10.8
CiteScore
 
5.3
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Corrigendum
Current Issue
Editorial
Erratum
Full Length Article
Full lenth article
Letter to Editor
Original Article
Research article
Retraction notice
Review
Review Article
SPECIAL ISSUE: ENVIRONMENTAL CHEMISTRY
10.8
CiteScore
5.3
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Corrigendum
Current Issue
Editorial
Erratum
Full Length Article
Full lenth article
Letter to Editor
Original Article
Research article
Retraction notice
Review
Review Article
SPECIAL ISSUE: ENVIRONMENTAL CHEMISTRY
View/Download PDF

Translate this page into:

Review article
01 2021
:15;
103478
doi:
10.1016/j.arabjc.2021.103478

A comprehensive review on antiepileptic properties of medicinal plants

Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
Department of Pharmacy, Ibadat International University Islamabad, Islamabad, Pakistan
Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
Research Department of Plant Biology and Biotechnology, Loyola College, Chennai, Tamil Nadu, India
Department of Pharmacy, Sarhad University of Science and Information TTechnology, Peshawar 25100, Khyber Pakhtunkhwa, Pakistan
Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu 44600, Nepal
Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah , Saudi Arabia
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

⁎Corresponding authors. waheedmarwat31@gmail.com (Abdul Waheed Khan), armankhan0301@gmail.com (Ameer Khusro), umar.sahibzada@gmail.com (Muhammad Umar Khayam Sahibzada), koirala.biochem@gmail.com (Niranjan Koirala)

Disclaimer:
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.
Authors have equal contribution.

Abstract

Pakistan has large variety of medicinal plants distributed throughout the country. Due to the unavailability and high cost of allopathic medicines, herbal therapists, especially in rural areas, prescribe phytomedicine for Epilepsy. The native people consider such treatments most effective for seizures. The data of the effective antiepileptic medicinal plants of Pakistan were collected from the published research articles by exploring article search engines like PubMed, Medline, Web of Science, Google Scholar, and ScienceDirect. Additional information such as mode of preparation and application of medicinal herbs were acquired from folk medicine users, traditional healers, and local people enriched in knowledge of herbal medicines. Total 97 families were uncovered to be used in epileptic and seizure disorders, of which, the foremost use belonged to Lamiacea 19 (18.56%), Asteraceae and Fabaceae 16 (16.5%) each, Fabaceae 11 (11.34%), Rubiaceae, Rutaceae, and Apocynaceae 6 (2.4%) each, Caesalpiniaceae, Solanaceae, Byrtaceae and Anacardiaceae 5 (2%) each, and Liliaceae, Mimosaceae, Ranunculaceae and Combretaceae 4 (1.6%) each. According to the plants habit, of 241 plants, herbs were 102 (42.15%), trees were 72 (29.75%), shrubs were 54 (22.31%), climbers were 12 (4.96%), and bulbs were 2 (0.83%). According to the part used, 105 (43.39%) plants were found to have antiepileptic potentials in leaves, 51 (31.07%) plants in roots, 20 (8.36%) plants in stem, 8 (3.31%) plants in rhizome, 4 (1.65%) plants in bulb, 32 (13.22%) plants in bark, 6 (2.48%) plants in gum, 19 (7.85%) plants in flowers, 18 (7.44%) plants in fruits, 24 (9.92%) plants in seeds, and 29 (11.98%) plants as a whole. This review provides foundation for researchers to understand the pivotal role of certain medicinal plants towards the treatment of epilepsy and seizures.

Keywords

Epilepsy
Medicinal plants
Prevalence
Phytochemicals
Pakistan
Seizures
1

1 Introduction

The burdens of mental illnesses like depression, epilepsy, Alzheimer, Parkinson, alcohol dependence, and schizophrenia have been considered a serious conditions worldwide (Chang et al., 2013). The global epidemiology of epilepsy and its prevalence in Pakistan and neighboring countries are shown in Table 1. Epilepsy is one of the most common and serious disorders of the brain (Beghi, 2020). About 1% of the population suffers from epilepsy, and about one-third of patients have refractory epilepsy (i.e., seizures are not controlled by appropriate antiepileptic medications). Approximately 75% epilepsy begins during childhood, reflecting susceptibility of the developing brain to seizures (Stafstrom and Carmant, 2015). However, the incidence in childhood has fallen over the past three decades in the developed countries with subsequent increase in geriatric populations.

Table 1 Global epidemiology of epilepsy and its comparative prevalence in Pakistan and neighbouring countries.
Epilepsy Prevalence References
Worldwide 0.5–1% Hussain et al., 2017
Asia 0.49% Khan et al., 2019
Africa 1.13% Khan et al., 2019
Australia 0.44% Bellon et al., 2015
Europe 0.82% Khan et al., 2019
North America 0.8% Theodore et al., 2006
South America 0.98% Khan et al., 2019
Pakistan 2% Awan et al., 2017
Afghanistan 8.9% Ventevogel et al., 2012
China 0.3% Ebrahimi et al., 2012
India 0.39% Ebrahimi et al., 2012
Iran 1.8% Ebrahimi et al., 2012

A clinical syndrome often has many possible causes that can lead to various epileptic syndromes (Beghi, 2020). Epilepsy syndrome refers to a group of clinical characteristics; occur together with similar seizures’ types, age of onset, ECG findings, triggering factors, genetics, natural history, prognosis, and responses to antiepileptic drugs (Stafstrom and Carmant, 2015). The common epilepsies are complex traits depending on inherent variation in particular gene (Beghi, 2020). In term of mechanism, an epileptic seizure can be defined as “a state produced by an abnormal excessive neuronal discharge within the central nervous system” (Penfield and Erickson, 1941). Seizures are paroxysmal alteration of neuronal function caused by the excessive and increased synchronous discharge of the neurons in the brain. Epileptic seizure is actually used to distinguish a seizure caused by abnormal neuronal firing from a non-epileptic event, such as psychogenic seizures (Shorvon et al., 2011; Stafstrom and Carmant, 2015). Not all epilepsies are recognized as electro-clinical syndromes (Robinson et al., 2002; Breakspear et al., 2006). Uncommon epilepsy syndromes that have monogenic inheritance are associated with mutations in genes that encode subunits of voltage-gated ion channel and ligand gated ion channel. In voltage gated ion channels, mutation of Na+, K+, and Cl- channels are associated with forms of generalized epilepsy and infantile seizures syndromes (Scheffer and Berkovic, 2003; Berg et al., 2010). Absence seizure is associated with the dysfunction of P/Q types voltage gated calcium channels (Jouvenceau et al., 2001). Ligand-gated ion channels that are nicotinic, acetylcholine, and GABA receptors subunits, are associated with frontal and generalize epilepsies, respectively. The striking features are variable in epilepsy phenotypes and are associated with the known gene mutations that underlie all known monogenic syndromes. Mutations in two genes that do not encode ion channels have been identified in the idiopathic epilepsies (Scheffer and Berkovic, 2003).

Available antiepileptic drugs suppress seizures without correcting the underlying cause generating seizures, and are effective in 60–70% of individuals (Beghi, 2020). Synthetic drugs used for brain disorders are expensive and sometimes show serious and unavoidable side effects with poor patient compliance. Hence, herbal and Ayurveda treatments are preferred over synthetic drugs for neurological disorders like Alzheimer disease, Parkinson disease, depression, epilepsy, schizophrenia, anxiety, and neuropathy due to low cost, lesser side effects, and better therapeutic effects. The accessibility, negligible incidence of side effects, and cost effectiveness of plant products offer considerable benefits over synthetic drugs (Balkrishna and Misra, 2017). Approximately 70% people of developing countries still rely on complementary and alternative medicines regardless of the improvement in conventional medicines (Shaheen and Kamran, 2017). The aim of this review article is to highlight the efficacious plants used in epilepsy according to the documented researches worldwide.

2

2 Methodology

First of all, articles showing the role of medicinal plants as antiepileptic agents were searched and downloaded from online research databases (PubMed, Medline, Web of Science, Google Scholar, and ScienceDirect) using specific keywords viz. herbal plants, medicinal plants, antiepileptic, antiseizures, prevalence, and epidemiology. All these articles were then viewed one by one and the medicinal plants, which were found to be effective in epilepsy were collected and tabulated (Table 2). The information about the local use and mode of applications of these plants in epilepsy were collected from folk medicine users, local traditional healers, and local elderly people having knowledge of herbal plants. The principle phytoconstituents of important medicinal plants are listed in Table 3.

