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Abstract Sulfonyl drugs are widely used to treat various types of diseases, in which sultones have

several desirable properties that have led to their increased use, including improving its simple and

effective synthetic methods and/or potentially enhancing potency of drugs. This review focuses on

the recent progress in typical synthesis of sultones and the latest developments in various therapeu-

tic applications, including carbonic anhydrase inhibitory activity, HIV-I and HIV-II inhibitory

activity, human cytomegalovirus inhibitory activity, and cholinesterase inhibitory activity and their

structure–activity relationship. We hope that this review will encourage medicinal chemists to con-

sider the potential benefits to incorporating sultone scaffold into future drug discovery.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1 Structure of sultone.
1. Introduction

Sultone moieties (Fig. 1), the internal esters of sulfonic acids
introduced by Erdmann in 1888, have emerged as significantly
valuable heterocycles that has been widely used as a general

building block in the field of medicinal chemistry (Erdmann,
1988; Pustenko and Žalubovskis, 2017). Novel sultone-
functionalized heterocyclic compounds will be particularly use-

ful and desirable in the fields of diversity-oriented chemistry,
medicinal chemistry, chemical biology, drug discovery and
pharmaceutical industry (Fang et al., 2019; Revathi et al.,

2018; Zhang et al., 2018). The early synthesis methods involved
carbanion-mediated sulfonate intermolecular or intramolecu-
lar coupling reaction (CSIC reaction) (Postel et al., 2003) or
sulfonation of olefins with dioxane-sulfur trioxide (Tin and

Durst, 1970). Mondal (Mondal, 2012) and Pustenko
(Pustenko and Žalubovskis, 2017) further summarized the syn-
thesis methods of sultones in 2012 and 2017, including

cycloaddition reaction (Ghandi et al., 2012; Tian et al.,
2003), intramolecular Diels-Alder reaction (Bovenschulte
et al., 1989; Chan et al., 1997; Doye et al., 1997; Ghandi

et al., 2013; Metz et al., 1992; Metz et al., 1994; Metz et al.,
1996; Moghaddam et al., 2013; Plietker et al., 2000), ring
closure translocation (Karsch et al., 2004; Le-Flohic et al.,

2003), Pd-catalyzed reaction (Tamaru et al., 1990), Rh-
catalyzed C-H insertion (Wolckenhauer et al., 2007), Heck
reaction (Wolckenhauer et al., 2008). Currently, the simple

and effective synthesis method of sultones have received an
increasing attention to synthetic organic chemists and
biologists.

Besides their synthetic application, Molecules containing

sultone scaffolds are widely used to treat various types of dis-
eases, for example, phenolsulfonphthalein (F1) (Fig. 2) is a
non-toxic compound that has been approved for human
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kidney function testing (Itagaki et al., 2018; Russel et al.,
1987). In previous reports, sultones were found to have diverse
biological activities, such as skin sensitization (Bolt and Golka,

2004; Meschkat et al., 2001; Ritz et al., 1975), anti-tumor activ-
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Scheme 2 The synthesis of d-sultone
ity, anti-virus (human immunodeficiency virus (HIV-I, II),
human cytomegalovirus (HCMV) inhibitory activity, and vari-
cella virus (VZV)) inhibitory activity (Balzarini et al., 1992;

Bonache et al., 2005; Bonache et al., 2008; Bonache et al.,
2011; Camarasa et al., 1992; Camarasa et al., 2004;
Camarasa et al., 2005; Camarasa et al., 2006a; Camarasa
et al., 2006b; Das et al., 2011; De-Castro et al., 2003; De-

Castro et al., 2005; De-Castro et al., 2006a; De-Castro et al.,
2006b; De-Castro et al., 2007; De-Castro et al., 2008; De-
Castro et al., 2009; De-Castro et al., 2011; De-Castro and

Camarasa, 2018; Lobatón et al., 2002; Perez-Perez et al.,
1992; Rodrı́guez-Barrios et al., 2001; Velazquez et al., 1992;
Velázquez et al., 2004; Sluis-Cremer et al., 2006), carbonic

anhydrase (CA) inhibitory activity (Grandane et al., 2014;
Grandane et al., 2015a; Grandane et al., 2015b; Nakai et al.,
2018; Nocentini et al., 2018; Pustenko et al., 2017; Tanc

et al., 2013; Tanc et al., 2015; Tars et al., 2012), selective
butyrylcholinesterase (BuChE) inhibitory activity (Xu et al.,
2019), and so on. This review mainly summarizes the advances
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s by Ni-catalyzed SuFEx reaction.
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in the recent synthesis and pharmacology, and discusses the

structure–activity relationship (SAR) of active compounds.

2. Synthesis of sultones

Recently, many powerful methods for sultones synthesis were
discovered, such as Julia–Kocienski reaction, Diels-Alder reac-
tion, closed-loop metathesis, Rh-catalyzed C-H insertion, Rh-

catalyzed carbene cycloaddition cascade, or other metal cata-
lysts reactions using palladium, rhodium, gold, copper,
ruthenium.

2.1. Julia–Kocienski reaction

Smith et al. prepared firstly c-sultones in a stereocontrolled
method through the epoxide and the homologous Julia-

Kocienski reaction (Scheme 1). In the early experiment, it
was expected that alkoxysulfones 1b gave sulfinates 1c through
Smiles rearrangement, subsequently 1c lose SO2 and cyclized

to produce cyclopropane. But compound 1a and (R)-
propylene oxides 2a (R = Me) under the basic conditions of
LiN(SiMe3)2 at room temperature gave c-sultones 2d

(R = Me). Both the yield and the ee values were>99%, and

no cyclopropane was observed. The yield of c-sultones
obtained from compound 1a with a terminal alkyl-
substituted epoxide was excellent. Protected alcohols, amines,

ketones, halogen-substituted epoxides, diepoxides, and alkyl-
substituted terminal epoxides can all give the corresponding
substituent c-sultones. However, when the substrate is a bis-

epoxide, only a mono-sulfonylation product can be obtained,
because the formation of the first internal sulphur ring may
R2

O

R1

OTMS
+

R3

S
O

O
F

Ar

Scheme 5 The synthesis of d-sultones by
slow down the formation of the second sultone ring. The dis-
ubstituted epoxide reaction may involve a single inversion of
stereochemistry (cis-1,2-butene oxide produces only trans-

sultone, while trans-1,2-butene oxide produces only cis-
sulfonate lactone) (Smith et al., 2015). This pathway provides
access to c-sultones using a one-pot method in a stereo-

controlled manner.

2.2. Sulfur fluoride exchange (SuFEx) click reaction

2.2.1. Nickel-catalyzed SuFEx reaction

Chen et al. have developed a mild and efficient nickel-catalyzed

cyclization method by using sulfur (VI) fluoride exchange
(SuFEx) click reaction for the synthesis of sultone-
functionalized pyridines (Scheme 2). The sultones 3 were
obtained by Ni-catalyzed cyclization reaction from substrate

(E)-2-phenylethanesulfonyl fluoride (1 eq) and 2-
acetylpyridine (2 eq) in acetonitrile. The (hetero)aralkylsul-
fonyl fluorides with p- or m-substituted groups have moderate

to excellent yield. In which, the reaction time for the o-
substituted one is longer, but the yield is higher (>90%); the
halide group (F, Cl and Br) have better tolerance to the cat-

alytic conditions; the yield of the p-substituted one with stron-
ger electron-withdrawing ester group is reduced (44%); the 2-
aralkylsulfonyl fluoride with a disubstituted aromatic ring has

a good to excellent yield (73–89%). This method is also appli-
cable to 2-arylsulfonyl fluoride, thiophene, dibenzothienyl, and
indole with complex and heterocyclic aromatic substrates (in-
cluding naphthyl). 2-Phenylethenesulfonyl fluorine can react

with substituted 2-acetylpyridine to form sultones in moderate
to good yields. However, when the substituent group is adja-
cent to the N atom of pyridine, the yield becomes low. When

6,7-dihydroquinoline-8(5H)-one was reacted with various 2-
substituted ethenesulfonyl fluorides, a novel class of fused-
sultones 4 were obtained in a yield of 37–99%. Besides, this

method is practical so that sultone-functionalized pyridines
can be prepared on a reasonable scale (Chen et al., 2018).
An efficient Ni-catalyzed annulative process for the synthesis
of sultones were developed using SuFEx chemistry. This

method features a wide scope to serve as an irreplaceable asset
for medicinal chemistry and medicinal discovery.
O
S
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O
O
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carbene-catalyzed (3 + 3) annulation.
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2.2.2. DBU-catalyzed SuFEx click reaction

Chen et al. synthesized a new class of d-sultones through direct
cyclization of ethenesulfonyl fluoride (ESF) and pyrazolone or
1,3-dicarbonyl compounds catalyzed by 1,8-Diazabicyclo[5.4.

