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Abstract These days, an important concern in water contamination is the remaining dyes from

various sources (for instance, dye and dye intermediates industries, pulp and paper industries, tex-

tile industries, craft bleaching industries, tannery, and pharmaceutical industries, etc.), and a broad

range of persistent organic contamination has been entered to the wastewater treatment systems or

natural water supplies. Indeed, it is extremely hazardous and toxic to the living organism. There-

fore, it is necessary to remove these organic pollutants before releasing them into the environment.

Photocatalysis is a quickly growing technology for sewage procedures. For this purpose, Cu2HgI4
nanostructures were prepared via facile, and cost-effective sonochemical method. The effect of var-

ied circumstances, such as various surfactants, sonication power, and sonication time was consid-

ered on the crystallinity, structure, shape, and particle size of products. Cu2HgI4 possesses a suitable

bandgap (2.2 eV) in the visible area. The photocatalytic performance of the Cu2HgI4 was surveyed

for the elimination of various organic dyes under visible radiation and exposed that this compound

could degrade and remove methyl orange about 94.2% in an acidic medium after 160 min under

visible light. Besides, the result showed that various parameters, including, pH, dye concentration,

types of dyes, catalyst dosages, and time of irradiation affected the photocatalytic efficiency.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Water is a crucial component of all living organisms. The Earth con-

tains 70 % of water, of which only less than 2.5 % is available in

the form of fresh water that is exploited in industry, agriculture, and

for drinking purpose (Arumugam et al., 2021a; Arumugam et al.,

2021b; Altaee, et al., 2020; Alshamsi, et al., 2021; Alshamsi and

Alwan, 2015; Hussain, et al., 2020; Al-Bedairy and Alshamsi, 2018).

Therefore, the demand of fresh water has increased gradually, resulting
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in the creation of water pollution. ‘‘Leaving No One Behind,” stated

by UN World Water Development Report in 2019, indeed demon-

strates the importance of water resource management and wastewater

treatment (Arumugam & Choi, 2020; Arumugam et al., 2021c; Chen

et al., 2019). Excessive demand for pharmaceutical, personal care, agri-

cultural and industrial products driven by the continued growth of the

world population has inevitably escalated the discharge of organic con-

taminants into the environment (Shenoy et al., 2021b; Sridharan et al.,

2021). The steadily increasing concentration of organic contaminants

primarily originating from pharmaceutical and personal care products

in municipal wastewaters of many urban cities globally is making

microorganisms resistant to drugs (Chen et al., 2020; Shenoy et al.,

2021a). Undoubtedly, these organic contaminants pose a huge threat

to the environment and human health as they have demonstrated sev-

ere ecological risk for mutagenesis, teratogenesis and carcinogenicity

(Shenoy et al., 2020).

Textile colorants and other manufactured colorants comprise prob-

ably the biggest groups of organic compounds, indicating an expand-

ing ecological threat. Approximately 1–20% of the total global dye

production is wasted through the dyeing process and is delivered into

the textile sewages (Houas et al., 2001; Konstantinou & Albanis, 2004;

Nasir et al., 2021; Weber & Stickney, 1993). The abandonment of those

dyed effluents in the environment is a significant cause of non-elegant

contamination and eutrophication and can create hazardous byprod-

ucts within hydrolysis, oxidation, or other chemical reactions occur-

ring in the sewage phase (Bianco Prevot et al., 2001; Hussain et al.,

2021; Neppolian et al., 2002; Saquib & Muneer, 2003). Therefore,

the degradation of dye sewages has gained much consideration. Con-

ventional physical procedures (ion exchange on synthetic adsorbent

resins, ultrafiltration, adsorption on activated carbon, coagulation by

chemical agents, reverse osmosis, etc.) can frequently be applied effi-

ciently to remove dye contaminants (Badvi & Javanbakht, 2021;

Galindo et al., 2001; Kuo & Ho, 2001; Meshko et al., 2001; Mittal

& Khanuja, 2021). However, these methods are not destructive, as they

only transport organic mixtures from water to another phase, so pro-

ducing secondary contamination. Accordingly, reproduction of the

adsorbent substances and solid wastes post-treatment, which are costly

procedures, are required (Beura et al., 2021; Su et al., 2021). Tradi-

tional biological wastewater treatment processes are inefficient for

degradation and decolorization owing to the high degree of aromatic

substances present in colorant molecules and the durability of modern

dyestuffs (Aziz et al., 2020; Luque et al., 2021). Moreover, most of the

colorants are just adsorbed on the mud and are not destroyed

(Konstantinou & Albanis, 2004). Ozonation and chlorination are also

applied to remove specific colorants only at slower speeds since they

have a poor impact on the carbon content and often high operating

costs (Slokar & Le Marechal, 1998; Surendra et al., 2020).