Table 2 Medicinal plants used traditionally for the treatment of epilepsy.
S. No. Medicinal plants Common name Family Habitat Part used Nature References
1 Aristolochia rotunda L. Smearwort Aristolochiaceae Shrub Root Powder Sahranavard et al., 2014
2 Aristolochia longa L. Dutchman's pipe Aristolochiaceae Herb Root Decoction of roots to make tea Sahranavard et al., 2014
3 Allium sativum L. Garlic Liliaceae Herb Bulb Extract Sharma et al., 2013
4 Asparagus racemosus Willd Satavar Liliaceae Climber Root Powder Jalalpure et al., 2009; Sharma et al., 2013
5 Achyranthes aspera L. Chaff-flower Amaranthaceae Herb Root Powder Gawande et al., 2017; Sharma et al., 2013
6 Abrus precatorius L. Jequirity bean Leguminosae Climber Leaves The leaves are boiled with water Moshi et al., 2005
7 Anacyclus pyrethrum L. Spanish chamomile Asteraceae Herb Root Ethanolic extract Gautam et al., 2011
8 Areca catechu L. Areca nut Arecaceae Tree Root Extract Lodge et al., 1977
9 Albizia coriara
Welw. ex Oliv
West African albizia Mimosaceae Tree Bark Mixture of pulverized bark and Ternstroemia species is inhaled Focho et al., 2009
10 Allium cepa L. Onion Liliaceae Bulb Bulb Decoction with A. sativum and Nicotina tobaccum is taken orally. Focho et al., 2009
11 Annona diversifolia Saff. Ilama Annonaceae Tree Leaves and flower Ethanolic extract González-Trujano et al., 2015; González-Trujano et al., 1998
12 Aloe vera (L.) Burm.f. Aloe Liliaceae Herb Leaves Aqueous extract Rathor et al., 2014; Shah and Khan, 2006
13 Annona senegalensis Pers. Wild soursop Annonaceae Shrub Leaves and Root Infusion Bum et al., 2011
14 Acorus calamus L. Sweet flag Acoraceae Herb Rhizome and root Methanolic, aqueous, and alcoholic extracts Samleti et al., 2012
15 Anastatica hierochuntica L. Rose of jericho Brassicaceae Shrub Whole plant Decoction Abouri et al., 2012
16 Albizzia berteriana (DC.) M.Gomez Flea tree Fabaceae Tree Leaves and seed Ethanolic extract Kasture et al., 2000
17 Annona squamosa L. Sugar apple Annonaceae Tree Seed Ethanol extract Saluja and Santani, 1994
18 Ambrosia paniculate Michx. American wormwood Asteraceae Herb Leaves Decoction Buznego and Pérez-Saad, 2004
19 Artemisia vulgaris L. Mugwort Asteraceae Herb Stem and leaves Aqueous extract Abdul-Ghani et al., 1987
20 Anisomeles malabarica (L.) R.Br. ex Sims Malabar catamint Lamiaceae Herb Leaves Ethanolic extract Choudhary et al., 2011
21 Anthocephalus cadamba (Roxb.) Miq. Burflower-tree Rubiaceae Tree Bark Ethanolic extract Nagakannan et al., 2011
22 Acalypha fruticose Forssk. Birch leaved acalypha Euphorbiaceae Shrub Stem Extract Govindu and Adikay, 2014
23 Afrormosia laxiflora (Benth. ex Baker) Meeuwen East African afrormosia Leguminosae Tree Root Decoction Haruna, 2000
24 Artemisia dracunculus L Tarragon Asteraceae Shrub Whole plant Essential oil Sayyah et al., 2004
25 Aeollanthus suaveolens Mart. ex Spreng. Suavis mart Lamiaceae Herb Leaves Essential oil Elisabetsky and Coelho de Souza, 1997
26 Artemisia verlotorum Lamotte Chinese mugwort Compositae Herb Whole plant Hydroalcholic extract de Lima et al., 1993
27 Acorus gramineus Aiton Japanese sweet flag Acoraceae Herb Rhizome Methanolic extract Duy and Trang, 2015; Yang et al., 2006
28 Balsamodendron myrrha kaunth. Myrrh Burseracea Shrub Seed and gum Powder of seeds and dry gum Sahranavard et al., 2014
29 Bryonia dioica Jacq. Red bryony Cucurbitaceae Tree Fruit and leaves Leaves powder, while fruits are taken as such Sahranavard et al., 2014
30 Bryonia alba L. Wild hop Cucurbitaceae Herb Fruit and leaves Ethanol extract Jäger et al., 2006
31 Boerhavia diffusa L. Punarnava Nyctaginaceae Herb Roots Powder Adesina, 1979; Sharma et al., 2013
32 Bacopa monnieri (L.) Wettst. Water hyssop Scrophulariaceae Herb Leaves Ethanolic extract Balamurugan et al., 2009; Kaushik et al., 2009
33 Biophytum petersianum Klotzsch. Life plant Oxalidaceae Herb Whole plant Powder Focho et al., 2009
34 Butea monosperma (Lam.) Kuntze Flam of the forest Fabaceae Tree Flower Petroleum ether extract Kasture et al., 2000
35 Berberis integerrima Bunge Barberry Berberidaceae Shrub Root Methanolic extract Hosseinzadeh et al., 2013
36 Brassica nigra (L.) K.Koch Black mustard Brassicaceae or Cruciferae Herb Seed Hydro-alcoholic extract Kiasalari et al., 2012
37 Balanites aegyptiaca (L.) Delile Thron tree Balanitaceae Shrub Whole Plant Decoction Bum et al., 2005
38 Bixa orellana L. Annatto Bixaceae Tree Leaves Methanolic extract Shilpi et al., 2006
39 Bridelia micrantha (Hochst.) Baill. Coastal golden-leaf Phyllanthaceae Tree Leaves Decoction Bum et al., 2012
40 Cuscuta epithymum Murray. Love vine Convolvulaceae Climber Stem Hydro-ethanol extract Mehrabani et al., 2007; Sahranavard et al., 2014
41 Caesalpinia bonducella (L.) Roxb. Bonduc nut Caesalpiniaceae Shrub Seed Powder Balamurugan et al., 2009
42 Commiphora opobalsamum Engl. Mecca myrrh Burseracea Tree Seed and gum Powder of seeds and dry gum Sahranavard et al., 2014
43 Cedrus deodara (Roxb. ex D.Don) G.Don Deodar Pinaceae Tree Leaves Alcoholic extract Viswanatha and Nandakumar, 2009
44 Coriandrum sativum L. Cilantro Apiaceae Herb Seed Aqueous and ethanol extract Hosseinzadeh and Madanifard, 2000
45 Celtis integrefolia L. Nettle tree, African hackberry Asteraceae Herb Bark and leaves Methanol extract Muazu and Kaita, 2008; Musa and Adam, 2017
46 Cassia fistula L. Golden shower Fabaceae Tree Seeds Decoction and aqueous seed fraction Sharma et al., 2013; Tan and Castillo
47 Clerodendrum viscosum Vent. Hill glory bower Verbenaceae Shrub Leaves Powder Sharma et al., 2013
48 Chlorophytum borivillianum Santapau & R.R.Fern. Safed musli Lilliaceae Herb Leaves Tincture of leaves Balamurugan et al., 2009
49 Curcuma longa L. Turmeric Zingiberaceae Herb Rhizome Essential oil Balamurugan et al., 2009; Oyemitan et al., 2017
50 Cannabis sativa L. Marijuana Cannabaceae Herb Leaves Decoction Oyemitan et al., 2017
51 Clausena anisate (Willd.) Hook.f. ex Benth. Perdepis Rutaceae Shrub Root, bark, and leaves Extract boiled with water Kenechukwu et al., 2012; Moshi et al., 2005
52 Clematis hirsute Guill. & Perr. Clemitite Ranunculaceae Climber Leaves Leaf juice Focho et al., 2009
53 Craterocapsa tarsodes Hilliard & B.L.Burtt. Wahlenbergia montana Campanulaceae Herb Whole plant Crude methanol extract Van Heerden et al., 2002
54 Cestrum nocturnum L. Night-blooming jasmine, lady of the night Solanaceae Shrub Leaves Decoction Pérez-Saad and Buznego, 2008
55 Citrus sinenis L. Sweet orange Rutaceae Tree Leaves, bark, root, and flower Decoction and infusion Bum et al., 2011
56 Colebrookia oppositifolia Sm. Pansre Lamiaceae Shrub Leaves and roots Extract Murad et al., 2011
57 Convolvulus arvensis L. Bindweed Convolvulaceae Herb Whole plant Extract Murad et al., 2011
58 Cuminum cyminum L. Cumin Umbelliferae Herb Fruit Essential oil Samleti et al., 2012; Sayyah et al., 2002a
59 Centella asiatica (L.) Urb. Asiatic pennywort Apiaceae Herb Whole plant Powder plant extract Samleti et al., 2012; Visweswari et al., 2010
60 Cymbopogon winterianus Jowitt ex Bor. Citronella Poaceae Herb Leaves Essential oil Quintans-Júnior et al., 2008
61 Cotyledon orbiculata L. Round-leafed navel-wort Crassulaceae Shrub Leaves Methanolic and aqueous extract Amabeoku et al., 2007
62 Calotropis procera (Aiton) W.T. Aiton. Apple of Sodom Asclepiadaceae Shrub Leaves Powder Abouri et al., 2012
63 Crocus sativus L. Saffron Iridaceae Herb Stigma Aqueous and ethanolic extract Hosseinzadeh and Khosravan, 2002
64 Cyperus articulates L. Priprioca Cyperaceae Herb Rhizome Methanolic extract Bum et al., 2001; Bum et al., 2011
65 Calliandra portoricensis (Jacq.) Benth. Powder puff Liguminoseae –Mimosoideae Shrub Root and stem Aqueous extract Akah and Nwaiwu, 1988
66 Canscora decussata (Roxb.) Schult. & Schult.f. Kambumalinee Gentianaceae Herb Whole plant Crude powder and alcoholic extract Dikshit et al., 1972
67 Carum copticum (L.) Benth. & Hook. f. Ajwain Apiaceae Herb Seed Aqueous extract Rezvani et al., 2011
68 Cyperus rotundus L. Java grass Cyperaceae Herb Rhizome Hydro-alcoholic extract Khalili et al., 2011
69 Cynanchum wilfordii (Maxim.) Hemsl. Keunjorong Apocynaceae Herb Root Decoction Li et al., 2016
70 Caesalpinia sappan L. Brazil wood Fabaceae Tree Leaves Methanolic extract Baek et al., 2000
71 Carissa edulis (Forssk.) Vahl Currant Bush Apocynaceae Shrub Root and bark Aqueous and ethanolic extract Ya’u et al., 2008
72 Calotropis gigantea (L.) Dryand. Crown flower Asclepiadaceae Shrub Root Alcoholic extract Argal and Pathak, 2006
73 Casimiroa edulis La Llave White sapote Rutaceae Tree Leaves Aqueous extract Ruíz et al., 1995
74 Cymbopogon citratus (DC.) Stapf West Indian lemon grass Poaceae Herb Leaves Essential oil Blanco et al., 2009
75 Cymbopogon proximus Halfabar Poaceae Herb Whole plant Volatile oil El Tahir and Abdel-Kader, 2008
76 Chrysanthemum boreale (Hochst. ex A.Rich.) Chiov. Mums Compositae Herb Flower, leaves, and stem Tea and extract Nugroho et al., 2013
77 Croton macrostachyus Hochst. ex Delile Woodland croton Euphorbiaceae Tree Whole plant Decoction Bum et al., 2012
78 Coleus amboinicus Lour. Cuban oregano Lamiacea Herb Leaves Leaf juice Kumari et al., 2012
79 Datura stramonium L. Thorn apple Solanaceae Herb Seed Powder Aghdash et al., 2015; Sharma et al., 2013
80 Daniellia oliveri (Rolfe) Hutch. & Dalziel African copaiba balsam tree Caesalpiniaceae Tree Roots Extraction and decoction Bum et al., 2011
81 Detarium microcarpum Guill. & Perr. Sweet dattock Caesalpiniaceae Tree Root, bark, and leaves Decoction Bum et al., 2011
82 Delphinium denudatum Wall. ex Hook.f. & Thomson Jadwar Ranunculaceae Herb Dried roots Ethanolic extract and aqueous fraction Raza et al., 2001
83 Dalbergia sissoo DC. North Indian rosewood Fabaceae Tree Leaves and bark Ethanol extract Majeed et al., 2019
84 Drosera burmannii Vahl. Burmann's Sundew Droseraceae Herb Whole plant Alcoholic and aqueous extract Hema et al., 2009
85 Egletes viscosa L. Macela Asteraceae Herb Flower head Essential oil Souza et al., 1998
86 Erythrina indica Lam. Indian coral tree Fabaceae Tree Leaves Coarse powder Rajamanickam and Sathyanarayanan, 2008
87 Elaeocarpus ganitrus Roxb. ex G.Don. Rudraksha Elaeocarpaceae Tree Leaves Tincture Dasgupta et al., 1984
88 Echinodorus berteroi (Spreng.) Fassett Cellophane Sword Alismataceae Herb Root Decoction Buznego and Pérez-Saad, 2006
89 Equisetum arvense L. Common horsetail Equisetaceae Herb Whole Plant Aqueous extract Dos Santos Jr et al., 2005
90 Eugenia caryophyllata Thunb. Clove Myrtaceae Shrub Dried buds Essential oil Pourgholami et al., 1999
91 Eucalyptus urophylla S.T.Blake Timor white gum Myrtaceae Tree Leaves Essential oil Teixeira et al., 2008
92 Eucalyptus brassiana S.T.Blake Cape York gum Myrtaceae Tree Leaves Essential oil Teixeira et al., 2008
93 Emilia sonchifolia (L.) DC. ex DC. Lilac tasselflower Asteraceae Herb Leaves Ethanolic and aqueous extract Asije et al., 2006
94 Ferula gummosa Boiss. Galbanum Apiaceae Herb Seed Acetone extract Sayyah et al., 2002b
95 Ferula persica Willd. Sakbinaj Apiaceae Herb Gum Powder paste Bagheri et al., 2010
96 Flueggea virosa (Roxb. ex Willd.) Royle White-berry bush Phyllanthaceae Tree Whole plant Alcoholic extract Pedersen et al., 2009
97 Flacourtia indica (Burm.f.) Merr. Governor's plum Flacourtiaceae Shrub Bark, fruit, and leaves Ethanolic extract Ayyanna et al., 2020; Bum et al., 2011
98 Ficus sycomorus L. Sycamore fig Moraceae Tree Stem and bark Aqueous extract Sandabe et al., 2003
99 Ficus religiosa L. Bodhi tree Moraceae Tree Leaves Methanolic extract Singh and Goel, 2009
100 Ficus platyphylla Delile Broad leaf fig Moraceae Tree Stem and bark Methanol extract Chindo et al., 2009
101 Glycyrrhiza glabra L. Liquorice Fabaceae Herb Rhizome and root Ethanolic extract Ambawade et al., 2002; Balamurugan et al., 2009
102 Gentiana olivieri Griseb. Gentian Gentianaceae Herb Flower Ethanolic extract Aslan et al., 2011
103 Gladiolus dalenii Van Geel. Parrot gladiola Iridaceae Herb Whole plant Aqueous extract Ngoupaye et al., 2013
104 Goodyera schlechtendaliana Rchb.f. Schlechtendal’s goodyera, miyamauzura Orchidaceae Herb Whole plant Alcoholic extract Du et al., 2002
105 Hypericum perforatum L. Goatweed Hypericaceae Herb Leaves Aqueous and ethanolic extracts Hosseinzadeh et al., 2005a
106 Hippeastrum vittatum (L'Hér.) Herb. Barbados lily Amaryllidaceae Herb Bulbs Fresh bulbs triturated and macerated da Silva et al., 2006
107 Hedranthera barteri (Hook.f.) Pichon Goat’s testicles Apocynaceae Shrub Leaves Methanol extract Sowemimo et al., 2012
108 Hoslundia opposita Vahl. Orange bird berry Lamiaceae Herb Leaves Boiled with water to make tincture Moshi et al., 2005; Risa et al., 2004
109 Hypoxis colchicifolia Baker Broad-leaved hypoxis Hypoxidaceae Herb Whole plant Extract Risa et al., 2004
110 Hymenocardia acida Tul. Heart-fruit Hymenocardiaceae Shrub Leaves, bark, and root Infusion powder Bum et al., 2011
111 Hypoxis hemerocallidea Fisch. Star flower ,African potato Hypoxidaceae Herb Whole plant Aqueous extract Ojewole, 2008a
112 Harpagophytum procumbens (Burch.) DC. ex Meisn. Wood spider, devil’s claw Pedaliaceae Herb Root Aqueous extract Mahomed and Ojewole, 2006
113 Haplophyllum vermiculare Hand-Mazz. Plant of mosquito Rutaceae Shrub Leaves and flower Powder Abouri et al., 2012
114 Hibiscus rosa sinensis China rose Malvaceae Shrub Flower Ethanolic extract Kasture et al., 2000
115 Heracleum persicum Desf. Persian hogweed Umbelliferae Herb Seed Acetone extract Sayyah et al., 2005
116 Heracleum crenatifolium Boiss. Hogweed Apiaceae Herb Fruit Essential oil Tosun et al., 2008
117 Helleborus sp. L. Black helleborus Ranunculaceae Herb Root Ethanol extract Jäger et al., 2006
118 Inula conyza DC. Ploughman's-spikenard Asteraceae Herb Whole plant Decoction Sahranavard et al., 2014
119 Inula cappa DC. Sheep’s ear Asteraceae Shrub Root Decoction Sharma et al., 2013
120 Ipomoea stans var.hirsuta B.L. Rob. Bindweed Convolvulaceae Herb Whole plant Lyophilized powder Contreras et al., 1996
121 Jasminum grandiflorum L. Jasmine Oleaceae Climber Leaves and flower Hydroalcoholic extract and essential oil Gupta and Reddy, 2013; Wei et al., 2015
122 Kalanchoe crenata (Andrews) Haw. Kalanchoe, neverdie Crassulaceae Shrub Leaves Extract Nguelefack et al., 2006
123 Lagoecia cuminoides L. Wild cumin Apiaceae Herb Fruit Taken as such Sahranavard et al., 2014