0]undec-7-ene (DBU) (Scheme 3). The d-sultones 5 were
obtained from pyrazolones or 1,3-dicarbonyl compounds
(1.0 eq) with (E)-2-(hetero)arylethenesulfonyl fluoride

(1.0 eq), DBU (5–30 mol%) and NaHCO3 (1.0 eq) in CH2Cl2
at room temperature for 3–24 h in excellent yields (>90%)
(Dong et al., 2014). It is a simple and effective synthesis
method.
2.3. Photocatalytic redox reaction

The c- and d-sultones 6 were synthesized from different a,x-
enol and trifluoromethylsulfonyl chloride by one-step synthesis
under (Cu(dap)2)Cl photo-redox catalysis (Scheme 4). Focus-

ing on fluorinated sultones, a wide range of substrates can be
cleanly converted to the title compounds. The fluorinated sul-
tones are attractive as structural motifs in drug synthesis with

being demonstrated with the synthesis of a trifluoroethyl-
substituted analogue of a benzoxathiin that has high anti-
arrhythmic activity (Rawner et al., 2016). This method uses
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an inexpensive low load copper catalyst to obtain the corre-
sponding sultones with moderate to excellent yields.

2.4. N-Heterocyclic carbine-catalyzed (3 + 3) annulation

As shown in Scheme 5, a series of unsaturated d-sultones were
obtained from (3 + 3) annulation of a,b-unsaturated sulfonyl

azolium intermediates with trimethylsilyl enol ethers of various
1,3-dicarbonyl compounds in modest yields (40–88%). The d-
sultones 7 were synthesized from different trimethylsilyl (TMS)

enol ethers, a,b-unsaturated sulfonyl fluoride and Imes (10 mol
%) in tetrahydrofuran (THF) for 17 h. The electron-deficient
sulfonyl fluorides have more efficient conversion than the

electron-rich ones. The yields of 2-Furyl-substituted sultone
and ESF-derived sultone are moderate. The TMS enol ether
derived from 1,3-cyclohexadione and the acyclic TMS enol
ether of acetylacetone gave the d-sultones in acceptable yields.

TMS enol ethers derived from unsymmetric diketones gave the
expected d-sultones in good yields and modest regioselectivity.
In contrast, TMS enol ethers derived from b-ketoesters gave

the methyl- and isopropyl-substituted d-sultones in good yields
(Ungureanu et al., 2015).

2.5. C-H activation reaction

2.5.1. Pd-catalyzed C-H activation reaction

Li et al. firstly reported the functionalization with the sulfonic
acid group as the directing group in a C–H activation reaction.
(60)Fullerene-fused sultones has been employed in the
unprecedented Pd-catalyzed C–H activation reaction of aryl-

sulfonic acids to afford (60)fullerene-fused sultones. As shown
in Scheme 6, C60-fused sultones 8a were obtained from aryl-
sulfonic acids and C60 in 18–30% yields. C60-fused sultones
were treated in o-dichlorbenzene (ODCB) with excess BF3-
�OEt2 at 150 �C to give arylsulfonate-substituted fullerenes
8b in good yields (Li et al., 2012b).

Li et al. disclosed a Pd-catalyzed cyclization of arylsulfonic
acids with simple arenes to give aromatic sultones through sul-
fonic acid group-directed multiple C-H activation and C-C/C-

O formation. As shown in Scheme 7, one isomer aryl sulfonyl
lactone 9 can be obtained by reacting aryl sulfonic acid with
aromatics (20 eq), Pd(OAc)2 (10 mol%) and (NH4)2S2O8

(3 eq) in ODCB solution at 90 �C for 10 h. except the reaction
between toluene and 4-methylbenzenesulfonic acid produced
an inseparable regioisomers 9a and 9b at a ratio of 2:1 (Li

et al., 2012a).

2.5.2. Rh-catalyzed C-H activation reaction

Qi et al. described a new Rh-catalyzed synthesis of sultones via

the oxidative coupling of sulfonic acids with internal alkynes.
The sultones 10 were obtained from different arylsulfonic acids
via aryl C–H activation assisted by a sulfonic acid group in

Scheme 8, for example, alkynes with electron-donating groups
had good yields, para-alkynes or diarylalkynes with o-OMe
had lower yields, asymmetric alkynes showed moderate yields
but higher regioselectivity, 1-naphthalenesulfonic acid and

diphenylacetylene exhibited moderate reactivity (Qi et al.,
2014). A broad scope of substrates has been examined and
good functional group compatibility has been realized. This

approach provides a new access to sultones.

2.6. C-H insertion reaction

Liyanage et al. reported that key intermediates can be pre-
pared through intramolecular C-H insertion on diazosulfonate
substrates. The d-sultones 12a–d were synthesized from the



Scheme 12 One-step synthesis of 1,3-dienic d-sultones in the presence of SO3.
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diazosulfonate substrates of borneol (11a), 3-methylpentan-1-

ol (11b), and isomenthol (11c) in high yields in Scheme 9. This
C-H insertion reaction was used to prepare a series of stereos-
R1 SO2Cl + H R2

O (DHQ)2PYR (9 m

(36 mol%), PMP

Scheme 15 The synthesis of b-sul
elective sultones from easily available materials (Liyanage
et al., 2015). By using C–H insertion on sulfonyl substrates,
a series of useful intermediates were prepared from inexpensive

and easily available starting materials.

2.7. Baylis-Hillman (BH) reaction

A solvent-dependent method was used to synthesize b-keto-
benzo-d-sultone scaffolds. As shown in Scheme 10, the sul-
tones 13a were obtained in high yields in DMF using a one-
pot, DBU-catalyzed condensation of 2-

hydroxybenzaldehydes and (E)-2-phenylethenesulfonyl chlo-
rides, on the other hand, the initially prepared 2-
formylphenyl-(E)-2-phenylethenesulfonate derivatives under-

went DBU-catalyzed reactions to sultones 13b in moderate
to good yields. These reactions presumably proceed via
DBU-catalyzed o-sulfonylation/intramolecular Baylis–
Hillman/1,3-H shift or dehydration tandem sequences, respec-

tively (Ghandi et al., 2011). These broaden the benzo-d-
scaffolds that are accessible through intramolecular BH reac-
tions, and many of them may represent interesting

pharmacophores.

2.8. Asymmetric hydrogenation

Chudasama et al. reported the use of aerobically initiated,
metal-free hydroacylation of various C = C and N = N
acceptor molecules with a wide range of aldehydes, for exam-

ple, the hydroacylation of vinyl sulfonate 14b with n-
butyraldehyde 14a in 1,4-dioxane gave the pentafluorophenyl
(PFP) c-keto-sulfonate 14c. The sultone 14 could be achieved
by reducing the ketone moiety of c-keto-PFP-sulfonate and

subsequently eliminating pentafluorophenol in good yield
(Scheme 11) (Chudasama et al., 2013).

2.9. Heterocyclization of arylalkynes

Gaitzsch et al. reported the synthesis of 1,3-dienic d-sultones
15 via a one-step reaction of arylalkynes with sulfotrioxide in

dioxane (Scheme 12). It is presumed that alkynes 15a were first
sulfonated with SO3 to afford a highly reactive b-sultones
existing in the cyclic 15b and zwitterionic 15c form. Subsequent
S O

R2R1

O
Ool%), Bi(OTf)3 or In(OTf)3

 (1.32 eq), CH2Cl2, 15OC

21

tones by (2 + 2) cycloaddition.
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Scheme 16 The synthesis of d-sultone by acid-catalyzed cyclization.
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Scheme 18 The synthesis of d-sultones by DBU-catalyzed aldol

cyclization.