These are the causes of how advanced oxidation processes (AOPs)

have been developing over the past decade as they can overcome the

difficulty of dye removal in aqueous operations. AOPs are based on

the production of highly reactive species, including hydroxyl radicals

(�OH) that rapidly and non-selectively oxidize a wide range of contam-

inants. AOPs, including H2O2/UV processes (Bokhari et al., 2020;

Rosa et al., 2020), photo-Fenton and Fenton catalytic reactions

(Moradi et al., 2020; Raji et al., 2020), and photocatalysis

(Mahmood et al.; Wang et al., 2021) have been investigated below a

wide range of experimental states to decrease organic load and the

color of dye comprising sewage. The essential benefit of this method

is its inherently destructive nature: it does not include mass transfer-

ence; it can be performed below ambient situations (oxygen (O2) is uti-

lized as an oxidizing agent) and may direct to complete organic carbon

mineralization into carbon dioxide (CO2) (Sakthivel et al., 2003; Stylidi

et al., 2003; Wang, 2000; Ahmadian-Fard-Fini et al, 2019; Amiri et al,

2017).

Over the past decades, interest in superionic conductors has

increased because of their application as solid electrolytes in solid-

state batteries. The first fast ion conductors of silver ion type superi-

onic conductors are Cu2HgI4 and Ag2HgI4 compounds
(Sudharsanan et al., 1984). Ketelaar (Ketelaar, 1934) in 1934 fabri-

cated these materials and recognized great ionic conductivity in these

compounds. One of the most notable perspectives in the comprehen-

sion of superionic solids is the movement of mobile ions. Besides, Cu2-

HgI4 belongs to the thermochromic materials, since it reversibly alters

color by temperature. Cu2HgI4 is in the ordered b-phase at room tem-

peratures (300 K). Nevertheless, it changes from bright red (b-phase)
to dark brown (disorder a-phase) at 343 K (Salem et al., 2008). There

are several study about superionic and thermochromism properties of

Cu2HgI4 (Chivian, 1973; Friesel et al., 1987; Lumsden et al., 1995;

Salem et al., 2008; Sudharsanan & Clayman, 1985; Wong et al.,

1981). According to its suitable bandgap (2.2 eV), we decided to study

its photocatalytic activity under visible light for the first time. Besides,

this is the first effort of preparing Cu2HgI4 by sonochemical method.

2. Experimental

2.1. Materials

All chemical agents employed in this research were furnished

in superior quality. Lithium iodide (LiI�2H2O), Copper sulfate
(CuSO4), Sodium thiosulfate (Na2S2O3), Mercury (II) acetate
(Hg(O2CCH3)2), Sodium dodecylbenzene sulfonate (SDBS),

Ethylenediaminetetraacetic acid (EDTA), Sodium dodecyl sul-
fate (SDS), Polyvinyl pyrrolidone (PVP-25000), Sodium salicy-
late (NaHSal) were acquired of Merck Company and

employed without any refinement.

2.2. Synthesis of Cu2HgI4

Copper iodide (CuI) was fabricated by a facile co-precipitation

method from LiI�2H2O and CuSO4. A specific quantity of
CuSO4 was dissolved in water, and a stoichiometric amount
of sodium thiosulfate was joined to the CuSO4 solution for

reducing Cu2+ to Cu+. Afterward, a definite amount of sur-
factants (such as NaHSal, EDTA, SDS, SDBS, and PVP)
was dissolved in water and combined with the above solution.

Then, a certain amount of LiI�2H2O was liquefied in water and
added to the above solution to achieve white powder. The
HgI2 was similarly prepared by adding Hg(O2CCH3)2 to LiI.