124 Lavandula stoechas L. French lavender Lamiaceae Shrub Flower Aqueous and methanolic extract Gilani et al., 2000
125 Laurus nobilis L. Bay tree Lauraceae Tree Leaves Essential oil Sayyah et al., 2002c
126 Lychnophora staavioides Mart. Arnica da serra Asteraceae Shrub Stem, bark, roots, and leaves Alcoholic extract Taleb‐Contini et al., 2008
127 Lupinus albus L. White lupin Fabaceae Herb Leaves and stem Aqueous extract Abdul-Ghani et al., 1987
128 Leonotis leonurus (L.) R.Br. Wild dagga Lamiaceae Shrub Leaves Aqueous and methanol extract Bienvenu et al., 2002; Nsuala et al., 2015
129 Lychnophora rupestris Semir & Leitão Falsa arnica Asteraceae Shrub Stem Methanolic extract and fraction Taleb‐Contini et al., 2008
130 Lychnophora diamantinana Coile & S.B.Jones Arnicas Asteraceae Herbs Stem Methanolic extract and fraction Taleb‐Contini et al., 2008
131 Lobelia nicotianaefolia Roth Wild tobacco Campanulaceae Herb Leaves Powder Tamboli et al., 2012
132 Lantana camara L. Lantana verbanaceae Shrub Leaves Powder Kazmi et al., 2012
133 Myroxylon balsamum L. Tolu balsam Fabaceae Tree Seeds and gum Dry powder Sahranavard et al., 2014
134 Myroxylon pereirae Klotzsch. Peru balsam Fabaceae Tree Gum Powder paste Sahranavard et al., 2014
135 Melilotus sp. L. Sweet clover Fabaceae Herb Leaves and seed Extraction of fresh leaves and powder of seeds are used orally Sahranavard et al., 2014
136 Mitragyna inermis (Willd.) Kuntze Kauchii (hausa) Rubiaceae Shrub Leaves, bark, and roots Aqueous and ethanol extract Muazu and Kaita, 2008; Timothy et al., 2014
137 Martynia annua L. Cat’s claw Martyniaceae Herb Leaves Decoction Sharma et al., 2013
138 Mimosa pudica L. Sensitive plant Mimosaceae Shrub Root Decoction Focho et al., 2009
139 Mussaenda angolensis Wernh. Ntuabala Rubiaceae Shrub Leaves Infusion Focho et al., 2009
140 Magnolia officinalis Rehder & E.H.Wilson Houpu magnolia Magnoliaceae Tree Bark Ether extract Watanabe et al., 1975
141 Matricaria chamomilla L. Chamomile Asteraceae Herb Flower Aqueous extract Abdul-Ghani et al., 1987
142 Morinda citrifolia L. Indian mulberry Rubiaceae Tree Fruit Methanol extract Muralidharan and Srikanth, 2010
143 Melissa officinalis L. Lemon balm Lamiaceae Herb Whole plant Methanol and aqueous extract Bhat et al., 2012
144 Madhuca longifolia L. Mahwa Sapotaceae Tree Heart wood Methanol extract Patel et al., 2011
145 Malva sylvestris L. Mallow Malvaceae Tree Leaves Ethanol extract used as a juice Jäger et al., 2006
146 Magnolia dealbata Zucc. Eleoxochitl Magnoliaceae Tree Leaves and bark Ethanol extract Martinez et al., 2006
147 Mucuna pruriens (L.) DC. Velvet bean Fabaceae Climber Leaves Ethanolic extract Champatisingh et al., 2011
148 Moringa oleifa L. Horseradish tree Moringaceae Tree Root Extract Rajasree et al., 2012
149 Nigella sativa L. Black cumin seed Ranunculaceae Herb Seed Aqueous extract Akhondian et al., 2007; Khazdair, 2015
150 Nicotiana tabacum L. Tobacco Solanaceae Herb Leaves Concoction with bulbs of A. cepa and gloves of A. sativum is taken orally for 8 months Focho et al., 2009
151 Nardostachys jatamansi (D.Don) DC. Spikenard, Musk root Valerianaceae Herb Root Ethanolic extract Rao et al., 2005
152 Newbouldia leavis (P.Beauv.) Seem. Boundary tree Bignoniaceae Shrub Flower, root, and leaves Ethanolic extract Usman et al., 2008
153 Nelumbo nucifera Gaertn. Indian lotus Nelumbonaceae Herb Fruit Ethanol extract Rajput et al., 2017
154 Nauclea latifolia Sm. African peach Rubiaceae Tree Root Decoction Bum et al., 2009b
155 Nepeta sibthorpii Benth. Catmint Lamiaceae Herb Leaves Methanol extract Galati et al., 2004; Taviano et al., 2007
156 Opopanax chironium Koch Hercules-all-heal Apiaceae Herb Gum Aqueous extract Sahranavard et al., 2014
157 Origanum majorana L. Sweet marjoram Lamiaceae Herb Leaves Powder Deshmane et al., 2007
158 Oroxylum indicum (L.) Kurz Tree of Damocles Bignoniaceae Tree Leaves, seed, and bark The powder of seeds 2–3 g is taken internally Sharma et al., 2013
159 Ocimum sanctum L. Holy basil Lamiaceae Herb Leaves and stem Extract Jaggi et al., 2003
160 Origanum vulgare L. Oregano Lamiaceae Herb Leaves, stem, and tuber Aqueous extract Abdul-Ghani et al., 1987; Shah and Khan, 2006
161 Olea europaea L. European olive Oleaceae Tree Leaves and stem Aqueous extract Abdul-Ghani et al., 1987
162 Ocimum basilicum L. Sweet basil Lamiaceae Herb Leaves Essential oil Oliveira et al., 2009
163 Ocimum gratissimum L. Clove basil Lamiaceae Shrub Leaves Essential oil Freire et al., 2006
164 Parietaria cretica L. Cretan Pellitory-of-the-wall Urticaceae Herb Whole plant Decoction Sahranavard et al., 2014
165 Paeonia officinalis L. Garden peony Paeoniaceae Herb Root Aqueous extract Tsuda et al., 1997
166 Populus nigra L. Black poplar Salicaceae Tree Fruit Fresh fruits Sahranavard et al., 2014
167 Populus alba L. Silver poplar Salicaceae Tree Fruit Fruits as such Sahranavard et al., 2014
168 Pavetta indica L. Kankra Rubiaceae Shrub Root and bark 1 g root’s fine powder with black pepper powder is administered orally Sharma et al., 2013
169 Primula elatior (L.) Hill Oxlip Primulaceae Herb Leaves Tea from the green or dried plant against convulsions Jäger et al., 2006
170 Primula veris L. Cowslip Primulaceae Herb Leaves Extract ethanol Jäger et al., 2006
171 Pimpinella anisum L. Aniseed Apiaceae Herb Seed Methyl-alcoholic extract Heidari and Ayeli, 2005
172 Piper longum L. Long pepper Piperaceae Climber Fruit Aqueous extract Juvekar et al., 2008
173 Psorospermum senegalense Spach Balanta sukus Guttiferae Shrub Root Powder Pedersen et al., 2009
174 Paeonia emodi Wall Peony Rose Paeoniaceae Herb Rhizome, root, and seed Extract Hamayun et al., 2006; Khar, 2012
175 Prosopis africana (Guill. & Perr.) Taub. Iron tree Mimosaceae Tree Leaves and bark Decoction Bum et al., 2011
176 Pyrus pashia Buch. -Ham. ex D.Don Wild pear Rosaceae Tree Fruit Ethanolic extract Murad et al., 2011; Sharma et al., 2019
177 Persea americana Mill Avocado Lauraceae Tree Leaves Aqueous extract Ojewole and Amabeoku, 2006
178 Piliostigma reticulatum (DC.) Hochst. Camel’s foot Caesalpiniaceae Tree Leaves Decoction Bum et al., 2009a
179 Plectranthus amboinicus (Lour.) Spreng. Indian borage Lamiaceae Herb Whole plant Aqueous extract Llanio Villate et al., 1999
180 Psidium guyanensis Pers Araca azedo Myrtaceae Shrub Leaves Essential oil Santos et al., 1997
181 Passiflora edulis Sims Purple passionfruit Passifloraceae Climber Leaves Decoction Bum et al., 2004
182 Piper tuberculatum Jacq. Pipilongo Piperaceae Shrub Roots Powder Felipe et al., 2007
183 Passiflora incarnata L. Maypop Passifloraceae Climber Leaves Hydroalcoholic extract Nassiri-Asl et al., 2007
184 Qualea grandiflora Mart. Pau-terra Vochysiaceae Tree Leaves Crude hydroalcoholic extract and fractions Gaspi et al., 2006
185 Ruscus aculeatus L. Butcher's-broom Ruscaceae Shrub Leaves and fruit Aqueous extract Sahranavard et al., 2014
186 Ricinus communis L. Castor bean Euphorbiaceae Shrub Leaves, flower, and seeds Ethanol extract Sharma et al., 2013; Tripathi et al., 2011
187 Rhus tridentata L.f. Bitter grape Anacardiaceae Climber Leaves Ethanolic and water extract Risa et al., 2004
188 Rhus rehmanniana Engl. Blunt-leaved Currant Anacardiaceae Tree Leaves Extract Risa et al., 2004
189 Ruta graveolens L. Rue Rutaceae Herb Whole plant Hydro -alcoholic extract Keihanian et al., 2012
190 Ruta chalepensis L. Fringed rue Rutaceae Shrub Flower and leaves Ethanol extract Gonzalez-Trujano et al., 2006
191 Rosmarinus officinalis L. Rosemary Lamiaceae Shrub Whole plant Aqueous extract Abdul-Ghani et al., 1987
192 Rauwolfia serpentina (L.) Benth. ex Kurz Indian snakeroot Apocynaceae Climber Whole Plant Tincture Charveron et al., 1984
193 Rhus pyroides Firethorn Rhus Anacardiaceae Shrub Leaves Ethanol extract Svenningsen et al., 2006
194 Seseli tortuosum L. Lankstytasis auksveitis Apiaceae Tree Leaves Extraction and tea Sahranavard et al., 2014
195 Securidaca longipedunculata Fresen. Violet tree Polygalaceace Tree Bark, leaves, and root Aqueous extract Adeyemi et al., 2010; Muazu and Kaita, 2008
196 Strychnos henningsii Gilg Red bitterberry Loganiaceae Shrub Bark and leaves Leaves or bark boiled Musila et al., 2004
197 Scutellariae radix L. Chinese skullcap Lamiaceae Herb Root Aqueous extract Wang et al., 2000
198 Sesbania grandiflora (L.) Pers. Sesbania Fabaceae Tree Leaves Benzene: ethyl acetate fraction Kasture et al., 2000
199 Senna singueana (Delile) Lock Scrambled egg Caesalpiniaceae Tree Roots, bark, leaves, and flowers Powder taken with water Bum et al., 2011
200 Solanum nigrum L. Black nightshade Solanaceae Herb Whole plant or leave Aqueous extract Murad et al., 2011; Wannang et al., 2008
201 Sutherlandia frutescens (L.) R.Br. Cancer bush Fabaceae Shrub Leaves Aqueous extract Ojewole, 2008b
202 Sanseviera liberica (Gérôme & Labroy) African bow-string hemp Agavaceae Herb Root Aqueous extract Adeyemi et al., 2007
203 Spondias mombin L. Yellow mombin Anacardiaceae Tree Leaves Aqueous, methanol, and ethanol extract Ayoka et al., 2006
204 Smilax zeylanica L. Kumarika Lilliaceae Shrub Root and rhizome Alcohol and aqueous extract Madhavan et al., 2008
205 Syzygium cumini (L.) Skeels Malabar plum Myrtaceae Tree Seed Infusion, hydroalcoholic extract De Lima et al., 1998
206 Schizandra chinensis B. Magnolia vine Schisandraceae Climber Fruit Methanol extract Han et al., 2000
207 Silybum marianum (L.) Gaertn. Milk thistle Asteraceae Herb Seed Ethanol extract Waqar et al., 2016
208 Sclerocarya birrea (A.Rich.) Hochst. Marula Anacardiaceae Tree Stem-bark Aqueous extract Ojewole, 2007
209 Spathodea campanulata P.Beauv. African Tulip Bignoniaceae Tree Leaves Ethanol extract Ilodigwe et al., 2010
210 Salvadora persica L Tooth-brush tree Salvadoraceae Shrub Stem Lyophilized decoction Monforte et al., 2002
211 Swertia corymbose (Griseb) Avalpoovu Gentianaceae Herb Leaves Methanol extract Mahendran et al., 2014
212 Trigonella caerulea (L.) Ser Blue fenugreek Fabaceae Herb Leaves and seed Decoction and tea Sahranavard et al., 2014
213 Trigonella hamosa L. Egyptian fenugreek Fabaceae Herb Leaves and seed Powder Sahranavard et al., 2014
214 Terminalia arjuna (Roxb. ex DC.) Arjuna Combretaceae Tree Bark Powder Balamurugan et al., 2009
215 Terminalia chebula Retz. Chebulic myrobalan Combretaceae Tree Fruit Ethanolic extract Debnath et al., 2010
216 Ternstroemia sp. El Yunque Colorado Ternstroemiaceae Tree Bark Decoction Focho et al., 2009
217 Tabernaemontana vertricosa Hochst. Ex A. DC Forest toad tree Apocynaceae Shrub Bark Pulverized bark or decoction Focho et al., 2009
218 Tagetes erecta L. African marigold Asteraceae Herb Flower Ethanolic extract Shetty et al., 2009
219 Terminalia glaucescens Planch. ex Benth Fula-pulaar Combretaceae Tree Leaves, root, and bark Decoction Bum et al., 2011
220 Terminalia mollis M.A.Lawson Large-leaved terminalia Combretaceae Tree Roots Dry powder Bum et al., 2011
221 Tetrapleura tetraptera (Schum. & Thonn.) Taub. Aridan Mimosaceae Tree Roots, bark, and fruit Decoction Aderibigbe et al., 2007; Bum et al., 2011
222 Trichilia emetica Vahl Natal mahogany Meliaceae Tree Roots, bark, and leaves Methanolic extract Bum et al., 2011; Komane et al., 2011
223 Taxus wallichiana Zucc. Himalayan yew Taxaceae Tree Leaves Methanolic extract Nisar et al., 2008
224 Ternstroemia pringlei (Rose) Standl. Flor de tila Theaceae Tree Flower Methanolic extract Balderas et al., 2008
225 Trachyspermum ammi (L.) Sprague Ajowan Apiaceaea Herb Seed Methanolic extract Rajput et al., 2013
226 Tilia europaea L. Common linden Tiliaceae Tree Leaves Ethanolic extract Jäger et al., 2006
227 Tricosanthes dioica Roxb. Parwal Curcurbitaceae Herb Fruit Aqueous extract Singh et al., 2012
228 Tanacetum parthenium (L.) Sch.Bip. Feverfew Asteraceae Herb Leaves Ethanolic extract Jäger et al., 2006
229 Urginea maritima Baker Squill Hyacinthaceae Bulb Bulb Dry powder Sahranavard et al., 2014
230 Voacanga bracteata Stapf Soekoen bread tree Apocynaceae Shrub Bark Pulverized bark Focho et al., 2009
231 Valeriana officinalis L. Garden heliotrope Caprifoliaceae Herb Root Aqueous extract Rezvani et al., 2010
232 Viola biflora L. Twoflower violet Violaceae Herb Flower Tincture Hamayun et al., 2006
233 Viola canescens Wall Himalayan White Violet Violaceae Herb Flower Powder Hamayun et al., 2006
234 Vitellaria paradoxa C.F.Gaertn. Shea tree Sapotaceae Tree Leaves and bark Decoction Bum et al., 2011
235 Vitex negundo Chinese chaste tree Lamiaceae Tree Leaves Leaves’ powder extract Tandon and Gupta, 2005
236 Viscum sapense L.f. Mistletoe Loranthaceae Tree Stem Methanol extract Amabeoku et al., 1998
237 Vitex agnus castus L. Vitex Lamiaceae Tree Fruit Hydrophilic extract Saberi et al., 2008
238 Viscum album L. European mistletoe Loranthaceae Shrub Leaves Aqueous extract Gupta et al., 2012
239 Verbena officinalis L Holy herb Verbenaceae Herb Whole plant Decoction, ethanol extract Jäger et al., 2006
240 Withania somnifera (L.) Dunal Winter cherry Solanaceae Shrub Root Alcoholic extract Balamurugan et al., 2009; Raju et al., 2017; Uddin et al., 2012
241 Zizyphus jujba Mill. Red date Rhamnaceae Tree Bark Alcoholic extract Acharya et al., 1994
Table 3 Principal phytoconstituents of medicinal plants effective in epilepsy treatment.
S. No. Medicinal plants Principal constituents References
1 Acalypha fruticosa Forssk. Acalyphin, apigenin, kaempferol, and 3-O-rutinoside Govindu and Adikay, 2014
2 Achyranthes aspera L. Betaine, oleonic acid, bisdesmosidic, ecdysterone, triacontanol, achyranthine, spinasterol, and spathulenol Gawande et al., 2017; Sharma et al., 2013
3 Acorus calamus L. Asarone and β-asarone Mukherjee et al., 2007
4 Acorus gramineus Aiton α-asarone, asaraldehyde, isoacoramone, propioveratrone, β-asarone, isoacoramone, propioveratrone, and tyrosol Yang et al., 2006
5 Aeollanthus suaveolens Mart. ex Spreng. Linalool and y-decanolactone Elisabetsky and Coelho de Souza, 1997
6 Afrormosia laxiflora (Benth. ex Baker) Meeuwen Methydeoxybnzoins angolensin, 2-omethyl angolensin, and demethylpterocarpin Haruna, 2000
7 Albizzia lebbeck (L.) Benth. Echinocystic acid, melacacidin, D-catechin, β-sitosterol, albiziahexoside, and betulnic acid Kasture et al., 2000
8 Anacyclus pyrethrum (L.) Lag. Eugenol, pyrethrine, pellitorine, palmitic acid, and naphthalene Zaidi et al., 2013
9 Anisomeles malabarica (L.) R.Br. Anisomeles, anisomelic acid, abietadiene, β-caryophyllene α-farnesene, linoleic acid, trans-ferruginol, and abietol Choudhary et al., 2011