25

X

SO

R
X

S
O

R

Br
O O

O
O

Pd(PPh3)4 (3 mol%), 

HCOONa,DMF/H2O (7:3), 1h

X=C,N

Scheme 19 The synthesis of sultones by Heck cyclization.
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electrophilic addition of alkyne to this b-sultones then gives the
stable d-sultones 15. Thus, a range of monosubstituted ary-

lalkynes were investigated in a heterocyclization with SO3 to
give d-sultones. The resulting sultones were regioselectively
brominated with Br2 or NBS (Gaitzsch et al., 2011).

2.10. Cycloaddition reaction

2.10.1. Iodine-catalyzed oxidative heterocyclic reaction

Yoshimura et al. has developed an efficient cycloaddition of
heterocyclic alkenes with nitrile oxides generated in situ from
the corresponding aldoximes using Koser’s reagent. The oxida-

tive cyclization of various aldoximes with 1-propene-1,3-
sultone affords the respective isoxazoline-ring-fused heterobi-
cyclic products 16 in moderate to good yields (Scheme 13).

Furthermore, under similar conditions, the reaction of aldox-
ime with a cyclic phospholene-oxide produces the correspond-
ing heterobicyclic phospholene oxides in moderate yields. The
structures of bicyclic phospholene oxide and two sultones were

established by X-ray crystallography (Yoshimura et al., 2017).
This reaction generally afforded the corresponding heterobi-
cyclic products in moderate to good yields.

2.10.2. Rh-catalyzed carbene cyclization cycloaddition reaction

Carbene cyclization cycloaddition cascade (CCCC) is a power-
ful and atomically economical reaction that produces stere-

ogenic oxapolycyclic adducts. Shi et al. reported that
vinylsulfonates are excellent dipolarophiles for carbonyl ylides
derived from diazoketones in Rh-catalyzed intramolecular
cycloadditions (Scheme 14). The cycloaddition of diazoketones
17a–d and 17e–h under the catalysis of 3 mol% Rh2(oct)4 in
CH2Cl2 occurred smoothly to give the c-sultones 18a–d and

d-sultones 18e–h, respectively, in high yields and excellent
stereoselectivities. The CCCC reaction of vinyl sulfonate
(+)-19 gave sultone-bridged hydroazulene (+)-20 with the

only diastereomer under the catalysis of Rh2(OAc)4 in 90%
yield (Shi et al., 2009). The multifunctional substrate forms
polycyclic sultones with high yield and very good diastereose-
lectivity under mild reaction conditions.

2.10.3. (2 + 2) cycloaddition reaction

Koch et al. reported the catalytic asymmetric synthesis of b-
sultones, which has enabled a rapid access to a number of

highly enantioenriched biologically interesting sulfonyl and
sulfinyl compounds, either two vicinal stereocenters, such as
in b-hydroxy-sulfonamides, -sulfonates, -sulfones, -sulfonic

acids, -sulfinic acids, c-sultines, and c-sultones or a single stere-
ocenter, such as in a-branched alkyl or allyl sulfonic acids
(Scheme 15). The inherent ring strain of the four-membered

heterocycles 21 was used to produce the sulfene intermediates
in asymmetric catalysis. The reactivity of a sulfene as an elec-
trophile could be reverted by the formation of a nucleophilic

zwitterionic sulfene-amine adduct. The cooperative catalysis
achieves a combination of high enantioselectivity and reactiv-
ity (Koch and Peters, 2011). The catalytic asymmetric synthesis
of b-sultones have firstly been developed. This methodology

enables a rapid access to a number of highly enantioenriched
sulfonyl and sulfinyl compounds.

2.11. Closed-ring reaction

2.11.1. Acid-catalyzed cyclization

To facilitate more detailed studies of sultones, a new method
was used to synthesize the sulfonic acid lactones and finish
its ring-closing reaction. A new sultone, (E)-ethyl 4-oxo-6-sty

ryl-3,4-dihydro-1,2-oxathiine-5-carboxylate 2,2-dioxide (S-
CA), was synthesized and identified. Its synthesis extended
the method of ring-closing reaction of sulfonic acid lactones.
Li et al. synthesized the sultone 22 by a fast ring-closing reac-

tion (Scheme 16). The reaction of cinnamoyl chloride with
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ethyl acetoacetate under NaH condition gives ethyl 2-

cinnamoyl-3-ketobutyrate, subsequently transfers to sultone
22 by ring-closing reaction under Ac2O and H2SO4. Com-
pound 22 selectively suppress small angiogenesis in chorioal-
lantoic membrane, without influencing middle or large

angiogenesis (Li et al., 2015).

2.11.2. Base-catalyzed cyclization

Xu et al. (Xu et al., 2014) reported the synthesis of a novel ser-
ies of bicycle d-sultones containing c-lactones and their activity
against bovine viral diarrhea virus (BVDV). The alkylsul-
fonate intramolecular cyclization reaction (CSIC reaction)

gave the d-sultones 23 in 32–70% yields (Scheme 17).

2.11.3. DBU-catalyzed intramolecular aldol cyclization

Grandane et al. reported a synthetic method of benzo-d-
sultones as bioisosteres of coumarin through the intramolecu-
lar aldol cyclization of mesylsalicyl aldehydes in the presence
of DBU (Scheme 18). The benzo-d-sultones 24 were obtained

from mesyl derivatives by cyclization reaction in CH2Cl2 under
a catalytic of DBU in good yields (Grandane et al., 2012). This
iopure polycyclic-fused sultones.

3mol% Grubbs, 2nd 
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toluene, 12 h, 78%
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ed sultones by Grubbs-catalyzed RCM.
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Scheme 26 The synthesis of sultones by Ru-catalyzed olefin metathesis.
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method is reproducible and applicable for a broad scope of
substrates with electron-withdrawing and -donating

substituents.

2.11.4. Pd-catalyzed Heck cyclization

Mondal et al. reported an effective method for the synthesis of

seven-membered fused-sultones by intramolecular Heck
cyclization catalyzed by Pd(PPh3)4 (Scheme 19). The seven-
membered fused-sultones 25 were obtained in excellent yield
and regio- and stereo-selectivity from the mixture of raw mate-

rials (1.5 eq), 3 mol% Pd(PPh3)4 and HCOONa in DMF-H2O
at 100 �C for 1 h. Heck-type cyclization is regio- and stereo-
selective, which the stereochemistry of exocyclic double bond

in the dibenzo-fused sultone is opposite to that of the
benzopyridin-fused sulfonate (Mondal et al., 2015a). The
method offers the regio- and stereo-selective synthesis of highly

functionalized benzopyrido-fused or dibenzo-fused sultone
derivatives in high yield under mild conditions.

2.11.5. Pd-catalysed intramolecular cyclization

A Pd-catalyzed intramolecular arylation of 2-bromobenzene-
sulfonates was reported (Scheme 20). The arylation was
affected by the substituents on phenol moiety, for example,

electron-donating ones favor the reaction while electron-
withdrawing ones are unfavorable. The clization of the inter-
mediate phenyl 2-bromobenzenesulfonates 26a gave sultones

26b in good yields, which effective method generates tricyclic
and tetracyclic sultones (Bheeter et al., 2012; Majumdar
et al., 2009).

This Pd-catalyzed intramolecular arylation can be used to

synthesize the regioselective uracil-, coumarin- and
quinolone-fused benzosultams and benzosultones (Scheme 21).
Pd-catalyzed cyclization of uracil 2-bromobenzenesulfonates

gave uracil-fused benzosultones 27 in high yields (Mondal
et al., 2015b).
2.11.6. Dimer gold-catalyzed cyclization

Similarly, a dimeric phosphine-gold complex as a photocata-
lyst can catalyze the photoreductive radical reaction of an aryl
bromide to give the biaryl compound 28 (Scheme 22). Sultone
28 was formed in the presence of the dimerized phosphine-gold

complexes (Au2(l-dppm)2)Cl2 (2.5 mol%) under ultraviolet
radiation A (UVA) or sunlight (Au2(l-dppm)2)Cl2 (5.0 mol
%) in MeCN in good yields (Revol et al., 2013). This photo-

redox process has uniqueness and high synthesis potential.