The mixture containing copper iodide was added to the HgI2
suspension and sonicated for 20 min. The light orange powder
was filtered, washed by ethanol, and finally dried at 60 �C
(Scheme 1). Table 1 represents multiple fabrication conditions

of Cu2HgI4 for obtaining the desired condition.
The temperature of the mixtures was monitored versus time

to estimate the power yield throughout the operations. dT/dt

was computed from the plans of temperature (T) versus time
(t) data. So the power (P) is estimated as (Karami et al.,
2021b):

P ¼ Mcp
dT

dt

� �
ð1Þ

M is the solvent mass (kg), and cp is the thermal capacity of the
solvent (J kg-1K�1). The power yield is estimated to be 16.2 W

in distilled water, in 60 W of power entry.

2.3. Photocatalytic performance

The photocatalytic activity of Cu2HgI4 was examined by its
potential for degradation of different organic colorants below
visible radiation. An Osram light (150 W) was employed as the



Scheme 1 Schematic diagram of the fabrication of Cu2HgI4 nanostructures.

Table 1 Preparation conditions for Cu2HgI4.

Sample No. Type of capping agent Time of sonication (min) Power of sonication (W) Products Grain size(nm)

1 – 20 60 Cu2HgI4 30.4

2 SDS 20 60 Cu2HgI4,HgI2 22.5

3 SDBS 20 60 Cu2HgI4 29.1

4 EDTA 20 60 Cu2HgI4, HgI2 33.5

5 PVP 20 60 Cu2HgI4 19.4

6 NaHsal 20 60 Cu2HgI4 30.6

7 PVP 10 60 – –

8 PVP 30 60 – –

9 PVP 20 40 – –

10 PVP 20 80 – –
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radiation source, containing a wavelength in the range of 400–
780 nm for the photocatalytic process. The experiments were

conducted without catalyst and light, and almost no dye was
destroyed after 90 min. Different dosages of Cu2HgI4 (30,
50, and 70 mg) were added to 50 mL 10 ppm of dye solutions

for every experiment. The suspension was mixed in the dark
for 0.5 h before turning on the visible light. A 5 mL specimen
is removed from the suspension every 15 min during irradia-

tion and centrifuged at 12000 rpm for 3 min. The buoyant
was collected, separated, and observed with a UV–Vis
spectrophotometer.

3. Result and discussion

3.1. Characterization

One of the best ways for understanding what is in the com-
pounds is the X-ray diffraction pattern. The XRD patterns
of as-prepared products are illustrated in Fig. 1. Sample 1
was formed from Copper Mercury Iodide 00-034-0422 with

Tetragonal structure and a small quantity of Mercury Iodide
00-001-1217 with Tetragonal structure (Fig. 1a). Fig. 1(b-f)
displays the effect of different surface-active agents (surfac-

tants) on the purity of products. Cu2HgI4 was formed in the
presence of all surfactants, but there is a small amount of
HgI2 as an impurity in the presence of SDS and EDTA. The

diffraction peaks at the 2h = 25.3, 33.7, 41.8, and 49.6� relate
to the corresponding crystal planes (112), (211), (204), and
(312) well-matched with the JCPDS No. 034-0422. Therefore,
the desired condition was selected in the presence of PVP as a

polymeric surfactant for further experiments. Scherrer formula
was utilized to determine the crystallite size; D = Kk/bcosh (2)
(Ghanbari & Salavati-Niasari, 2021) to be between 22 and

33 nm (Table 1). The production and explosion of bubbles
raise the temperature, which boosts the reaction toward the
product. The reaction progress is synopsized below:



Fig. 1 XRD patterns of the samples (a) 1, (b) 2 (c) 3, (d) 4, (e) 5, and (f) 6.
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2CuCl + LiI ! 2CuI ð3Þ

Hg(CH3COO)2 + LiI ! HgI2 ð4Þ

2CuI þ HgI2 !Ultrasound radiation
Cu2HgI4 ð5Þ
The shape, morphology, uniformity, and particle size of

products were carried out through the FESEM micrographs
(Fig. 2). Without surfactant, aggregate particles with an aver-
age size of 65 nm using Digimizer software can be seen in