10 Annona diversifolia Saff. Palmitone, annoreticuin, bullatacin, squamosine, rolliniastatin, and reticullacinone González-Trujano et al., 2001
11 Annona senegalensis Pers. Kaurenoic acid, citronellal, citronellol, geranial, thymol, β – caryophyllene, and carvacrol Okoye et al., 2013
12 Annona squamosa L. Anonaine, acetogenin. sabinene, α –pinene, limonene annotemoyin-2, and reticulatain-2 Porwal and Kumar, 2015; Saluja and Santani, 1994
13 Anthocephalus cadamba (Roxb.) Miq. Cadambine, cadamine, isocadambine, isocadambine, hentriacontanol, and β-sitosterol Nagakannan et al., 2011
14 Areca catechu L. Arecaidine, guvacine, catechin isorhamnetin, quercetin, liquiritigenin, resveratrol, ferulic acid, vanillic acid, beta-sitosterol, and cycloartenol Lodge et al., 1977
15 Artemisia dracunculus L. Transanethole, pinene, sabinene, isoelemicin, methyl eugenol, elemicin, and beta-ocimene Sayyah et al., 2004
16 Artemisia verlotorum Lamotte Alpha-thujone, eupatilin, farnesol, cedrol, coumarins, and eupatilin de Lima et al., 1993
17 Artemisia vulgaris L. Linalool, Pinene, 1,8-cineole, sabinene, camphor, camphene, caryophyllene oxide, α-thujone, and β-thujone de Almeida et al., 2013
18 Bacopa monnieri (L.) Wettst. Brahmine, nicotinine, serine, herpestine, and bacosides A and B Mathew et al., 2010
19 Berberis integerrima Bunge Berberine, palmatine, oxyacanthine, berbamine, and anthocyanin Hosseinzadeh et al., 2013; Moein et al., 2020
20 Berberis vulgaris L. Berberin, acanthine, bargustanine, berbamine, berberrubine, beriambine, bervuleine, columbamine, jatrorrhizine, lambertine, magnoflorine, palmatine, and thaliemidine Bhutada et al., 2010; Imanshahidi and Hosseinzadeh, 2008
21 Boerhaavia diffusa L. Liriodendrin, palmitic acid, β-sitosterol, tetracosanoic, hexacosonoic, stearic, arachidic acid, urosilic acid, and hentriacontane, Adesina, 1979; Mahesh et al., 2012; Sharma et al., 2013
22 Bupleurum chinensis DC. Saikosaponin Yu et al., 2012
23 Butea monosperma (Lam.) Kuntze Palasonin, aleurilic, Triterpene, butrin, isobutrin, and butein Kasture et al., 2000
24 Caesalpinia bonducella L. Bonducillin, phytosterinin, β-sitosterol, flavonoids, aspartic acid, arginine, citrulline, and β-carotene Balamurugan et al., 2009
25 Caesalpinia sappan (L.) Tod. Sappanchalcone, xanthone, coumarin, chalcones, flavones, homoisoflavonoids, and brazilin Baek et al., 2000
26 Cannabis sativa L. Marijuana, cannabinoids delta-9-tetrahydrocannabinol, cannabinol, and δ 8-tetrahydrocannabinol Consroe et al., 1976; Gloss and Vickrey, 2014; Izquierdo et al., 1973
27 Canscora decussata (Roxb.) Schult. & Schult.f. Hypericin, hyperforin, and xanthones Dikshit et al., 1972
28 Carum copticum (L.) Benth. & Hook.f. ex Hiern Steroptin, thymine, cumin, lysine, and threonine Rezvani et al., 2011
29 Cassia fistula L. Fistulic Acids, Sennosides A B, Anthraquinones, Oxalic, Linoleic, Oleic, and Stearic acids. Kalaiyarasia et al., 2015
30 Cedrus deodara (Roxb. ex D.Don) G.Don α-pinene, β-pinene, myrcene, limonene-α, β-caryophyllene, β-copaene, α-himachalene, β-humulene, γ-muurolene, β-himachalene, Germacrene D, α-muurolene, and δ-cadinene Viswanatha and Nandakumar, 2009
31 Celtis integrefolia L. Gabapentin, choline, vitexin, oxalic, mallic, and gallic acid Muazu and Kaita, 2008
32 Chrysanthemum boreale Makino Aglycone and acacetin Nugroho et al., 2013
33 Coriandrum sativum L. Coumarins, imonene, α-pinene, β-phellandrene, linalool, linalyl acetate, geraniol, borneol, citronellol, β-caryophyllene, and thymol Hosseinzadeh and Madanifard, 2000
34 Cotyledon orbiculata L. Orbicusides A-C and tyledoside D Amabeoku et al., 2007
35 Craterocapsa tarsodes Hilliard & B.L.Burtt Acteoside, verbascoside, and pinocembrin 7-β-neohesperidoside Van Heerden et al., 2002
36 Crocus sativus L. Crocin, crocetin, safranal, and picrocrocin. Hosseinzadeh and Khosravan, 2002
37 Curcuma longa L. Curcumin, curcuminoid, bisabolene, sesquiterpenoid, and turmerone Orellana-Paucar et al., 2012
38 Cymbopogon proximus (Hochst. ex A.Rich.) Chiov. Piperitone, citral α, citral β, nerol geraniol, citronellal, terpinolene, geranyl acetate, myrecene, and terpinol methylheptenone El Tahir and Abdel-Kader, 2008
39 Cymbopogon winterianus Jowitt ex Bor Geraniol, citronella, and citronellol Quintans-Júnior et al., 2008
40 Cynanchum otophyllum Schneid Otophylloside A(IV) and otophylloside B(V) Mu et al., 1986
41 Cynanchum wilfordii (Maxim.) Hemsl. Cynawilfoside A, cynauricoside A, wilfoside, and cyanoauriculoside Li et al., 2016
42 Cyperus articulates L. Cathechins, triterpenes, sesquiterpenes, mustakone cyperotundone, α-cyperone, and sesquichamaenol Brillatz et al., 2020; Bum et al., 2001
43 Cyperus rotundus L. Sugeonol, humulen, β-selinene, zierone, and cyperone Khalili et al., 2011
44 Delphinium denudatum Wall. ex Hook.f. & Thomson Diterpenoid, delvestine alkaloidbrumonine, and lycaconitine Raza et al., 2001
45 Egletes viscosa (L.) Less. Transpinocarvyl acetate, b-pinene, linalool, and terpinen-4-ol Souza et al., 1998
46 Equisetum arvense L. Isoquercitrin, ascorbic acid, silicic acid, and palustrinine Dos Santos Jr et al., 2005
47 Erythrina indica Lam. Genistein, wighteone, alpinumisoflavone, dimethyl‐ alpinumisoflavone, erythrodio, 8‐prenylerythrinin C, erysenegalensein E,erythrinassinate B, stigmasterol, and oleanolic acid Rajamanickam and Sathyanarayanan, 2008
48 Eucalyptus brassiana S.T.Blake Phellandrene, p-cymene, and cineole Teixeira et al., 2008
49 Eugenia caryophyllata Thunb Eugenol, carvacrol, isoeugenol, acetyl-eugenol and safrole Dallmeier and Carlini, 1981; Pourgholami et al., 1999
50 Ferula gummosa Boiss Linalool and eugenol, pinene, and methyleugenol Sayyah et al., 2002b
51 Ficus platyphylla Delile Herniarin, coumarins, β-sitosterol, and d-glucoside Chindo et al., 2009
52 Flacourtia indica (Burm.f.) Merr. Beta-sistosterol, coumarine, butyrolactone, flacourtine, and terpenoids Bum et al., 2011
53 Gastrodia elata Blume Vanillin, gastrodin, parishin, and vanillic acid Ojemann et al., 2006
54 Gentiana olivieri Griseb. Ursolic acid, secoiridoid, and swertiamarin Aslan et al., 2011
55 Gladiolus dalenii Van Geel Beta-sitosterol, terpenoids, and glycosides Ngoupaye et al., 2013
56 Glycyrrhiza glabra L. Glycyrrhizine and liquiritigenin Xiao et al., 2015
57 Goodyera schlechtendaliana Rchb.f. Goodyerin, syringaldehyde, 5-hydroxymethylfurfural, alloimperatorin, vanillic acid, ferulic acid, glyceroyl monopalmitate, and β-sitosterol Du et al., 2002
58 Harpagophytum procumbens (Burch.) DC. ex Meisn. Iridoids harpagoside, cinnamic acid, harpagide, and procumbide Mahomed and Ojewole, 2006
59 Hedranthera barteri (Hook.f.) Pichon Quercetin conophargngine and calcium Sowemimo et al., 2012
60 Heracleum crenatifolium Boiss. Octanol, caffeic acid, ferulic acid, rutin, quercetin, and octyl acetate Tosun et al., 2008
61 Heracleum persicum Desf. ex Fisch., C.A.Mey. & Avé-Lall. Eugenol, cineol, and linalool Atefeh et al., 2010; Sayyah et al., 2005
62 Hibiscus rosa sinensis L. Anthraquinone and glucoside Kasture et al., 2000
63 Hippeastrum vittatum (L'Hér.) Herb. Montanine da Silva et al., 2006
64 Huperzia serrata (Thunb.) Trevis. Huperzine A, Y, and Z and huperserines A–D, Coleman et al., 2008
65 Hypoxis hemerocallidea Fisch β-sitosterol and rooperol Ojewole, 2008a
66 Jasminum grandiflorum L. Jasmonic acid, Secoiridoid, protocatechuic acid, triterpene, and oleanolic acid Wei et al., 2015
67 Lantana camara L. Ursolic acid, and stearoyl glucoside Kazmi et al., 2012
68 Laurus nobilis L. Methyleugenol, eugenol, and pinene Sayyah et al., 2002c
69 Leonotis leonurus (L.) R.Br. Quinone and Leonurenone A and B Bienvenu et al., 2002
70 Lobelia nicotianaefolia Roth Lobeline, lobelanine, lobelanidine, norlobelanine, lelobanidine, norlelobanidine, and norlobelanidin Tamboli et al., 2012
71 Lychnophora diamantinana Coile & S.B.Jones Caffeoylquinic acid, lychnopholide, centratherin, and goyazensolide Taleb‐Contini et al., 2008
72 Lychnophora rupestris Semir & Leitão Caffeoylquinic acid, caffic acid, and lychnopholide Taleb-Contini et al. (2008)
73 Magnolia dealbata Zucc. Honokiol and magnolol Martinez et al., 2006
74 Magnolia officinalis Rehder & E.H.Wilson Magnolol, honokiol, magnaldehyde, magnatriol B, randaiol, and obovatol Watanabe et al., 1975
75 Matricaria chamomilla L. Apigenin, camphene, α-pinene, isopropyl hexadecanoate, camphor, 1,8-cineole, sabinene, and α-terpinene Avallone et al., 2000
76 Melissa officinalis L. β-caryophyllene, geranial, 1,8-cineole, neral, dehydroaromedendrene, and thymol Bhat et al., 2012
77 Mimosa pudica L. Mimosin, succinic acid, β-sitosterol, and stigmasterol Patro et al., 2015
78 Mitragyna inermis (Willd.) Kuntze Rotundifoline and uncarine Muazu and Kaita, 2008
79 Mondia whitei (Hook.f.) Skeels Propacin, Isovanalin, loliolide, and coumarinolignam Fred-Jaiyesimi and Ogunjobi, 2013
80 Nardostachys jatamansi (D.Don) DC. Jatamansone and essential oil Rao et al., 2005
81 Nelumbo nucifera Gaertn. Lotusine, liensinine, dauricine, isoliensinine, nuciferine, pronuciferine, roemerine, procyanidin, neferine, and armepavine Rajput et al., 2017
82 Nepeta sibthorpii Benth. Nepetalactones, 1,8‐cineole, linalool, teucrioside, lamiuside, and verbascoside Galati et al., 2004
83 Newbouldia leavis (P.Beauv.) Seem. Harmane, harmol, harmine, and harmaline Tsabang et al., 2016; Usman et al., 2008
84 Nigella sativa L. Thymoquinone, p-cymene, carvacrol, thymohydroquinone, dihydrothymoquinone, α-thujene, thymol, t-anethole, β-pinene, α-pinene, and γ-terpinene Hosseinzadeh et al., 2005b
85 Ocimum basilicum L. 1.8-cineole, linalool, and geraniol Oliveira et al., 2009
86 Ocimum gratissimum L. Eugenol, linalool, 1,8-cineole and β-selinene Freire et al., 2006
87 Origanum majorana L. Geranyl acetate, α-Terpinyl acetate, carvacrol, and ursolic acid Deshmane et al., 2007
88 Origanum vulgare L. Carvacrol, thymol, linalool, γ-terpinene, p-cymene, β-caryophyllene, and germacrene D Abdul-Ghani et al., 1987
89 Paeonia emodi Royle Paeoniflorin, oleanolic acid, betulinic acid, ethyl gallate, methyl grevillate, wurdin, benzoylwurdin, and emodinol Zaidi et al., 2012
90 Paeonia officinalis L. Paeoniflorin and gallotannin Tsuda et al., 1997
91 Panax ginseng C.A.Mey. Panaxadiols Lian et al., 2005
92 Passiflora edulis Sims. Ascorbic acid, carotene, and vanillic acid, Bum et al., 2004
93 Piper nigrum L. Piperine, alkamides, piptigrine, wisanine, dipiperamide D, and dipiperamide E da Cruz et al., 2013
94 Piper tuberculatum Jacq. Piplartine, β-caryophyllene, and α-cadinol Felipe et al., 2007
95 Poria cocos F.A.Wolf. Tumulosic acid, mannitol, dehydrotumulosic acid, beta-sitosterol, ribitol, and oleanic acid Gao et al., 2016
96 Psidium guyanensis Pers. Beta-eudesmo, ugenol, thymol, and carvacrol Santos et al., 1997
97 Pyrus pashia Buch. Ham. ex D.Don Chrysin, lupeol, β-sitosterol, and D-glucoside Sharma et al., 2019
98 Rauwolfia serpentina (L.) Benth. ex Kurz Raubasine, ajmaline, reserpine, ajmalicine, and serpentine Charveron et al., 1984
99 Rhus dentata Thunb. Apigenin, agathisflavone, β-bisabolene, β-farnesene, β-curcumene, and caryophyllene oxide Svenningsen et al., 2006
100 Rhus pyroides Burch. Apigenin, agathisflavone, and amentoflavone Svenningsen et al., 2006
101 Ricinus communis L. Ricinine, ricin, ricinoleic acid, stearic, linoleic, palmitic acid, sitosterol, and squalene Ladda, 2014; Tripathi et al., 2011
102 Rosa damascene Herrm. Eugenol, β-citronellol, geraniol, citronellol, and nerol Ramezani et al., 2008
103 Ruta graveolens L. Rutin, quercetin, cineol and l-limonene, palmitic acid, stearic acid, and oleic acid Ahmad and Amabeoku, 2013
104 Salvadora persica L. Trimethylamine and salvadorine, benzyl nitrile, isotymol, thymol, eugenol, β-caryophyllene, and eucalyptol Khan et al., 2010; Monforte et al., 2002
105 Sanseviera liberica (Gérôme & Labroy) Catechins, flavones, carotenoids, and phytates Adeyemi et al., 2007
106 Schizandra chinensis (Turcz.) Baill. Schizandrin and daucosterol Han et al., 2000
107 Scutellaria baicalensis Georgi Baicalin, wogonin, wogonoside, and baicalein Liu et al., 2012; Park et al., 2007
108 Scutellariae radix L. Baicalein, oroxylin A, and skullcapflavone II Wang et al., 2000
109 Senna singueana (Delile) Lock 7-methyl physcion and cassiamin A Bum et al., 2011
110 Sesbania grandiflora (L.) Poir. Isovestitol, medicarpin, sativan, and betulinic acid Kasture et al., 2000
111 Silybum marianum (L.) Gaertn. Silymarin, silydianin, silychristin, and silibinin Waqar et al., 2016
112 Smilax zeylanica L. Dioscin, smilagenin, and sarsapogenin Madhavan et al., 2008
113 Spathodea campanulate P.Beauv. Geranyl acetae, α-humulene, β-caryophyllene, farnesyl acetone, aromadendrene, α-gurjunene, and tricosane Ilodigwe et al., 2010
114 Spondias mombin L. δ-cadinene, α-humulene, α-gurjunene, and α-muurolene Ayoka et al., 2006
115 Sutherlandia frutescens (L.) Goldblatt & J.C.Manning Canavanine, pinitol, L-arginine, asparagine, and canavanine Ojewole, 2008b
116 Swertia corymbose (Griseb.) Fielding & Gardner Loganic acid, swertiamarin, sweroside, gentiopicroside, isovitexin, amoroswertin, amarogentin, gentiacaulein, decussating, and swertianin Mahendran et al., 2014
117 Syzygium cuminii L. Eugenol, linalool oxide, and linalool De Lima et al., 1998; Ramya et al., 2012
118 Tanacetum parthenium (L.) Sch.Bip. Apigenin bornyl acetate, camphene, bornyl isovalerate, borneol, juniper camphor, and β-eudesmol Jäger et al., 2009
119 Tetrapleura tetraptera (Schumach. & Thonn.) Taub. Aridanin, D-fructose, glycidol piperazine, glyceraldehydes, octadecenoic acid, and octodrine Aderibigbe et al., 2007; Bum et al., 2011
120 Trachyspermum ammi (L.) Sprague Thymol, γ-terpinene, para-cymene, and α- and β-pinene Rajput et al., 2013
121 Trichilia emetica Vahl Trichirokin, scopoletin, benzoic acid, protocatechuic acid, lignoceric acid, β-sitosterol, and stigmasterol Bum et al., 2011
122 Uncaria rhynchophylla (Miq.) Miq. Rhynchophylline Hsu et al., 2013
123 Viola tricolor L. Valepotriates and valerenic acid, kaempferol, luteolin, violanthin, quercetin, and rutin Rahimi et al., 2019
124 Viscum album L. Lectins, viscotoxins, and flavones Gupta et al., 2012
125 Vitellaria paradoxa C.F.Gaertn. Linalool, stearic and oleic acid Bum et al., 2011
126 Withania somnifera (L.) Dunal Withniol, withanine, and somniferine Uddin et al., 2012

