removal of a proton from the interme-
diate gives the final product with the regeneration of the cata-
lyst. The role of an acid catalyst here is to facilitate the

formation of the carbocation, and to help remove OH� from
the alcohol.

4. Conclusions

The interaction between sulfate ion and WO3/SnO2 affects the
physicochemical properties of the prepared catalysts with cal-

cination temperature. XRD results reveal that WO3 dispersed
completely on the surface of SnO2 and sulfating of WO3/SnO2

hinders the crystallization of SnO2. The textural properties are

maxima at 500 �C. The catalysts possess very strong acid sites
and contain both Brønsted and Lewis acid sites. The acid
strength of acid sites is strongest for 500 �C products, and
the total surface acidity decreased with an increase in the cal-

cination temperature. Sulfation enhances the surface acidity
and increases the strength of Lewis acidity due to the inductive
effect of S‚O. The optimum conditions for the formation of

the n-butyl propionate were observed to be: reaction tempera-
ture of 110 �C, molar ratio A:B = 1:2, 0.2 g of the catalyst and
reaction time of 4 h. The reaction obeys second order kinetic

equation with respect to PA concentration. Brønsted and
Lewis acid sites appear to be needed for catalytic activity in
n-butyl propionate formation.
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