Fig. 2a. Fig. 2(b-f) represents the effect of different types of
surfactant on particle size and morphology of products. In
the presence of SDS and SDBS, plate structures with large par-



Fig. 2 SEM images of the samples (a) 1, (b) 2 (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, (i) 9 (j) 10 and (k) size distribution of samples.
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ticles were formed (Fig. 2b and 2c). Irregularly aggregate par-

ticles were composed using EDTA (Fig. 2d). Using PVP as a
polymeric capping agent caused uniform aggregate nanoparti-
cles with an average particle size of 42 nm (Fig. 2e). Fig. 2f

shows that the addition of NaHSal as a surfactant increased
the particle size of the product. Fig. 2(g-j) shows the influence
of power and time of sonication on the morphology of prod-

ucts. Decreasing the sonication time and power prevents the
reaction temperature from rising too high, thus reducing the
particle size in the samples (Fig. 2g and 2i). Besides, long time

(30 min) and high power (80 W) boosts the temperature of
reaction, which causes irregular large particles (Fig. 2h and
2j). Hence, the desired condition was chosen in the presence
of PVP as a polymeric capping agent at medium power of son-

ication (60 W) for 20 min. Fig. 2k displays the histogram size
distribution of samples 1–10 obtained using Digimizer soft-
ware, indicating that most particles are between 40 and 60 nm.

One of the analytical techniques utilized for the chemical
characterization or elemental analysis of a sample is Energy-
dispersive X-ray spectroscopy (EDX). Fig. 3 demonstrates

the EDX spectra of Cu2HgI4, indicating all peaks are attribu-
ted to Cu, Hg, and I elements. Consequently, the products are
perfectly purified and related to the XRD results. Besides, the
uniform distribution of elements in the samples was confirmed

by the EDX result.
Fig. 4 indicates the TEM photographs of Cu2HgI4 nanos-

tructures (sample 5) in two scales 120, and 60 nm. The uniform

nanoparticles with average size of 39 nm are observed in this
figure, which corresponds to the SEM and XRD outcomes.

To calculate the specific surface area and pore volume of

samples, the BET surface area analysis is a standard tool.
There is no need to investigate the BET surface area of all
products due to the similar morphology of samples prepared

in different conditions. The nitrogen adsorption–desorption
isotherm for sample 5 is depicted in Fig. 5a. Based on the
IUPAC category sample 5 reveals the isotherm type III with
H3-type hysteresis loop (Fig. 5a), which is ascribed to microp-

orous materials. The specific BET surface area was calculated
to be 14.2 m2 g�1, and the average pore diameter is 8.6 nm.
From the BJH plot, the pore volume average and pore diam-

eter are 0.02234 cm3 g�1 and 3.01 nm, respectively (Fig. 5b).
Fig. 5(c-d) represents the optical properties of sample 5

using UV–Vis diffuse reflectance spectroscopy (DRS). Cu2-

HgI4 nanostructure displays normal absorptions in the range
of 215–415 nm. The bandgap (B.G.) can be defined by the fol-
lowing equation (Ghanbari & Salavati-Niasari, 2018): A(ht-B.



Fig. 3 EDS spectrum of the samples (a) 1, (b) 2 (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, (i) 9 and (j) 10.

Fig. 4 TEM photographs of sample 5.
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G.) = (aht)1/r (3); That A is a material constant, ht is the light

energy, r is 2 or 1/2 for indirect and direct allowed transitions,
and a is absorption factor, respectively (Ghanbari & Salavati-
Niasari, 2018). The bandgap was determined 2.2 eV, which
makes this compound suitable for visible photocatalytic

activity.