3

3 Result and discussion

Total 97 families were found to be useful in epilepsy, of which, the highest occurrence belonged to Lamiacea 19 (18.56%), Asteraceae and Fabaceae 16 (16.50%) each, Fabaceae 11 (11.34%), Rubiaceae, Rutaceae, and Apocynaceae 6 (2.4%) each, Caesalpiniaceae, Solanaceae, Byrtaceae and Anacardiaceae 5 (2%) each, and Liliaceae, Mimosaceae, Ranunculaceae and Combretaceae 4 (1.6%) each. Other families were found to have 1 or 2 plants to be effective in epilepsy in the list.

From the literature review, it was found that herbs were the most common plants to have antiepileptic activities. This can make the plant selection easy for researchers, who are interested in plants-based treatment for epilepsy, by concentrating on herbs for their research. According to plants habit, of 241 plants, herbs were 102 (42.15%), trees were 72 (29.75%), shrubs were 54 (22.31%), climbers were 12 (4.96%), and bulbs were 2 (0.83%) (Fig. 1).

Antiepileptic traits of plants based on their habits.
Fig. 1
Antiepileptic traits of plants based on their habits.

According to the plants’ parts used, 105 (43.39%) were found to have antiepileptic potentials in leaves, 51 (31.07%) in roots, 20 (8.36%) in stem, 8 (3.31%) in rhizome, 4 (1.65 %) in bulb, 32 (13.22%) in bark, 6 (2.48%) in gum, 19 (7.85%) in flowers, 18 (7.44%) in fruits, 24 (9.92%) in seeds, and 29 (11.98%) in whole plant (Fig. 2).

Antiepileptic propertiess of different parts of plants.
Fig. 2
Antiepileptic propertiess of different parts of plants.

A study was conducted to find out the antiepileptic effect Acalypha fruticose aerial parts extract in mice. A. fruticosa extract at 30–300 mg/kg, p.o. dose was evaluated in pentylenetetrazol (PTZ), maximum electroshock (MES) and isoniazid (INH)-induced convulsions in mice. As compared to diazepam-treated mice in the MES technique, the plant extract considerably protected the mice from convulsions generated by electroshock in a dosage-dependent manner and displayed higher activity at 300 mg/kg dose. The extract prevented convulsions in mice more effectively than phenobarbitone sodium in the PTZ technique, while it delayed dose-dependently the latency of convulsions in mice in INH protocol but could not prevent the mortality. It was concluded that the presence of antioxidant principles like flavonoids in the extract may be responsible for considerable and dose-dependent antiepileptic effect (Govindu and Adikay, 2014). In a different study, the traditional antiepileptic use of Achyranthes aspera Linn. was evaluated in PTZ, picrotoxin, bicuculline, and MES-induced seizure models. In PTZ, picrotoxin, and bicuculline treatment, A. aspera extract at 5–10 mg/kg dose showed a substantial increase in seizure threshold compared to saline treated mice; however, the extract did not show any protection in MES-induced seizures. Furthermore, A. aspera therapy at 5–10 mg/kg dose increased the GABA levels in the hippocampus and cortex as compared to control group in HPLC quantification. It was assumed that the anticonvulsant effect of A. aspera extract may be facilitated by the GABAergic neurotransmission involvement (Gawande et al., 2017)

Traditionally, Anacyclus pyrethrum DC root has long been known for its antiepileptic effect in Unani medicine from ancient time. To rationalize this ethnomedical claim, A. pyrethrum root extract (APE) was evaluated at 100–800 mg/kg dose in against PTZ, elevated plus maze (EPM), bicuculline, and increasing current electroshock (ICES) models for anticonvulsant and anxiolytic effects. The neurotoxicity of extract was found in rotarod test model including an additional higher dose (1600 mg/kg). The APE dose-dependently showed significant (P < 0.001) anticonvulsant effect against PTZ (70 mg/kg, i.p.), while against bicuculline (30 mg/kg, i.p.) at 800 mg/kg dose only (P < 0.001). Furthermore, the extract failed to protect mice against ICES-induced seizures (P > 0.05). The plant also exhibited anxiolytic activity in EPM (P < 0.001) model and impaired motor coordination at only 1600 mg/kg dose in rotarod model. HPTLC confirmed the presence of eugenol in the extract, which was responsible for anticonvulsant and anxiolytic effects of APE facilitated by GABAergic neurotransmission (Zaidi et al., 2013).