2.11.7. Direct cyclization/desaturation radical cascade reaction

A sulfonylation/rearrangement sequence of allyl ether contain-

ing b-lactam or glucofuranoside with 2-(3,3-diethyltriazine-1-
enyl)-4-methylbenzene-1-sulfonyl chloride gave the functional-
ized 1,3-diene-2-yl arenesulfonates, which suffered a direct

cyclization/desaturation radical cascade to give title d-
sultones 29a-b in moderate yields (Scheme 23). Experiments
and density functional theory (DFT) calculations demon-

strated stereoselective cyclization of the readily formed core
through intramolecular Diels-Alder reaction. This metal-free
C-C cyclization reaction is feasible and universal (Alcaide
et al., 2016).

2.11.8. Grubbs-catalyzed ring-closing metathesis

Mondal et al. reported the synthesis of seven-membered sul-

tones fused with different carbo- and heterocycles through
ring-closing metathesis (RCM) in good yields (Scheme 24).
Sulfonylation reaction of o-allylphenol derivatives with 2-
chloroethylsulfonyl chloride gave the vinyl-sulfonates with

yields of 81–95%, which were transferred to the sultones 30

under catalysis of Grubbs’ 2nd generation (3 mol %) with
yields of 70–80% (Mondal and Debnath, 2014).

Walleser et al. reported a twofold ring-closing metathesis
under forcing conditions provided unsaturated lactone/unsatu-
rated sultone (Scheme 25). Ethanesulfonate 31 with different
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Fig. 3 Active site CA-mediated hydrolysis of trans-vinylsulfonic

acid. Binding of trans-vinylsulfonic acid within the active site of

the CA II/IX mimic (PDB: 4BCW). The Zn (II) ion (larger

sphere), His ligand (His94), water molecule (small sphere) coor-

dinated to the zinc are shown by X-ray crystallography (Tars

et al., 2012). Discovery Studio Client v18.1.0 was used to present a

3D image.
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functional groups gave monometathesis products 32a (18%),
32b (52%) and cross metathesis products 32c (9%) mixtures

under catalysis of 1 mol% Grubbs II, while only sultone 32d

was obtained under catalysis of 2 mol% Grubbs II catalyst
in 75% yield (Walleser and Brückner, 2014).

2.11.9. Ru-catalyzed olefin metathesis

Pustenko et al. reported the synthesis of sultones using Ru-
catalyzed olefin metathesis. The seven-membered fused-
sultones 33 were obtained from the reaction of 4-substituted

2-ethenylprop-2-ene-1-sulfonate with Ru-catalyst (tricyclo-
hexyl phosphine(1,3-bis(2,4,6-trimethyl-phenyl)imidazol-2-yli
dene)(3-phenyl-1H-inden-1-ylidene)ruthenium(II) dichloride)

(0.05 eq) in dry toluene (10 mL/0.2 g) at 70 �C for 4 h in yields
of 84–96% (Scheme 26) (Pustenko et al., 2017).

Although we reviewed the various synthetic methods of the

sultone scaffolds, there is an urgent need to develop more
effective and mild synthetic methods to obtain plenty of sul-
tone compounds with new scaffolds to enrich sultone com-

pound libraries. In addition, there are few reports on
synthesis of sultones based on rational drug design. We hope
that researchers can optimize the methods of batch synthesis
of sultones to find the potential sultone inhibitors by high-

throughput screening.

3. Biological activities of sultones

Sulfonyl compounds are widely used as basic structural frame-
works in pharmaceutical chemistry (Zhao et al., 2018; Zhao
et al., 2019). Phenolsulfonphthalein (F1) is a synthetic small

molecular as various medical diagnostic agents for many years,
for example, phenolsulfonphthalein has been used clinically as
a diagnostic marker to detect renal function by estimating uri-

nary excretion rate after intravenous injection, in addition to
improving the accuracy of gastric secretion studies and oviduct
patency assessments (Itagaki et al., 2005; Horhota and Fung,
1978). It was also found that sultone has a variety of biological
activities, including antiviral (HIV-1, HIV-II, HCMV and
VZV) activity, anticarbonic anhydrase (CA) activity, selective

antibutyrylcholine (BuChE) activity (Fig. 2).

3.1. Carbonic anhydrase inhibitors

Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous Zn2+

metallo-enzymes, and 16 isozymes have been identified. The
a-CAs are present in vertebrates, protozoa, algae and cyto-

plasm of green plants and in some bacteria, the b-CAs are pre-
dominantly found in bacteria, algae and chloroplasts of both
mono- as well as dicotyledons, but also in many fungi and

some archaea. The c-CAs were found in archaea and some
bacteria, whereas the d- and f-CAs seem to be present only
in marine diatoms. Among those identified, there are eight
cytosolic proteins (CA I, CA II, CA III, CA VII, CA VIII,

CA X, CA XI, CA XIII), two mitochondrialmatrix proteins
(CA VA, CA VB), one secreted protein (CA VI), two glyco-
sylphosphatidylinositol (GPI)-anchored proteins (CA IV and

CA XV), and three transmembrane proteins (CA IX, CA
XII, CA XIV). Indeed, 16 such isozymes were described in
non-primates, CAs I-XV with two V-type isoforms, CA VA

and CA VB, and 15 isoforms are known in primates, as CA
XV is not expressed in these mammals (Fisher et al., 2012;
Lee et al., 2009; McKenna and Supuran, 2014; Savile and
Lalonde, 2011; Vullo et al., 2013).

CAs catalyze the hydration of CO2 and the dehydration of
bicarbonate, which play an important role in regulating the
intracellular and extracellular pH in various physiological pro-

cesses. Abnormal levels or activities of these enzymes are often
associated with different diseases (Alterio et al., 2012;
Krishnamurthy et al., 2008). CA II is associated with glau-

coma, edema, epilepsy, altitude sickness, et al. Inhibiting CA
II can reduce bone loss in osteoporosis. CA IV is a drug target
for several pathologies including glaucoma (along with CA II

and XII), pigmented retinitis and stroke. CA VA and VB are
targets of anti-obesity drugs, while CA IX and XII are targets
of anticancer drugs (Alterio et al., 2012; Krishnamurthy et al.,
2008). CA IX is a marker of the progression of many types of

hypoxic tumors, such as primary tumors and metastatic
tumors (Alterio et al., 2012). CA XII over-expression is found
in meningiomas, hemangioblastomas, gliomas, brain tumors,

and so on. In breast cancer, CA XII expression levels indicate
a potential attack of the disease (Alterio et al., 2012; Baig et al.,
2019; Ilie et al., 2011; Parkkila et al., 2000). Because CAs with

multiple isoforms exist in a variety of tissues and organs, it is
important to design selective CA inhibitors.

3.1.1. Mechanism of sulfocoumarin as CA inhibitors

The sulfocoumarin is converted into 2-hydroxyphenyl-
vinylsulfonic acid by hydrolysis of the intramolecular sulfonic
acid ester mediated by esterase CA, and then isomerized to

obtain trans-vinylsulfonic acid. For (E)-2-(5-bromo-2-
hydroxyphenyl) ethene-1-sulfonic acid (Fig. 3), the OH moiety
in ortho to the ethenylsufonate group participates in a bifur-
cated hydrogen bond with the hydroxyl of Thr200 and through

a bridging water molecule, with the carbonyl oxygen of
Pro201. hCA IX and XII have larger active sites than hCA I
and II, which may lead to the selective inhibition of CA iso-

forms by sulfocoumarin (Alterio et al., 2012; Nocentini
et al., 2018; Supuran, 2016).



Table 1 Chemical structures of compounds A1-A44 and their inhibitory activities against hCA.