3.2. Photocatalytic activity

The photocatalytic activity of Cu2HgI4 nanostructures (sample
5) was studied by monitoring the degradation of cationic and
anionic organic dyes, such as Acid Black 1 (AB1), Methyl

Orange (MO), Eosin (Es), Methylene Blue (MB), Methyl Vio-
let (MV), and Rhodamine B (RhB) in an aqueous solution,

under visible radiation (Fig. 6). Without Cu2HgI4 or radiation,
virtually no colorants were degraded after 90 min, exposing the
self-degradation part was irrelevant. The percentage of degra-
dation (%D) was defined as follows:

%D ¼ C0 � Ctð Þ=C0 � 100 ð4Þ

where Ct and C0 are the solution absorbance of sample after
and before decolorization, separately. The impact of several

dyes and the dosage of catalysts was conducted to gain better
performance. Fig. 6a exhibits the photocatalytic degradation
of 0.03 g Cu2HgI4 in the presence of AB1, MO, Es, MB,
MV, and RhB. The decolorization percentages of mentioned



Fig. 5 (a) Low temperature N2 adsorption/desorption isotherm, (b) BJH plot, (c) DRS spectrum and (d) optical density (ahm)2 vs.

energy (E) plot of the sample 5.
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dyes are about 42.5%, 54.6%, 46.2%, 39.1%, 36.3%, and
27.9% after 90 min, respectively. Using 0.05 g Cu2HgI4 has

increased the photocatalytic degradation of all dyes (47.2%,
59.1%, 52.1%, 46.0%, 44.0%, and 32.1%). Fig. 6e reveals that
increasing Cu2HgI4 dosage to 0.07 g has enhanced the degra-

dation percentage to 52.0%, 63.0%, 57.0%, 54.0%, 48.0%,
and 41.1%, respectively. Therefore, enhancing the Cu2HgI4
doses increase the surface of catalyst and enhances the dye
adsorption on the Cu2HgI4 surface (Karami et al., 2020). Also,

this compound can degraded the anionic dyes better than
cationic ones (Scheme 2) due to the presence of positively
charged copper ions (Cu+) in the nanostructure.

Furthermore, the possible reaction rate constants of dyes
were determined depending on the Langmuir–Hinshelwood
mechanism (Hosseinpour-Mashkani et al., 2012). ln(C0/

C) = kt (5); Where C is the concentration of dyes at t time;
C0 is the initial concentration of coloring agents; and k is the
Pseudo-first order rate constant (min�1). The Pseudo rate con-

stant (k) has been determined from ln(C0/C) linear correlations
vs. reaction time. As seen in Fig. 6b, 6d, and 6f, the better pho-
tocatalytic performance was achieved in a bigger reaction rate
constant.

Increasing the time of radiation from 90 min to 160 min,
enhanced the photocatalytic efficiency from 63.0% to 84.1%.
Besides, Fig. 7a reveals the effect of different dye concentra-

tions (5, 10, and 15 ppm) of methyl orange after 160 min.
The result unveils that decreasing dye concentration from
10 ppm to 5 ppm increases the degradation percentage from
84.1% to 89.8%, and enhancing the dye concentration reduces
dye decolorization. Many numbers of MO molecules saturate
the binding sites on the Cu2HgI4 surface in 15 ppm of MO.
Obviously, the degradation percentage reduces by enhancing

the initial dye concentration (de Luna et al., 2013). Fig. 7b
exhibits the effect of pH on the decolorization of MO. The
degradation percentages of MO are about 84.1, 92.4, and

67.0% in neutral, acidic, and alkaline media, respectively.
The outcomes reveal that the highest efficiency is at pH = 3.
Since MO is an anionic organic dye, it is more efficient in

pH less than 7 than in pH � 7. The logic for this aspect is that
the concentration of H+ groups increased by decreasing pH.
In other words, the generation of H+ extended in the solvent,

and the photocatalytic efficiency improved (Karami et al.,
2020; Kazeminezhad & Sadollahkhani, 2014). Table 2 com-
pared the photodegradation of different iodide compounds
under visible and UV light. As demonstrated in this table, Cu2-

HgI4 can compete with other iodide compounds as a photocat-
alyst. We can nominate Cu2HgI4 as a novel catalyst for the
water purification process.