Annona squamosa and its active alkaloid (-) anonaine was found to be used for epilepsy treatment. For neuroprotective determination, the variations of GABA, GABAA, and GABAB receptors in the brain cortex area of epileptic-rats and the prospective applications of A. squamosa and its screened phytochemical (anonaine) were examined by using confocal microscopy method. The radial and Y-maze models were used to investigate nootropic activity in epileptic rats. In the brain of epileptic rats, GABA receptor binding studies revealed a substantial decrease in Bmax (P < 0.001) as compared to controls, while the microscopic (confocal) investigation showed reduced GABA receptors in epileptic animals. In the radial and Y-maze models, A. squamosa leaves extract and its screened constituent, anonaine, displayed memory regaining, and memory boosting effects. It was concluded from the aforementioned data and observations that anonaine improved the alterations in epileptic rat behavior and lowered the GABA receptors (Porwal and Kumar, 2015).

Berberis integerrima (Berberidaceae) contains berberine as main bioactive components. Berberine is known for its neuroprotective effect and its uses in other neurological disorders. The anticonvulsant effect of methanolic, hydromethanolic, and chloroform extract of B. integerrima was evaluated using PTZ and MES-induced seizure models. In PTZ test, methanolic extract at 140–200 mg/kg as well as hydromethanolic and chloroform fractions at 200 mg/kg each given orally increased the tonic extensions in hind limb. The methanolic extract protected 2/8 animals at a dose of 200 mg/kg while hydromethanolic and chloroform fractions protected 3/8 animals at a dose of 200 and 140 mg/kg, respectively. In the MES test, this plant did not show any anticonvulsant effect. Authors concluded that B. integerrima presented anticonvulsant effect in PTZ-induced seizure model, and future research may produce some valuable constituents from these plants for epilepsy (Hosseinzadeh et al., 2013).

Indian and Tanzanian traditional healers are using Cassia fistula L. for treatment of various neurological disorders including epilepsy from ancient time. The anticonvulsant and anxiolytic activities of Cassia fistula pods extract were evaluated to provide scientific validation to the traditional antiepileptic use of this plant. Anticonvulsant activity was checked in PTZ model and anxiolytic activity was performed by EPM and open field test (OFT). Phenobarbitone-induced sleep and rotarod behavior test models were used for the evaluation of sedative and motor toxicity effects respectively. C. fistula at 50–100 mg/kg p.o. dose delayed the onset of clonic seizure and generalized tonic clonic seizure and protected animals completely from death. C. fistula at 100 mg/kg increased the entries into and time spent in open arm in EPM, while increased the number of central squares crossing and time spent in central squares in OFT. The plant extract did not cause sedation or motor toxicity at the above used doses. The authors claimed that the plant showed clear anticonvulsant and anxiolytic activities, and in future, effective phytochemicals with antiepileptic activity can be obtained (Kalaiyarasia et al., 2015).

In a different study, a total of 21 compounds, including 9 new compounds named cynawilfosides A-I (1–9) and 12 already known constituents from the roots of Cynanchum wilfordii plants were isolated. The spectroscopic analysis and chemical methods were used for the elucidation of new compounds structure. Cynawilfoside A-1, cynauricoside A-11, wilfoside C1N-16, wilfoside K1N-17, and cyanoauriculoside G-18 showed remarkable protection activity of 90, 60, 40, 70, and 55.5% in MES-induced mouse seizure model with ED50 values of 48.5, 95.3, 124.1, 72.3, and 88.1 mg/kg respectively. The authors concluded that these new compounds need further evaluation to be prospective candidates and therapeutic agents against epilepsy (Li et al., 2016).

A research study was conducted to isolate and identify the active constituents responsible for the anticonvulsant activity of Cyperus articulates. All solvents extracts were assessed for anticonvulsant activity in PTZ-induced seizure in zebrafish seizure model. The highest antiseizure activity was achieved with hexane extract. Also, hexadecane and blood brain barrier (BBB) parallel membrane-permeability assay methods were used to evaluate the absorption of bioactive constituents through GIT and BBB. The hexane extract showed the highest anticonvulsant activity with 93% reduction in PTZ-induced seizures. Four sesquiterpenoids, identified as mustakone (1), cyperotundone (2), sesquichamaenol (3), and 1,2-dehydro-α-cyperone (4) revealed remarkable anticonvulsant activities. Further, the compounds of hexane extract including compounds 1 and 2 were observed to cross gastrointestinal barrier and the main compound 2 crossed the BBB as well. Results showed anticonvulsant activity of various active constituents from hexane extract of C. articulatus rhizomes which supported its folkloric uses for epilepsy treatment (Brillatz et al., 2020).

Phytol is already reported for antiseizure activity, and it was considered that this compound might be responsible for the antiseizure activity of Jasminum grandiflorum (Wei et al., 2015). Mimosa pudica L. (Mimosaceae) is known to be used traditionally for various diseases like convulsion, insomnia, tumor, alopecia, and snake bite etc. Researchers tested this plant for epilepsy, motor activities, and algesia activities. The ethyl-acetate extract of M. pudica leaves (EAMP) at 100–400 mg/kg/day doses were given orally to mice for consecutive 7-days. The antiepileptic activity was assessed in MES, PTZ, and INH-induced seizure models, whereas the motor activities of mice were evaluated in actophotometer, rotarod, and traction tests. The analgesic activity was examined in hot-plate, acetic acid-induced writhing, and tail flick test rats’ models. The acute toxicity study of the extract was checked at 50–2000 mg/kg/p.o. and behavioral changes were observed for 24 h. The EAMP (100–400 mg/kg/day) reduced the duration of seizures in MES seizure model with significant level (P < 0.01) and delayed onset of tonic-clonic seizures in PTZ and INH seizure models with significant level (P < 0.001). The EAMP exhibited analgesic activity in a dose-dependent manure by augmenting the reaction-time as compared to control group, while motor activities were improved dose-dependently as compared to standard group. No lethal effects were appeared in the acute toxicity study. Results confirmed the antiepileptic, analgesic, and motor activities of EAMP in animals’ models (Patro et al., 2015).

Antiepileptic activity of Nelumbo nucifera fruits extract (NNEF) was evaluated in rats in strychnine induced-seizure model divided in 5 groups (each group = 7 rats) i.e., in control (2% gum tragacanth), reference (diazepam 1 mg/kg), and 3 test groups (50, 100 and 200 mg/kg). Daily doses were given orally for consecutive 15 days. It was found that NNFE at 200 mg/kg dose presented most significant delay in the instigation of seizures as compared to the control group, however, the duration of seizure was increased and intensity was decreased, leading to the better rats’ survival rate (42.85%), which was comparable to the result of reference drug (diazepam). Findings concluded that NNEF has valuable antiepileptic activity, but further advanced studies, in large number of animals, are needed to validate these outcomes (Rajput et al., 2017).

A bioactive compounds class, Triterpenes found in Poria cocos Wolf (Polyporaceae), has been traditionally in use from ancient time to treat numerous diseases in China. Though, their antiepileptic activities and mechanistic pathways are still not fully discovered. The total triterpenes ethanolic extract (TTPE) of P. cocos was characterized by HPLC fingerprint-analysis. Male ICR (Institute of Cancer Research) mice were given TTPE (5, 20, 80, and 160 mg/kg). and reference drugs twice a day for 7 days by intragastric-gavage (i.g.) method. Antiepileptic activities of TTPE were examined in MES and PTZ-induced mouse seizure models for 30- and 60-min duration, respectively. Rota-rod test and locomotor activity were performed for 5- and 60-min duration, respectively. The levels of aspartic acid (Asp), glutamic acid (Glu), glycine (Gly), and GABA were estimated in convulsive mice. The expressions of GABAA and glutamate decarboxylase-65 (GAD65) were examined after TTPE treatment in the rats’ brain in chronic epileptic wistar rats’ model. The LC50 of TTPE was found to be above 6 g/kg. In MES- and PTZ-induced seizures model, TTPE (5–160 mg/kg) protected mice at 65% and 62.5%, respectively, but did not show any significant effect on rota-rod treadmill. TTPE (20–160 mg/kg) decreased the locomotor movements and onset time of pentobarbital-induced sleep. TTPE declined Asp and Glu levels in convulsive mice but raised the GABAA and GAD65 expressions in the rats’ chronic epileptic model. The authors stated that the TTPE possessed potential antiepileptic activity and further studies are required to isolate the active constituents from TTPE that are responsible for antiepileptic effect (Gao et al., 2016).

Researchers validated the traditional anticonvulsant use of ethanolic extract of fruits of Pyrus pashia (EPP) in rats’ model. Also, the antiepileptic activity of the isolated chrysin was investigated in experimental animals’ model to find out the possible EPP mechanism in epilepsy treatment. Additionally, the safety study of chrysin was evaluated to explore the possible therapeutic options in managing epilepsy. The anticonvulsant activity of standardized EPP was checked in terms of duration of seizures and onset of hind-limb tonic extension in MES and PTZ-induced seizure model. Furthermore, in addition to antioxidant activity, the chrysin’s antiseizure and electrophysiological activities were studied against PTZ-induced convulsion in experimental rats’ model. Additionally, the chrysin was also assessed for neurotoxic effect in terms of duration of running and duration of movement in rotarod and photo-actometer apparatus respectively. The EPP (100–400 mg/kg) and chrysin (2.5–10 mg/kg) doses showed remarkable anticonvulsant activities in MES and PTZ-induced acute seizure model using experimental rats. Moreover, chrysin did not induce sedation in experimental animals’ model. Results showed that EPP could be deemed as alternative and potential therapeutic agent in epilepsy’s management (Sharma et al., 2019).

The anticonvulsant effect of Ricinus communis L. (Euphorbiaceae) leaves extract in MES and PTZ-induced seizures in albino rats and albino mice was assessed. R. communis extract was also analyzed in Eddy's hot plate for analgesic activity. The ethanolic extract of R. communis leaves (250 mg/kg) was given orally to both rats and mice and its anticonvulsant effect was compared with the standard antiepileptic drug, phenytoin in MES and diazepam as standard control in PTZ-induced seizure models, respectively. The latency of seizures and mortality rate was noted. The extract significantly suppressed the duration of the tonic convulsions and exhibited recovery in MES-induced seizure model. It also reduced the number and duration of convulsions, delayed the onset time of clonic seizures, and protected animals against mortality in PTZ-induced seizures model. The extract also showed analgesic activity in Eddy's hot plate method, possibly through inhibition of prostaglandin synthesis and membrane stabilization. The extract could have the probability of exhibiting anticonvulsant activity by interfering with GABA and glutamate mechanisms. Phytochemical screening showed the occurrence of flavonoids and fatty acids that might be responsible for its anticonvulsant effect (Ladda, 2014).

Silybum marianum seed extract (300 mg/kg) showed considerable protection against PTZ-induced convulsions (seizure frequency, duration, and fatality). Furthermore, the extract at 300 mg/kg/day dose was found to be effective to protect the oxidative stress in the mice brain, resulting in a remarkable increased superoxide dismutase (0.4 ± 0.1 mol/mg protein) and catalase activity (4.7 ± 0.8 U/mL), while decrease in lipid peroxidation (1.4 ± 0.4 nmol/mg protein), when compared to the induced untreated group (P < 0.05). Authors concluded that the antiseizure activity of S. marianum seeds extract might be due to its antioxidant activity (Waqar et al., 2016).

The anticonvulsant, anxiolytic, and sedative activities of the Swertia corymbosa methanolic extract (SCMeOH) were evaluated. After acute-toxicity test, SCMeOH was studied in PTZ, INH, and MES-induced seizure models for its anticonvulsant activity. The anxiolytic activity was checked in open field test (OFT) and elevated-plus-maze (EPM) models, while actophotometer and rotarod test models were used to evaluate the locomotor and sedative activities of SCMeOH. In OFT, SCMeOH at 125–500 mg/kg dose significantly (P < 0.01, P < 0.001) increased the numbers of rearing, while reduced the numbers of ambulation and central motor activity (P < 0.01, P < 0.001). The extract increased the time spent and the number of entries in open arms, while decreased the number of locomotion (P < 0.001) in EPM and actophotometer test respectively. SCMeOH at 125–500 mg/kg dose protected animals against the PTZ and INH-induced convulsions. At the same above doses, the extract increased the latency of convulsion with significant level (P < 0.01, P < 0.001). SCMeOH also decreased the duration time of tonic hind-limb extension in MES-indued seizure model (Mahendran et al., 2014).