Compd R1 R2 Ki (nM) Ref.

hCA

I

hCA

II

hCA

VA

hCA

IX

hCA

XII

A1 4-F-phenyl H nd nd _ 95.3 4.6 (Grandane et al., 2015b)

A2 3-F-phenyl H nd nd _ 10.3 9.4

A3 4-tBu-phenyl H nd nd _ 9.1 6.8

A4 4-CF3-phenyl H nd nd _ 29.7 3.7

A5 3-CF3-phenyl H nd nd _ 9.8 6.1

A6 4-CH3OOC-phenyl H nd nd _ 9.0 9.1

A7 –NO2 H nd nd _ 3770 3160 (Tars et al., 2012 Nocentini et al.,

2018)A8 –NH2 H 6780 8890 _ 46 23

A9 Cl H nd nd _ 136.3 89.5 (Nocentini et al., 2018)

A10 H –NO2 nd nd _ 37.0 81.7

A11 H –NH2 nd nd _ 33.5 38.4

A12 H -Cl nd nd _ 33.7 60.9

A13 –OCH2CH2OH H nd nd 60 26.8 10.4 (Tanc et al., 2015)

A14 -OMe H nd nd nd 42.1 10.9 (Grandane et al., 2015a)

A15 –CN H nd nd nd 33.8 26.6

A16 H BnO nd 2.5 835 nd nd (Tanc et al., 2013)

A17 H 4-Cl-

phenylacetyloxyl

nd 2.6 3910 nd nd

A18 H 2-Br-

phenylacetyloxyl

nd 1.9 7060 nd nd

A19 cyclopropyl H nd nd _ 60.6 5.9 (Grandane et al., 2014)

A20 3-Cl-phenyl H nd nd _ 93.1 7.6

A21 4-Cl-phenyl H nd nd _ 7.8 17.7

A22 2-NH2-phenyl H nd nd _ 7.9 6.3

A23 3-NH2-phenyl H nd nd _ 875 9.2

A24 4-CF3-phenyl H nd nd _ 136 5.5

A25 4-F-phenyl H nd nd _ 531 6.7

A26 Ph H 6860 7760 _ 29 32 (Tars et al., 2012)

A27 Et2NCH2- H 8110 9370 _ 25 7

A28 4-CF3O-phenyl H 8430 9640 _ 74 14

A29 H 2-NH2-phenyl nd nd _ 9.5 9.2 (Grandane et al., 2014)

A30 H 3-MeO-phenyl nd nd _ 9.1 7.6

A31 H 4-MeO-phenyl nd nd _ 8.3 44.0

A32 H 3-CF3-phenyl nd nd _ 9.6 8.9

A33 H 4-CF3-phenyl nd nd _ 7.2 30.1

A34 H 4-F-phenyl nd nd _ 8.3 7.8

A35 H 3-Cl-phenyl nd nd _ 8.8 9.4

A36 H 4-Cl-phenyl nd nd _ 9.2 31.2

A37 4-(4-CF3O-phenyl) �1,2,3-

triazole

H nd 5770 _ 340 1720 (Grandane et al., 2015b)

A38 4-(2- NH2-phenyl) �1,2,3-

triazole

H nd nd _ 460 2320

A39 –NO2 H nd nd _ 27 640

A40 H –OCH3 nd 2.4 91 nd nd (Tanc et al., 2013)

A41 H 4-Cl-

phenylacetyloxyl

nd 2.2 206 nd nd

A42 H 2-Br-

phenylacetyloxyl

nd 3.4 141 nd nd

A43 Bn H nd nd _ 81.3 4.0 (Grandane et al., 2015a)

A44 2-furyl H nd nd _ 33.0 6.2

‘‘nd ” represents the activity to be measured and the activity is poor (Ki > 10 lM).

‘‘-” represents the inhibitor activity has not been measured.

12 Y. Xu et al.
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3.1.2. SAR analysis

Table 1 shows the structure and activity of inhibitors contain-
ing sultone scaffold, and discuss their structure–activity rela-
tionship as shown in Fig. 4.

6-Substituted sultones:

(i) 6-Arylsultones are potent and selective inhibitors of

tumor-associated hCA IX and XII. The size and posi-
tion of substituted phenyl significantly affect the inhibi-
tory activity, slightly larger groups may enhance the
hCA IX inhibitory activity (t-Bu in A3, COOMe in

A6), m-substituted phenyl is more active than the p-
substituted (A5 > A4, A2 > A1). Compounds with 6-
aryl are highly effective hCA XII inhibitors (Grandane

et al., 2015b).
(ii) Compounds with 1,2,3-triazole scaffold are effective

hCA IX and hCA XII inhibitors. 5-Substituted 1,2,3-

triazole is better hCA IX inhibitor than 4-substituted
one (A33 > A24, A34 > A25, A35 > A20), in which,
6

7 O
1

S

3
4R1

R2

(i) aryl explays  highly effective hCA XII inhibition, while

larger substituent may enhance hCA IX inhibition;

(ii) 5-substituted 1,2,3-triazole is a better hCA IX inhibitor

than  4-substituted ;

(iii) amide shows high affinity for hCA XII than methoxyl

cyano; 4-substituted 1,2,3-triazole has moderate hCA I, hC

II, hCA IX inhibition and nmol hCA XII inhibition;

(iv) 6-HOCH2CH2O-sultone is a potent inhibitor of hCA V

hCA IX and XII (Ki = 60, 26.8, 10.4 nM).

(i) 7-substituted sultones exhibits nanomolar inhibito

nM), moderate inhibitory effect on hCA VA (Ki = 91

substituent in position  7 has little effect on hCA II in

(ii) 7-substituent (-NO2, -NH2, -Cl) is superior to 6-su

has little effect on the inhibitory activity of hCA IX.

Fig. 4 SARs of the sulton
most substitution patterns, both aliphatic and aromatic
R groups, lead to highly effective hCA XII inhibitors
(Grandane et al., 2014).

(iii) 6-carboxamido-substituted sultones are selective and

effective inhibitor of hCA IX and XII. The introduction
of carbon unit spacers or heterocyclic five-membered
rings (A43, A44) reduced hCA IX inhibitory effect

(Ki = 81.3, 33.0 nM). All 6-amide-substituted sultones
exhibited high affinity for hCA XII (Ki = 2.1–8.7 nM),
which was higher than that of 6-methoxy (A14) and 6-

cyano (A15) sultones (Ki = 10.9, 26.6 nM) (Grandane
et al., 2015a).

(iv) Some of 4-substituted 1,2,3-triazoles have moderate

hCA I and hCA II inhibition, effective hCA IX inhibi-
tion, and low nanomolar hCA XII inhibition (A26-
A28) (Tars et al., 2012).

(v) 6-Hydroxyethoxylsultone (A13) is a potent inhibitor of

hCA VA (Ki = 60 nM), and excellent inhibitory activity
on tumor-associated enzymes hCA IX and XII (Ki =
26.8, 10.4 nM) (Grandane et al., 2012; Tanc et al., 2015).
O

O

 a 

 

 or 

A 

A, 
(i) For 7-substituted sultones, C3=C4 affects 

hCA VA activity, but hardly affect hCA II 

activity;

(ii) For heptalactone, compared with 7-NO2-

substituted, the inhibitory effect of hCA IX 

substituted by 1,2,3-triazole is reduced, and 

only  4-CF3O-phenyl, 2-NH2-phenyl and 7-

NO2 have hCA XII inhibitory activity.

ry effect on hCA II (Ki = 1.5 8.4 

9960 nM), while the nature of the 

hibitory properties;

bstituent for hCA IX. 7-substituent 

e-based hCA inhibitors.
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7-Substituted sultones:

(i) 7-substituted sultones and 3,4-dihydrosultones showed

low nanomolar inhibitory effect on hCA II (Ki = 1.5–
8.4 nM), moderate inhibitory effect on hCA VA
(Ki = 91–9960 nM). The changes of substituents and

the C3 = C4 bond have no significant effect on the inhi-
bition of hCA II (A41 � A42 � A17 � A18). Com-
pounds with methoxyl (A40), 4-chlorophenylacetyloxyl
(A41) and 2-bromophenylacetyloxyl (A42) for 3,4-

dihydrosulfocoumarin skeleton have good hCA VA
inhibitory activity (Ki = 91–206 nM) (Tanc et al., 2013).