3.2.1. Mechanism of photocatalytic oxidation

It is completely confirmed that valence band (VB) holes (h+)
and conduction band (CB) electrons (e-) are produced when

aqueous catalyst suspension is lighted by light energy higher
than its bandgap (2.2 eV). The photoinduced electrons can
reduce the colorant or react with electron acceptors, for exam-

ple, O2 dissolved in water or adsorbed on the catalyst surface,



Fig. 6 Photocatalytic degradation of different dyes and Plots of ln(C0/C) vs time over sample 5 with different dosages of Cu2HgI4 (a and

b) 0.03 g, (c and d) 0.05 g, and (e and f) 0.07 g under visible-light irradiation.
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reducing it to O2
�� (radical of superoxide anion). The photoin-

duced holes can react with H2O or OH� oxidizing them into
OH� radicals or oxidize the organic dyes to produce R+. They
have been reported to be responsible for the photodegradation

of organic dyes together with other high oxidant species (per-
oxide radicals). Multiple initial reactive species, including, 1O2,
H�, h+, HO�, and O2

�� can be created through photocatalytic
degradation methods in UV–Vis/semiconductors. The forma-

tion of O2
�� can prevent the recombination of photogenerated

charge carriers. The HO� might be produced just within the
e� ? O2

�� ? H2O2 ? OH� way. Besides, the OH� radicals

are created by several stage reduction O2
�� in the process. It

was reported that the water separated in subsequent molecular
layers and on the TiO2 surface have three roles (1) preserving

charges (inhibiting recombination of electron-hole), (2) per-
forming as an electron acceptor (creation of H atoms in a reac-
tion of photoinduced electrons with protons on the surface, –

OH2
+), and (3) performing as an electron donor (reaction of

water with photoinduced holes to produce OH� radicals). As
claimed by prior investigations (Jiang et al., 2015), the princi-
pal active oxygen species produced through photocatalytic,

and oxidation reactions are OH� and 1O2 radicals, respectively.
Relying on the above thoughts, we can suggest that the possi-
bility of creating OH� should be much higher than the O2

�� for-

mation. Nevertheless, OH� is a powerful, unselective oxidant
that drives to the complete or incomplete mineralization of
numerous organic compounds. According to the above state-
ments, �OH, 1O2, and O2

�� are the active species in the mecha-

nism of photocatalytic degradation of organic dyes. Therefore,
the literatures have been indicated that the reactive �OH per-
forms the main role and, 1O2 and O2

�� perform an insignificant

role in the photocatalytic degradation of organic dyes (Tzeng
et al., 2016). The �OH may be produced by an h+ with H2O.
The 1O2 may be created by an h+ with O2

�� species. The O2
��

may be formed through an e� with O2 and/or 1O2 with e�-
species (Rahimzade et al., 2021). Therefore, �OH can help as
the most essential active species in this research.

A series of scavengers was added to scavenge the important
effective agents to estimate the effect of active species in the
photodegradation of dyes. The scavengers utilized in this



Scheme 2 Schematic diagram of the mechanism for the photocatalytic degradation of Cu2HgI4 nanostructures over different dyes.

Fig. 7 Photocatalytic degradation of MO with 0.07 g of Cu2HgI4 in a) different concentrations (5, 10, and 15 ppm), b) various pH (3, 7,

and 10), c) various scavengers, and d) cycling runs in the photocatalytic degradation of 10 ppm MO under visible irradiation.
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research comprised benzoic acid (BA) for �OH, Ethylenedi-
aminetetraacetic acid (EDTA) for h+, and 1,4-Benzoquinone

(BQ) for O2
�� (Ansari, et al., 2016). The process is similar to

the photocatalytic procedure. As indicated in Fig. 7c, the pho-
todegradation performance was slightly reduced after adding

BQ as when no scavenger was added. Nevertheless, an evident
decrease in the photocatalytic efficiency was perceived when
EDTA and BA were utilized to scavenge �OH and h+, verify-
ing the effect of �OH and h+ in the photo-oxidation method.
In brief, the effects of different of various scavengers revealed

that the �OH and h+ performed the main roles, and O2
�� per-

formed a minor role in MO degradation. Therefore, the corre-
sponding reactions at the surface of the catalyst causing the

dye degradation can be represented as follows (Karami
et al., 2021a; Karami et al., 2020; Konstantinou & Albanis,
2004, Salavati-Niasari, 2005a,b; Salavati-Niasari et al.,



Fig. 8 XRD pattern of Cu2HgI4 after photocatalytic reaction.

Table 2 The photocatalytic activity of different iodide compounds.

Sample Highest degradation

(%)

Lowest degradation

(%)

Catalyst dosage

(g)

Source of

light

Ref.