The strychnine-induced seizure model was used to check the anticonvulsant effect of methanolic extract of Trachyspermum ammi. After administration of T. ammi extract (50 mg/kg) and diazepam (1 mg/kg) for consecutive 14 days, rats were examined in strychnine-induced seizure model. The onset and duration time of convulsions, and the animal’s protection from seizures were recorded. T. ammi extract at 50 mg/ kg and diazepam at 1 mg/kg concentrations delayed the onset time of convulsion by 6.25 ± 0.51 and 2.57 ± 0.81 min, respectively as compared to the vehicle control (0.146 ± 0.01 min). The animals’ survival rate, treated with T. ammi extract and diazepam was estimated as 42.8 and 71.4% respectively, compared to the vehicle control. However, both T. ammi extract and diazepam increased the duration of convulsions as compared to control group (Rajput et al., 2013).

The anticonvulsant effects of Viola tricolor extract in PTZ and MES-induced seizure model were studied. A total of 26 mice groups (n = 10) were selected for the administration of V. tricolor hydroalcoholic extract (VHE; 100, 200, and 400 mg/kg), ethyl acetate fractions (EAF; 50, 100, and 200 mg/kg), and n-butanol fractions (NBF; 50, 100, and 200 mg/kg) as well as reference drug diazepam (3 mg/kg) and vehicle control group. Seizures were induced in all group’s mice by the administration of PTZ (100 mg/kg) or induced by MES (50 Hz, 1 s and 50 mA) after 30 min of treatment. The VHE at 400 mg/kg dose significantly (P < 0.001) enhanced the latency to the generalized tonic-clonic seizures (GTCs) caused by PTZ as compared to the vehicle control group. The EAF at its all 3 doses (50, 100, and 200 mg/kg) remarkably delayed the latency of PTZ-generated seizures compared to the vehicle group. Furthermore, the NBF at its all dose (50, 100, and 200 mg/kg) increased the GTCs latency produced by PTZ in comparison to vehicle group. Moreover, the MES-induced hind limb tonic extension (HLTE) was reduced by all concentrations of the VHE, EAF, and NBF as compared to the vehicle group. Findings revealed that V. tricolor and its different fractions had anticonvulsant activities as validated by the extension of latency to the first GTCs caused by PTZ and reduction in the occurrence of HLTE generated by MES (Rahimi et al., 2019).

Abstract - is study aims to investigate the effect of a methanol extract of Trachyspermum ammi (L.) as an antiepileptic

4

4 Conclusions

Herbs are important sources of medicinal agents used to reverse various types of neurodegenerative and neuroinflammatory pathways and correcting the abnormal pathologies. In this review, we identified 241 plants effective in neurodegenerative disorder with special focus on epilepsy and convulsion. These data can be further validated and investigated for the discovery of new and ideal alternative drugs to the existing allopathic antiepileptic medications with maximum efficacy, good tolerability, lowest interactive level, and minimum adverse drug reaction.