(ii) For heptasultones: only A37 is a moderate hCA II inhi-

bitor (Ki = 5.77 mM). A39 (7-NO2) has the best hCA IX
inhibitory activity (Ki = 27 nM), and the 7-substituted
1,2,3-triazole does not increase hCA IX inhibitory activ-

ity (A39 > A37 > A38). 7-NO2 (A39), 1,2,3-triazole
with 4-trifluoromethoxyphenyl (A37) and 2-
aminophenyl (A38) have hCA XII inhibitory activity

(Ki = 0.64–2.32 mM) (Pustenko et al., 2017).
(iii) 7-Substituent (–NO2, –NH2, -Cl) is superior to 6-

substituent for hCA IX (A10 > A7, A11 > A8,
A12 > A9). This 7-substituent has little effect on the

inhibitory activity of hCA IX (A10 � A11 � A12)
(Nocentini et al., 2018).

3.2. Anti-HIV activity

HIV is the causative agent of acquired immunodeficiency syn-

drome (AIDS), which has caused significant damage world-
wide over the past 40 years. Side effects and resistance to
long-term chemotherapy may be the most important factor

in the failure of treating and eradicating HIV infection
(Barre-Sinoussi et al., 1983; Nanfack et al., 2017; Trivedi
et al., 2020). To date, 20 drugs have been approved for the
treatment of AIDS. However, viral rebound during therapy,

the emergence of drug-resistant and the need for long-term
treatment modalities are the main causes for the failure of
current antiretroviral therapy. There is still a need for the

development of new drugs with less toxic, active against
O
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Fig. 5 SARs of base-mod
growing drug-resistant or novel targets in the viral life cycle.
Eleven of anti-HIV drugs target the reverse transcriptase
(RT). The non-nucleoside RT inhibitors (NNRTIs), (20,50-
bis-O-(tert-butyldimethylsilyl)-b-D-ribofuranosyl)-30-spiro-50’-
(40’-amino-10’,20’-oxathiole-20’,20’-dioxide) nucleosides (TSAO)
derivatives, are an unusual class of compounds that exert

their unique selectivity for HIV-1 through a specific interac-
tion with the p51 subunit of HIV-1 RT (Camarasa et al.,
2005).

TSAO compounds are the only NNRTIs for which amino
acids at both HIV-1 RT subunits (p66 and p51) are needed
for optimal interaction with the enzyme. In fact, it has been
demonstrated that the heterodimeric enzyme shows a reduced

DNA binding ability in the presence of the 5-fold molar excess
of TSAO-T. TSAO-e3T can induce the dissociation of RT into
inactive monomers under certain conditions (Velazquez et al.,

1992). SAR in Fig. 5 showed that the 30-spironucleosides with
S stereospecificity (B1-B3) didn’t have anti-HIV-1 activity,
while those with R configuration (B4-B6) and tert-

butyldimethylsilyl (TBDMS) at C-50 and C-20 had significant
anti-HIV-1 activity. The replacement of 20-TBDMS group
led to reduce twice to 20-fold anti-HIV-1 activity while that

of the 50-position showed inactivity. The base part of TSAO
molecule is structurally less stringent, which plays a modula-
tory role in its activity/cytoxicity (Camarasa et al., 1992;
Perez-Perez et al., 1992; Rodrı́guez-Barrios et al., 2001).

As first small non-peptide molecule, TSAO compounds
interfere with the HIV-1 RT dimerization process (Bonache
et al., 2011; De-Castro et al., 2011; De-Castro and

Camarasa, 2018). As shown in Fig. 6, crystal analysis of
TSAO-T into HIV-1 RT showed that TSAO-T binding mor-
phology is similar to the ‘‘dragon” configuration, in which

the thymine base, ribose ring and helix are similar to the head,
body and tail, respectively. The ‘‘head” thymidine is between
the aromatic side chains of Tyr188 and Phe227. One sulfony-

loxy group of the sultone group forms a hydrogen bond with
Lys103, and the other S = O group interacts with RT through
water. As two wings of dragon NNRTI of 20 and 50 two
TBDMS moieties, 50-TBDMS (I wing) part interacts with

Trp229, Pro95, Tyr183 and Leu100, while 20-TBDMS (II wing)
part interacts with Tyr318 (Das et al., 2011).
OSi
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Fig. 6 3D conformations of compound B4 (A) (TSAO-T) docked in HIV-1 RT (PDB: 3QO9) (Das et al., 2011). Discovery Studio Client

v18.1.0 were used to present a 3D images.
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Replacement of the thymine base of TSAO-T by other
pyrimidines, purines or 1,2,4-substituted triazoles didn’t signif-
icantly influence the activity or toxicity, for example, the abasic

TSAO analogue B9 showed only moderate loss of activity,
which may be due to the energy penalty involved in breaking
the intramolecular H-bond in order to adopt a suitable confor-

mation for binding into the enzyme (Camarasa et al., 2005).
Fig. 8 Potent anti-HIV-1 and HCMV a
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Fig. 7 Structures of TSAO with polar groups at the N-3 position

of thymine.
Further modifications at the N-3 position of thymine (intro-
ducing alkyl, alkenyl and alkynyl; polar groups such as acids,
amides, alcohols and amines; lipophilic groups; aromatic

groups; amino acids and others) led to interesting results. As
shown in Fig. 7, some compounds exhibited attenuated cyto-
toxicity and higher selectivity indices (SI = CC50/EC50), such

as the SIs of compounds B10 and B11 increased two orders of
magnitude (200 and 12500, respectively), that of compound
B13 increased twice to 6-fold. Moreover, several compounds
with polar groups exhibited more effective in inhibiting/dis-

rupting dimerization of HIV-1 RT than TSAO-T (Bonache
et al., 2005; Bonache et al., 2008; Camarasa et al., 2004;
Sluis-Cremer et al., 2006).

The 40’-amino group at the spiro moiety was substituted by
different carbonyl functionalities (including keto, carboxylic
acid, ester, amide and urea groups), which may interfere with

hydrogen bond formation of the residue Lys138 in TSAO-
resistant HIV-1 strains (De-Castro et al., 2005). Surprisingly,
some compounds in Fig. 8 were firstly observed activity

against HCMV replication at sub-toxic concentrations. In par-
ticular, compound B21 represents the first TSAO derivative
with dual anti-HIV-1 and HCMV activity, which is important
because HCMV infection is common for AID patients. More-

over, compounds B17-B19 only gained anti-HCMV activity,
ctivity of TSAO derivatives B14-B21.
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resulting in the first TSAO molecules specific for HCMV
replication.

The 30’-postion of spiro moiety was substituted by different

functional groups (halogen, alkenyl, alkynyl, allyl, aromatic
and heteroaromatic groups), which may give additional inter-
actions with residues adjacent to Glu138 of p51 subunit

(Lobatón et al., 2002). Amongst them, the 40’-amino group
of the sultone was maintained to allow the crucial interaction
of TSAO derivatives with residue Glu138 of HIV-1 RT p51

subunit. As shown in Fig. 9, the brief SAR of compounds
B22-B27 on HIV-1 and HIV-2 replication activities was dis-
cussed, and the inhibitory activity of B10-B27 against HIV is
shown in Table 2.
Table 2 Chemical structures of compounds B10-B27 and their anti

Compd EC50 (lM) SI

MT-4 CEM CEM

HIV-1 HIV-2 HIV-1 HIV-2

B10 0.03 >250 0.02 >50 >12500

B11 0.04 >250 0.02 >250 12,250

B12 0.06 >10 0.04 >10 282

B13 0.03 >2 0.01 >2 386

B14 0.08 > 4 0.06 >4 –

B15 1.30 > 10 0.2 >50 –

B16 0.0057 > 2 0.7 >10 –

B17 >2 >2 >2 > 2 –

B18 >2 >10 >2 >2 –

B19 >2 >2 >2 >2 –

B20 >0.8 >0.8 >0.8 >0.8 –

B21 0.88 >2 0.24 >2 –

B22 > 10 >10 > 10 > 10 –

B23 0.93 >10 0.85 >10 –

B24 0.12 >2 0.06 >2 –

B25 3.7 9.9 3.0 7.3 –

B26 3.2 3.3 4.0 4.0 –

B27 6.6 5.4 > 2 1.2 –

TSAO-T 0.06 >20 0.06 >20 200

TSAO-m
3
T 0.06 >50 0.04 >250 2875

‘‘-” represents the inhibitor activity has not been measured.