Cu2HgI4 nanostructures 92.4 (MO) 41.1 (RhB) 0.07 Vis This work

Rb2HgI4 nanostructures 72.1 (AB1) 48.1 (RhB) 0.07 Vis (Abkar et al., 2021)

Tl4HgI6 nanostructures 76.9 (RhB) 48.9 (ThB*) 0.07 UV (Karami et al., 2021a)

Tl4Cdl6 nanostructures 85.7 (AB1) 49.1 (MB**) 0.05 UV (Ghanbari & Salavati-Niasari,

2018)

CsPbl3 nanostructures 81.7 (MV) 33.0 (AB1) 0.07 Vis (Karami et al., 2020)

Cu2CdI4/CuI

nanocomposites

66.0 (MB) 29.1 (MO) 0.05 UV (Ghanbari et al., 2016)

Ag2CdI4 nanostructures 95.3 (RhB) 57.1 (AB1) 0.05 UV (Ghanbari et al., 2017b)

TlCdI3 nanostructures 94.6 (MB) 27.0 (MO) 0.05 UV (Ghanbari et al., 2017a)

Ag2ZnI4/AgI

nanocomposites

89.3 (MO) – 0.05 UV (Razi et al., 2017)

Tl4PbI6 nanostructures 72.6 (ThB) 47.8 (RhB) 0.05 Vis (Rahimzade et al., 2021)

* Thymol Blue.

**Methylene Blue.

10 E. Abkar et al.
2009a,b; Zinatloo-Ajabshir et al., 2019; Zinatloo-Ajabshir
et al., 2020).

Cu2HgI4 + hm(Visible) ! Cu2HgI4 (eCB
� + hVB

þ)

Cu2HgI4 (hVB
þ) + OH� ! Cu2HgI4 + OH�

Cu2HgI4 (hVB
þ) + H2O ! Cu2HgI4 + Hþ + OH�

Cu2HgI4 (eCB
�) + O2 ! Cu2HgI4 + O2

��

Hþ + O2
�� ! HO2

�

H2O + hþ ! Hþ + �OH
e� + O2 ! �O2
�

�O2
� + Hþ + e� ! HOO�

HOO� + H2O ! �OH + H2O2

�O2
� + 2Hþ ! H2O2

H2O2 + e� ! �OH + OH�

hþ + OH� ! �OH

hþ + H2O ! �OH + Hþ
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hVB
þ + Dye ! oxidation products

OH� + Dye ! degradation products (e.g., H2O,CO2)

eCB
� + Dye ! reduction products
3.2.2. Recyclability and stability of Cu2HgI4

For checking the recyclability of Cu2HgI4 (sample 5), the cat-

alyst was centrifuged, washed with ethanol and water, dried at
65 �C for 24 h, and reused five times under the equal situations.
As shown in Fig. 7d, Cu2HgI4 is very stable and maintains its

high photocatalytic performance across five reaction cycles.
Indeed during the fifth period, the reduction in photocatalytic
activity is 5.6%.

The XRD pattern of Cu2HgI4 nanostructures after the

decolorization of MO is indicated in Fig. 8. As depicted in this
figure, all diffraction peaks are coordinated with Cu2HgI4 (ref-
erence code: 00-034-422) having a tetragonal structure. It

could be concluded the host composition lasts intact, after
the destruction of organic colorant agents. As a result, the sta-
bility of Cu2HgI4 is high in an aqueous solution.

4. Conclusions

The Photocatalysis treatment process is one of the encouraging tech-

nology for removing numerous organic pollutants and dyes from nat-

ure due to its low cost, low energy utilization, and superior catalytic

activity. Cu2HgI4 nanostructures were synthesized by a low cost, fast,

and simple sonochemical pathway. Different conditions, including var-

ious surfactants, sonication power, and sonication time were affected

the structure, purity, morphology, shape, and particle size. The band-

gap of Cu2HgI4 was estimated at 2.2 eV, which makes it suitable for

photocatalytic activity. The photocatalytic results revealed that Cu2-

HgI4 degraded 5 ppm methyl orange about 92.4% in an acidic medium

after 160 min under visible light. This result showed that Cu2HgI4
alone or in combination with other semiconductors can be a good pho-

tocatalyst in the visible region for future water treatment.
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