Fig. 9 Potent anti-HIV-1 and anti-HIV-2 activity of TSAO

derivatives B22-B27.
Among the human immunodeficiency virus (HIV) reverse
transcriptase (RT) inhibitors, the so called nonnucleoside RT
inhibitors (NNRTIs) have gained a definitive place in the treat-

ment of HIV infections in combination with nucleoside ana-
logue RT inhibitors (NRTIs) and HIV protease inhibitors
(PIs). The virus can be markedly suppressed for a relatively

long period of time when exposed to multiple drug combina-
tion therapy (highly active antiretroviral therapy, HAART).
TSAO derivatives are a peculiar group of highly functionalized

nucleosides that belong to the so-called NNRTIs. They exert
their unique selectivity for HIV-1 through a specific interaction
with the p51 subunit of HIV-1 RT. They are the first small
molecules that seem to interfere with the dimerization process

of the enzyme. This review covers the work carried out with
this unique class of specific inhibitors of HIV-1 reverse tran-
scriptase, including SAR studies, its mechanism of action,

resistance studies, model of interaction with the enzyme, etc.
Emergence of drug-resistant viral strains is one of the major

milestones and the main cause for the failure of antiretroviral

therapy. Combination of different anti-HIV agents has become
the standard clinical practice to prevent emergence of virus-
drug resistance. The Glu138Lys RT mutant virus had the most

marked resistance to TSAOs, followed by the Glu138Gln,
Glu138Phe, Glu138Gly, Glu138Tyr, and Glu138Ala virus
mutants. In the mutant Glu138Lys RT HIV-1 strains, virus
replication can be completely inhibited by NNRTIs (i.e.,

TIBO, BHAP, nevirapine). TSAO derivatives have been used
in several double and triple drug combination studies with
both NNRTIs. Individually used 3TC, TSAO-m3T and the

thiocarboxanilide UC10 rapidly led to the emergence of
drug-resistant HIV-1 mutants (Glu138Lys for TSAO-m3T,
Met184Val for 3TC, and Lys103Thr/Asn for UC10). When
-HIV activities.

IC50 (lM) EC50 (lM) Ref.

HCMV

(AD-169)

HCMV

(Davis)

HIV-1 RT - - -

3.1 – – (Bonache et al., 2005)

3.5 – –

3.1 – –

3.0 – –

– 253 179 (De-Castro et al., 2005)

– >80 36

– 6.5 6.5

– 1.8 2.0

– 1.2 0.8

– 2.3 1.8

– >20 >4

– 0.29 0.32

– – – (Lobatón et al., 2002)

– – –

– – –

– – –

– – –

– – –

– – – (Bonache et al., 2005)

3.1 – –



Fig. 11 Anti-HCMV and anti-VZV activity of 4-benzyloxy-c-
sultone derivatives.
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3TC was combined with either TSAO-m3T, UC10 or UC42,
emergence of drug-resistant virus was markedly delayed or
even fully suppressed (Balzarini et al., 1993; Balzarini et al.,

1995; Balzarini et al., 1996; Perez-Perez et al., 1992).

3.3. Anti-HCMV and anti-VZV activity

Human cytomegalovirus (HCMV) belongs to a widely dis-
tributed member of the herpesvirus family that generally
remains unnoticed in the human body, but can be severely

pathogenic in immunocompromised patients (Kenneson and
Cannon, 2007; Lilleri and Gerna, 2016; Plotkin and
Boppana, 2019). HCMV is found to lead to a variety of serious

diseases (mainly pneumonia and gastroenteritis) that can
severely cause to death (Boppana and Britt, 1995; Perotti
and Perez, 2019; Sandhu and Buchkovich, 2020), and is the
main viral cause of congenital diseases affecting children by

causing deafness, learning disabilities, and mental retardation
(Gupta et al., 2014). In despite of tremendous efforts in vaccine
and treatment, HCMV infections still threaten the lives of indi-

viduals with poor immune function and newborns, but cur-
rently available compounds for HCMV have poor drug-like
properties such as oral bioavailability, toxicity, and so on.

Therefore, it is needed for anti-HCMV compounds with effec-
tive safety and novel mechanisms of action. 40’-Benzoylurea-
TSAO derivatives showed pronounced antiviral activity
against replication of HCMV at micromolar concentrations

(0.29–2.0 mM) that is below the toxicity threshold. In particu-
lar, compound C1 showed the highest anti-HCMV activity.
The brief SAR was discussed in Fig. 10 (De-Castro et al.,

2007; De-Castro et al., 2008).
Herpesvirus infections are the most frequent causes of viral

infections in immunocompetent as well as in immunocompro-

mised patients. Several 4-benzyloxy-c-sultone derivatives were
found to have a selective inhibitory activity against HCMV
and Varicella zoster virus (VZV) replication in vitro. These

novel compounds don’t show cross-resistance against mutant
drug-resistant HCMV strains, pointing to a novel antiviral
mechanism. The brief SAR was discussed in Fig. 11 (De-
Castro et al., 2009).

3.4. Anti-BVDV activity

Hepatitis C virus (HCV) is a major health problem worldwide.

The most common complications are fibrosis (20–30%) and
cirrhosis (10–20%), in which 1–4% has developed hepatocellu-
Fig. 10 Anti-HCMV activity of 40’-benzoylurea-TSAO

derivatives.
lar carcinoma and 350,000 people each year die from HCV-

related advanced liver disease (Alkharsah et al., 2020;
Darweesh et al., 2015; Lapa et al., 2019; Rau et al., 2013).
There is an urgent need for efficient and selective HCV replica-

tion inhibitors. HCV and BVDV belong to the Flavivirus
genus with similar genomic structure and replication path-
ways. BVDV infection is able to affect most of the organ sys-

tem, which acute infection may lead to peripheral blood
lymphocyte reduction, apoptosis and immunosuppression.
Antiviral agents targeting BVDV replication may inhibit
HCV replication. As shown in Fig. 12, novel d-sultones con-

taining c-lactone may be developed as antiviral agents against
HCV infection (Lanyon et al., 2014; Liu et al., 2018; Tabarrini
et al., 2006; Villalba et al., 2016; Xu et al., 2014).

3.5. Selective BuChE inhibitors

Alzheimer’s disease (AD) is a chronic neurodegenerative dis-

ease. The most effective strategy of improving the symptoms
of AD is to use cholinesterase (ChE), acetylcholinesterase
(AChE) and butyrylcholine (BuChE), inhibitors to restore

acetylcholine (ACh) levels (Kumar et al., 2018; Liu et al.,
2017; Zhou et al., 2016). Clinical studies have shown that
BuChE inhibition in cerebrospinal fluid is correlated with cog-
nitive function in AD patients. Selective BuChE inhibitors

infused into the cerebral cortex of rats can increase extracellu-
lar ACh levels by 15 times, and no choline-like adverse reac-
tions have been found. In advanced AD patients, BuChE

took over the role of AChE, reaching almost 80% of the over-
all ChE activity (Contestabile, 2011). Therefore, selective
BuChE inhibitors have great potential to develop drug

candidates.
Recent, a class of novel d-sultone-fused pyrazole scaffold

was discovered as highly selective sub-micromolar BuChE
inhibitors, which is an effective selective BuChE inhibitor

and has non-toxic, lipophilic and significant neuroprotective
activity. Moreover, this scaffold showed reversible, mixed-
type BuChE inhibitory activity, which may be used to improve

disease symptoms in progressive AD. Further research found
O
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Single ortho-X substitution enhances 
antiviral activity(X stands for halogen);

o-Br showed the best antiviral activity, 
EC50 = 0.12 nM.
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Fig. 12 Anti-BVDV activity of d-sultone.



Fig. 13 SARs of d-sultones as BuChE inhibitors.

Fig. 15 d-Sultones as b-receptor inhibitors.
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that there are two flexible amino acids (Leu286 and Val288) in
the acyl pocket of hBuChE compared to hAChE, which allows

binding of bulkier ligands. Simultaneously, a ChE inhibitor
(reversible or pseudo-irreversible) contains a basic nitrogen
atom crucial for the interaction with the ChE binding site.

Therefore, the structure-based optimization of d-sultone-
fused pyrazoles was conducted to further improve the potency
and selectivity of BuChE inhibitor (Zhang et al., 2020). Fig. 13

showed SAR of d-sultone-fused pyrazoles as BuChE
inhibitors.

The amino acid sequence of AChE and BuChE is 65%
homologous, and its protein structure contains a catalytic

active site (CAS), a deep canyon and a peripheral anion site
(PAS). The two aromatic residues of hAChE burst into the
canyon to occupy the valley space, while the replacement of

hBuChE with smaller residues provided a wider space, allow-
ing larger substrates to bind and be hydrolyzed (Brus et al.,
2014; Cavallaro et al., 2018; Chen et al., 2018). The different

structural characteristics of the two enzymes lead to substrate
specificity: AChE is more selective for small acetylcholine
molecules, and BuChE has greater affinity for various neu-
roactive peptides (Chierrito et al., 2018; Košak et al., 2018;
Fig. 14 (A) 3D mode of the pocket surface of compound E1 with rece

active compound with receptor hBuChE (conventional H bond and C

green, light green, brown, pink and light pink lines, respectively). Dis
Panek et al., 2018). Molecular docking (Fig. 14) showed that
compound E1 is nicely bound into hBuChE via a strong hydro-
gen bond interaction between the hydroxyl unit with Asn68, p–

p interaction between the benzyl ring with Leu286, Val288 and
Phe329 in the acyl sub-pocket, and a p–anion interaction
between the S atom of sultone ring with His438 in the hydrol-

ysis sub-pocket (Zhang et al., 2020).

3.6. b-Receptor antagonists

As shown in Figs. 15, 8-(3-amino-2-hydroxypropoxy)benzoxa
thiin was developed as an ideal remedy for cardiovescular dis-
orders such as arrhythmie, angina pectoris, hypertension, and

so on. Compounds with N-alkyl or an aralkyl substitution
showed clearly its effect as a b-blocker which may be applied
to angina pectoris and hypertension in addition to arrhythmia,
wherein R1 represents hydrogen atom or a lower alkyl group,

and R2 represents a lower alkyl group or an aralkyl group.
Among them, N-t-Bu substitution substitution showed excel-
lent anti-arrhythmic effect with 96.3% of rat brain synapto-

some membrane b-receptor inhibitory effect and 0.03 mg/kg
(ED50) activity at 1 mM, while toxicity and side-effects are very
low (Hori, 1985).
ptor hBuChE (PDB ID: 5LKR), (B) 2D mode of the interaction of

–H bond, halogen, p–anion, alkyl, and p–alkyl are represented by

covery Studio Client v18.1.0 were used to present images.



Fig. 16 The anti-angiogenesis and skin sensitization, carcino-

genic effects of d-sultone.
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3.7. Anti-angiogenic effect and skin sensitization, carcinogenic
effect

The angiogenesis activity of S-CA was evaluated by the chick
chorioallantoic membrane (CAM) model. As shown in Fig. 16,

In vivo a murine sarcoma S180 model, reduction of the tumor
weight and tumor HE staining regions demonstrated that S-
CA (iv, 10 mg/kg) had potent inhibition effects (44.7% inhibi-

tory rate in S180 mice) and low acute toxicity (LD50: 25.6 mg/
kg) (Li et al., 2015). Alk-1-ene-c-sultone has been proven to be
a particularly strong skin sensitizer, while alkane-c-
sulfolactone has been found to be a medium sensitizer

(Fig. 16). In rats of either weekly or a single intravenous inject-
ing 1,3-propanelactone, tumors were observed at various tis-
sues including the brain and nervous system. Skin exposure

to 1,3-propane sultone can cause tumors in the skin and lymph
reticulum of bisexual mice, while subcutaneous injection can
cause lung cancer (regenerative adenocarcinoma) in male rats

(Meschkat et al., 2001).
Sultone stents show a wide range of pharmacological activ-

ities, but reports on preclinical trials of sultone are rarely a

matter to be solved. Future medicinal chemists should increase
the relevance of sultone pharmacokinetic studies to provide a
theoretical basis for the subsequent application of sultone
structured drugs as clinical candidate compounds. CA inhibi-

tors are used to treat different diseases. Based on the difference
of CA isoforms, rational drug design can be used to improve
selectivity and activity of CA inhibitors. SARs of TSAO as

anti-HIV agents can be used to optimize the base part of
TSAO, which plays a modulatory role in its activity/cytoxicity.
In the future, these compounds with benign activity and a clear

mechanism of action can be regarded as valuable candidate
prototypes for the design and development of candidate drugs.
It is interesting to explore the role of sultones in the field of

medicine by studying the SAR, the toxicity level of active com-
pounds and their mechanism of action, as well as discussing
those binding conformations in the active site.

4. Conclusion

This review aims to provide a wide range of information on
sultone scaffolds, the unique sultone scaffold has multiple

pharmacological activities in medicinal chemistry. In this
review, we discuss in detail various strategies for the simple
and effective synthesis of sultone derivatives from readily

available raw materials. In addition, sultone-based drugs have
great potential therapeutic value for a variety of drug targets,
such as anti-CA, anti-viral, anti-tumor, et al. We have dis-

closed present role of diverse sultone in the field of medicinal
chemistry by discussing insights of the SAR studies, their
mechanism action and binding conformation of these hetero-
cycles with various targets. Additionally, we hope that SARs
can be further used for structural optimization. Target-based

sultone synthesis should be designed to obtain novel com-
pounds with target selectivity. Synthetic chemists can develop
the methods of batch synthesis of sultones to build up sultone

compound libraries find potent lead compounds containing
sultone in the future.
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Plietker, B., Seng, D., Fröhlich, R., Metz, P., 2000. High Pressure

Intramolecular Diels-Alder Reactions of Vinylsulfonates and

Vinylsulfonamides. Tetrahedron 56 (6), 873–879. https://doi.org/

10.1016/S0040-4020(99)01073-X.

Plotkin, S.A., Boppana, S.B., 2019. Vaccination against the human

cytomegalovirus. Vaccine. 37 (50), 7437–7442. https://doi.org/

10.1016/j.vaccine.2018.02.089.

Postel, D., Van-Nhien, A.N., Marco, J.L., 2003. Chemistry of

Sulfonate- and Sulfonamide-Stabilized Carbanions-The CSICR

eactions. European Asian J. Org Chem. 2003 (19), 3713–3726.

https://doi.org/10.1002/ejoc.200300170.

Pustenko, A., Stepanovs, D., Zalubovskis, R., Vullo, D., Kazaks, A.,

Leitans, J., Tars, K., Supuran, C.T., 2017. 3H–1,2-benzoxathiepine

2,2-dioxides: a new class of isoform-selective carbonic anhydrase

inhibitors. J. Enzym. Inhib. Med. Chem. 32 (1), 767–775. https://

doi.org/10.1080/14756366.2017.1316720.
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D., Semela, D., Müllhaupt, B., Geier, A., 2013. Impact of genetic

SLC28 transporter and ITPA variants on ribavirin serum level,

hemoglobin drop and therapeutic response in patients with HCV

infection. J. Hepatol. 58 (4), 669–675. https://doi.org/10.1016/j.

jhep.2012.11.027.

Rawner, T., Knorn, M., Lutsker, E., Hossain, A., Reiser, O., 2016.

Synthesis of trifluoromethylated sultones from alkenols using a

copper photoredox catalyst. J. Org. Chem. 81 (16), 7139–7147.

https://doi.org/10.1021/acs.joc.6b01001.

Revathi, L., Ravindar, L., Leng, J., Rakesh, K.P., Qin, H., 2018.

Synthesis and chemical transformations of fluorosulfates. Asian J.

Org. Chem. 7 (4), 662–682. https://doi.org/10.1002/ajoc.201700591.

Revol, G., Callum, T.M., Morin, M., Gagosz, F., Barriault, L., 2013.

Photoredox transformations with dimeric gold complexes. Angew.

Chem. Int. Ed. 52 (50), 13342–13345. https://doi.org/10.1002/

anie.201306727.

Ritz, H.L., Connor, D.S., Sauter, E.D., 1975. Contact sensitization of

guinea-pigs with unsaturated and halogenated sultones. Contact

Dermatitis. 1 (6), 349–358. https://doi.org/10.1111/j.1600-

0536.1975.tb05472.x.
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