Declaration of Competing Interest

Authors declare that they have no conflict of interest

References

  1. , , , , , . Anticonvulsant effects of some Arab medicinal plants. Int. J. Crude Drug Res.. 1987;25:39-43.
    [Google Scholar]
  2. , , , , , , . An ethnobotanical survey of medicinal plants used in the Tata Province. Morocco. Int. J. Med. Plants Res.. 2012;1:99-123.
    [Google Scholar]
  3. , , , . Antinociceptive, anti convulsant and anti inflammatory activities of Zizyphus jujuba. Anc. Sci. Life. 1994;14:39-41.
    [Google Scholar]
  4. , , , , , . Anti-convulsant, analgesic and hypothermic effects of aridanin isolated from Tetrapleura tetraptera fruit in mice. J. Biol. Sci.. 2007;7:1520-1524.
    [Google Scholar]
  5. , . Anticonvulsant properties of the roots of Boerhaavia diffusa linnaeus. Quart. J. Crude Drug Res.. 1979;17:84-86.
    [Google Scholar]
  6. , , , , , . Anticonvulsant, anxiolytic and sedative activities of the aqueous root extract of Securidaca longepedunculata Fresen. J. Ethnopharmacol.. 2010;130:191-195.
    [Google Scholar]
  7. , , , . Sedative and anticonvulsant activities of the aqueous root extract of Sanseviera liberica Gerome & Labroy (Agavaceae) J. Ethnopharmacol.. 2007;113:111-114.
    [Google Scholar]
  8. , , , . Assessing anticonvulsant effect of aqueous extract of Datura stramonium seed on PTZ-induced seizures in the male mice. J. Shahid Sadoughi Univ. Med. Sci.. 2015;23:782-789.
    [Google Scholar]
  9. , , . Involvement of gamma aminobutyric acid in the anticonvulsant effect of the leaf methanol extract of Ruta graveolens L. (Rutaceae) in mice. Int. J. Pharmacol.. 2013;9:134-142.
    [Google Scholar]
  10. , , . Anticonvulsant activity of root and stem extracts of Calliandra portoricensis. J. Ethnopharmacol.. 1988;22:205-210.
    [Google Scholar]
  11. , , , . The effect of Nigella sativa L. (black cumin seed) on intractable pediatric seizures. Med. Sci. Monitor.. 2007;13:CR555-9.
    [Google Scholar]
  12. , , , . Anticonvulsant activity of Cotyledon orbiculata L. (Crassulaceae) leaf extract in mice. J. Ethnopharmacol.. 2007;112:101-107.
    [Google Scholar]
  13. , , , . Antimicrobial and anticonvulsant activities of Viscum capense. J. Ethnopharmacol.. 1998;61:237-241.
    [Google Scholar]
  14. , , , . Anticonvulsant activity of roots and rhizomes of Glycyrrhiza glabra. Ind. J. Pharmacol.. 2002;34:251-255.
    [Google Scholar]
  15. , , . CNS activity of Calotropis gigantea roots. J. Ethnopharmacol.. 2006;106:142-145.
    [Google Scholar]
  16. , , , . Anticonvulsant activity of Emilia sonchifolia leaf extracts. Pak. J. Sci. Ind. Res.. 2006;49:269-275.
    [Google Scholar]
  17. , , , . Effect of Gentiana olivieri on experimental epilepsy models. Pharmacogn. Mag.. 2011;7:344-349.
    [Google Scholar]
  18. , , , . Medicinal effects of Heracleum persicum (Golpar) Middle-East J. Sci. Res.. 2010;5(3):174-176.
    [Google Scholar]
  19. , , , , , , . Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem. Pharmacol.. 2000;59:1387-1394.
    [Google Scholar]
  20. , , , , , , . Pattern of neurological diseases in adult outpatient neurology clinics in tertiary care hospital. BMC Res. Notes. 2017;10:1-6.
    [Google Scholar]
  21. , , , , , . Sedative, antiepileptic and antipsychotic effects of Spondias mombin L. (Anacardiaceae) in mice and rats. J. Ethnopharmacol.. 2006;103:166-175.
    [Google Scholar]
  22. , , , , , , . Evaluation of anticonvulsant and antioxidant activity of flacourtia indica on pentylenetetrazole (PTZ) induced convulsions in mice. Res. J. Pharm. Technol.. 2020;13:1762-1766.
    [Google Scholar]
  23. , , , , , , . Anticonvulsant compounds from the wood of Caesalpinia sappan L. Arch. Pharmacal Res.. 2000;23:344-348.
    [Google Scholar]
  24. , , , , , , . Evaluation of cytotoxicity and anticonvulsant activity of some Iranian medicinal Ferula species. Pharm. Biol.. 2010;48:242-246.
    [Google Scholar]
  25. , , , . Anti epileptic activity of poly herbal extract from Indian medicinal plants. J. Sci. Res.. 2009;1:153-159.
    [Google Scholar]
  26. , , , , , , . Pharmacodynamic interaction of the sedative effects of Ternstroemia pringlei (Rose) Standl. with six central nervous system depressant drugs in mice. J. Ethnopharmacol.. 2008;119:47-52.
    [Google Scholar]
  27. , , . Ayurvedic plants in brain disorders: the herbal hope. J. Tradit. Med. Clin. Natur.. 2017;6:1-9.
    [Google Scholar]
  28. , . The epidemiology of epilepsy. Neuroepidemiology. 2020;54:185-191.
    [Google Scholar]
  29. Bellon, M., Panelli, R.J., Rillotta, F., 2015. Epilepsy-related deaths: an Australian survey of the experiences and needs of people bereaved by epilepsy. Seizure 29, 162-8.
  30. Berg, A.T., Berkovic, S.F., Brodie, M.J., Buchhalter, J., Cross, J.H., van Emde Boas, W., et al. 2010. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009.
  31. , , , , , , . Antiepileptic activity of the whole plant extractof Melissa officinalis in swiss albino mice. Int. J Pharm. Sci. Res.. 2012;3:886-889.
    [Google Scholar]
  32. , , , , , , . Anticonvulsant activity of berberine, an isoquinoline alkaloid in mice. Epilepsy Behav.. 2010;18:207-210.
    [Google Scholar]
  33. , , , , , . Anticonvulsant activity of aqueous extract of Leonotis leonurus. Phytomedicine. 2002;9:217-223.
    [Google Scholar]
  34. , , , , , . Neurobehavioral effect of essential oil of Cymbopogon citratus in mice. Phytomedicine. 2009;16:265-270.
    [Google Scholar]
  35. , , , , , , . A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex. 2006;16:1296-1313.
    [Google Scholar]
  36. , , , , , , . Zebrafish bioassay-guided isolation of antiseizure compounds from the Cameroonian medicinal plant Cyperus articulatus L. Phytomedicine. 2020;70:153175
    [Google Scholar]
  37. , , , , , , . Sedative and anticonvulsant properties of Passiflora edulis dried leaves decoction in mice. Afr. J. Tradit. Complement. Altern. Med.. 2004;1:63-71.
    [Google Scholar]
  38. , , , , , , . Decoctions of Bridelia micrantha and Croton macrostachyus may have anticonvulsant and sedative effects. Epilepsy Behav.. 2012;24:319-323.
    [Google Scholar]
  39. , , , , , , . Anticonvulsant properties of the methanolic extract of Cyperus articulatus (Cyperaceae) J. Ethnopharmacol.. 2001;76:145-150.
    [Google Scholar]
  40. , , , , , , . Sedative and anticonvulsant properties of the decoction of Balanites aegyptiaca (Balanitaceae) J. Anim. Vet. Adv.. 2005;4:901-913.
    [Google Scholar]
  41. , , , , , , . Anticonvulsant, anxiolytic, and sedative properties of the roots of Nauclea latifolia Smith in mice. Epilepsy Behav.. 2009;15:434-440.
    [Google Scholar]
  42. Bum, E.N., Taiwe, G.S., Moto, F.C.O., Ngoupaye, G.T., Vougat, R.R.N., Sakoue, V.D., et al. 2011. Antiepileptic medicinal plants used in traditional medicine to treat epilepsy. In Clinical and genetic aspects of epilepsy. IntechOpen. DOI: 10.5772/18469.
  43. , , , , , , . Validation of anticonvulsant and sedative activity of six medicinal plants. Epilepsy Behav.. 2009;14:454-458.
    [Google Scholar]
  44. , , . Acute effect of an extract of Ambrosia paniculata (Willd.) OE Schultz (mugwort) in several models of experimental epilepsy. Epilepsy Behav.. 2004;5:847-851.
    [Google Scholar]
  45. , , . Behavioral and antiepileptic effect of acute administration of the extract of the aquatic plant Echinodorus berteroi (Sprengel) Fassett (upright burhead) Epilepsy Behav.. 2006;9:40-45.
    [Google Scholar]
  46. , , , , . Anticataleptic and antiepileptic activity of ethanolic extract of leaves of Mucuna pruriens: A study on role of dopaminergic system in epilepsy in albino rats. Indian J. Pharmacol.. 2011;43:197-199.
    [Google Scholar]
  47. , , , , , . Psychiatric disorders after epilepsy diagnosis: a population-based retrospective cohort study. PLoS ONE. 2013;8:e59999
    [Google Scholar]
  48. , , , , . Benzodiazepine agonist-type activity of raubasine, a Rauwolfia serpentina alkaloid. Eur. J. Pharmacol.. 1984;106:313-317.
    [Google Scholar]
  49. , , , , , , . Anticonvulsant properties of saponins from Ficus platyphylla stem bark. Brain Res. Bull.. 2009;78:276-282.
    [Google Scholar]
  50. , , , . Antiepileptic potential of flavonoids fraction from the leaves of Anisomeles malabarica. J. Ethnopharmacol.. 2011;135:238-242.
    [Google Scholar]
  51. , , , , , , . [+]-Huperzine A treatment protects against N-methyl-D-aspartate-induced seizure/status epilepticus in rats. Chem. Biol. Interact.. 2008;175:387-395.
    [Google Scholar]
  52. , , , , . Anticonvulsant-convulsant effects of delta-9-tetrahydrocannabinol. In The therapeutic potential of marihuana. Boston, MA: Springer; . p. :363-382.
  53. , , , . Anticonvulsant properties of Ipomoea stans. Phytomedicine. 1996;3:41-44.
    [Google Scholar]
  54. , , , , , , . Piperine decreases pilocarpine-induced convulsions by GABAergic mechanisms. Pharmacol. Biochem. Behav.. 2013;104:144-153.
    [Google Scholar]
  55. , , , , , , . Anxiolytic-, antidepressant-and anticonvulsant-like effects of the alkaloid montanine isolated from Hippeastrum vittatum. Pharmacol. Biochem. Behav.. 2006;85:148-154.
    [Google Scholar]
  56. , , . Anesthetic, hypothermic, myorelaxant and anticonvulsant effects of synthetic eugenol derivatives and natural analogues. Pharmacology. 1981;22:113-127.
    [Google Scholar]
  57. , , , . Anticonvulsant activity of the mixed fatty acids of Elaeocarpus ganitrus roxb. (Rudraksh) Ind. J. Physiol. Pharmacol.. 1984;28:245-246.
    [Google Scholar]
  58. , , , , , , . Anticonvulsant and anxiolytic assessment of leaves from Artemisia vulgaris L. in mice. J. Med. Plants Res.. 2013;7:3325-3331.
    [Google Scholar]
  59. , , , . Evaluation of the Central Properties of Artemisia verlotorum1. Planta Med.. 1993;59:326-329.
    [Google Scholar]
  60. , , , , , , . Behavioural effects of crude and semi-purified extracts of Syzygium cuminii Linn. skeels. Phytother. Res. 1998;12:488-493.
    [Google Scholar]
  61. , , , , . Anticonvulsant activity of ethanolic extract of fruits of Terminalia chebula on experimental animals. Int. J. Drug Dev. Res.. 2010;2:764-768.
    [Google Scholar]
  62. , , , . Anticonvulsant effect of Origanum majorana L. Pharmacologyonline. 2007;2007:64-78.
    [Google Scholar]
  63. , , , . Anticonvulsant activity of Canscora decussata Roem. & Sch. Ind. J. Physiol. Pharmacol.. 1972;16:81-83.
    [Google Scholar]
  64. , , , , , , . Sedative and anticonvulsant effects of hydroalcoholic extract of Equisetum arvense. Fitoterapia. 2005;76:508-513.
    [Google Scholar]
  65. , , , , , . Sedative and anticonvulsant activities of goodyerin, a flavonol glycoside from Goodyera schlechtendaliana. Phytother. Res.. 2002;16:261-263.
    [Google Scholar]
  66. Duy, N.L.B., Trang, D.T.D., 2015. Preliminary phytochemical screening, acute oral toxicity and anticonvulsant activity of the rhizomes of Acorus gramineus Soland, HCMC-International University.
  67. , , , . Prevalence of active epilepsy in Kerman, Iran: a house based survey. Acta Neurol. Taiwan. 2012;21:115-124.
    [Google Scholar]
  68. , , . Chemical and pharmacological study of Cymbopogon proximus volatile oil. Res. J. Med. Plant. 2008;2:53-60.
    [Google Scholar]
  69. , , . Anticonvulsant properties of linalool and γ-decanolactone in mice, II WOCMAP Congress Medicinal and Aromatic Plants, Part 2: Pharmacognosy. Pharmacol. Phytomed. Toxicol.. 1997;501:227-234.
    [Google Scholar]
  70. , , , , , , . Piplartine, an amide alkaloid from Piper tuberculatum, presents anxiolytic and antidepressant effects in mice. Phytomedicine. 2007;14:605-612.
    [Google Scholar]
  71. , , , . Medicinal plants of aguambu-bamumbu in the lebialem highlands, southwest province of Cameroon. Afr. J. Pharm. Pharmacol.. 2009;3:1-13.
    [Google Scholar]
  72. , , . Antiepileptic activities of the extract and fractions of Mondia whitei (Hook f.) Skeel leaves. Pharmacogn. J.. 2013;5:256-258.
    [Google Scholar]
  73. , , , . Effects of seasonal variation on the central nervous system activity of Ocimum gratissimum L. essential oil. J. Ethnopharmacol.. 2006;105:161-166.
    [Google Scholar]
  74. , , , , , . Neuropharmacological effects of epinepetalactone from Nepeta sibthorpii behavioral and anticonvulsant activity. Pharm. Biol.. 2004;42:391-395.
    [Google Scholar]
  75. , , , , . Antiepileptic activity of total triterpenes isolated from Poria cocos is mediated by suppression of aspartic and glutamic acids in the brain. Pharm. Biol.. 2016;54:2528-2535.
    [Google Scholar]
  76. , , , , . Pharmacological activities investigation of crude extracts and fractions from Qualea grandiflora Mart. J Ethnopharmacol.. 2006;107:19-24.
    [Google Scholar]
  77. , , , . Anticonvulsant and myorelaxation activity of Anacyclus pyrethrum DC. (Akarkara) root extract. Pharmacologyonline. 2011;1:121-125.
    [Google Scholar]
  78. , , , , , . Anticonvulsant activity and acute neurotoxic profile of Achyranthes aspera Linn. J. Ethnopharmacol.. 2017;202:97-102.
    [Google Scholar]
  79. , , , , , , . Ethnopharmacological evaluation of the anticonvulsant, sedative and antispasmodic activities of Lavandula stoechas L. J. Ethnopharmacol.. 2000;71:161-167.
    [Google Scholar]
  80. , , . Cannabinoids for epilepsy. Cochrane Database Syst. Rev.. 2014;3:CD009270.
    [Google Scholar]
  81. , , , , , . Neuropharmacological profile of an ethanol extract of Ruta chalepensis L. in mice. J Ethnopharmacol.. 2006;106:129-135.
    [Google Scholar]
  82. , , , , . Preclinical studies of three Mexican plants used in folk medicine to treat epilepsy: a short review. Rev. Latinoam. Quim.. 2015;43:31-40.
    [Google Scholar]
  83. , , , , , . Anticonvulsant properties and bio-guided isolation of palmitone from leaves of Annona diversifolia. Planta Med.. 2001;67:136-141.
    [Google Scholar]
  84. , , , , . Some pharmacological effects of the ethanol extract of leaves of Annona diversifolia on the central nervous system in mice. Phytother. Res.. 1998;12:600-602.
    [Google Scholar]
  85. , , . Evaluation of antiepileptic activity of chloroform extract of Acalypha fruticosa in mice. Pharmacognosy Res.. 2014;6:108-112.
    [Google Scholar]
  86. , , , , , , . Sedative, antiepileptic and antipsychotic effects of Viscum album L. (Loranthaceae) in mice and rats. J. Ethnopharmacol.. 2012;141:810-816.
    [Google Scholar]
  87. , , . Antinociceptive and anticonvulsant activities of hydroalcoholic extract of Jasminum grandiflorum (jasmine) leaves in experimental animals. Pharmacognosy Res.. 2013;5:286-290.
    [Google Scholar]
  88. , , , , , . Traditional knowledge and ex situ conservation of some threatened medicinal plants of Swat Kohistan, Pakistan. Int. J. Botany. 2006;2:205-209.
    [Google Scholar]
  89. , , , , , , . Isolation of Anticonvulsant compounds from the fruits of Schizandra chinensis Baili. Appl. Biol. Chem.. 2000;43:72-77.
    [Google Scholar]
  90. , . Depressant and anticonvulsant properties of the root decoction of Afrormosia laxiflora (Leguminosae) Phytother. Res.. 2000;14:57-59.
    [Google Scholar]
  91. , , . Effects of methyl alcoholic extract of Pimpinella anisum L. on picrotoxin induced seizure in mice and its probable mechanism. Sci. J. Kurdistan Univ. Medical Sci.. 2005;10:1-8.
    [Google Scholar]
  92. , , , , . Anticonvulsant effect of Drosera burmannii Vahl. Int. J. Appl. Res. Nat. Prod.. 2009;2:1-4.
    [Google Scholar]
  93. , , , . Anticonvulsant effect of Hypericum perforatum: role of nitric oxide. J. Ethnopharmacol.. 2005;98:207-208.
    [Google Scholar]
  94. , , . Anticonvulsant effects of aqueous and ethanolic extracts of Crocus sativus L. stigmas in mice. Arch. Iranian Med.. 2002;5:44-47.
    [Google Scholar]
  95. , , . Anticonvulsant effects of Coriandrum sativum L. seeds extracts in mice. Arch. Iranian Med.. 2000;3:182-184.
    [Google Scholar]
  96. , , , , . Intracerebroventricular administration of thymoquinone, the major constituent of Nigella sativa seeds, suppresses epileptic seizures in rats. Med. Sci. Monit.. 2005;11
    [Google Scholar]
  97. , , , , . Anticonvulsant effect of Berberis integerrima L. root extracts in mice. J. Acupunct. Meridian Stud.. 2013;6:12-17.
    [Google Scholar]
  98. Hsu, H.C., Tang, N.Y., Liu, C.H., Hsieh, C.L., 2013. Antiepileptic effect of Uncaria rhynchophylla and Rhynchophylline involved in the initiation of c-jun N-terminal kinase phosphorylation of MAPK signal pathways in acute seizures of kainic acid-treated rats. Evid. Based Complement. Altern. Med. 2013.
  99. , , , , , , . Epidemiological data of neurological disorders in Pakistan and neighboring countries: a review. Pak. J. Neurol. Sci.. 2017;12:52-70.
    [Google Scholar]
  100. , , , , . Anticonvulsant effects of a glycoside isolated from the leaf of Spathodea campanulata P. Beauv. J. Med. Plants Res.. 2010;4:1895-1900.
    [Google Scholar]
  101. , , . Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother. Res.. 2008;22:999-1012.
    [Google Scholar]
  102. , , , . Effect of cannabidiol and of other cannabis sativa compounds on hippocampal seizure discharges. Psychopharmacologia. 1973;28:95-102.
    [Google Scholar]
  103. , , , , . Screening of plants used in Danish folk medicine to treat epilepsy and convulsions. J. Ethnopharmacol.. 2006;105:294-300.
    [Google Scholar]
  104. , , , . Bioassay-guided isolation of apigenin with GABA-benzodiazepine activity from Tanacetum parthenium. Phytother. Res.. 2009;23:1642-1644.
    [Google Scholar]
  105. Jaggi, R.K., Madaan, R., Singh, B., 2003. Anticonvulsant potential of holy basil, Ocimum sanctum Linn., and it s cultures. 41, 1329–33.
  106. , , , . Antiepileptic effect of Asparagus racemosus root extracts. J. Trop. Med. Plants. 2009;10:157-161.
    [Google Scholar]
  107. , , , , , , . Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. The Lancet. 2001;358:801-807.
    [Google Scholar]
  108. , , , . Anti-stress, nootropic and anticonvulsant potential of fruit extracts of Piper longum L. Planta Med.. 2008;74:PA244.
    [Google Scholar]
  109. , , , . Anticonvulsant and anxiolyic activities of ethyl acetate fraction of Cassia fistula Linn. pods in mice. Pharmacogn. Comm.. 2015;5:76-82.
    [Google Scholar]
  110. , , , . Anticonvulsive activity of Albizzia lebbeck, Hibiscus rosa sinesis and Butea monosperma in experimental animals. J. Ethnopharmacol.. 2000;71:65-75.
    [Google Scholar]
  111. , , , , , . Anticonvulsant activity of Bacopa monniera in rodents. Brazilian J. Pharm. Sci.. 2009;45:643-649.
    [Google Scholar]
  112. , , , , . Anticonvulsant and depressant-like activity of ursolic acid stearoyl glucoside isolated from Lantana camara L. (verbanaceae) Asian Pac. J. Trop. Dis.. 2012;2:S453-S456.
    [Google Scholar]
  113. , , , , . Effect of Ruta graveolens hydro-alcoholic extract on pentylenetetrazole-induced seizure in male mice. J. Babol Univ. Med. Sci.. 2012;14:30-36.
    [Google Scholar]
  114. , , , , , , . Pharmacological justification for the ethnomedical use of Clausena anisata root-bark extract in the management of epilepsy. J. Appl. Pharm. Sci.. 2012;2:36-40.
    [Google Scholar]
  115. , , , , . Anticonvulsant and antioxidant effect of hydro-alcoholic extract of Cyperus rotundus rhizome on pentylentetrazole-induced kindling model in male mice. J. Med. Plants Res.. 2011;5:1140-1146.
    [Google Scholar]
  116. , , , , , , . An updated list of neuromedicinal plants of Pakistan, their uses, and phytochemistry. Evid. Based Complement. Altern. Med.. 2019;2019:6191505.
    [Google Scholar]
  117. , , , , , , . Phytochemical and pharmacological profile of Miswak (Salvadora persica Linn Salvadoraceae): an overview. Pharmacol. Online. 2010;2:534-548.
    [Google Scholar]
  118. , . Effect of repeated administration of Paeonia emodi Wall root extract in experimental models of epilepsy and behavior. J. Pharmacol. Toxicol.. 2012;7:64-77.
    [Google Scholar]
  119. , . The protective effects of Nigella sativa and its constituents on induced neurotoxicity. J. Toxicol.. 2015;2015:841823
    [Google Scholar]
  120. , , , , . Antiepileptic and antioxidant effect of Brassica nigra on pentylenetetrazol-induced kindling in mice. Iranian J. Pharm. Res.. 2012;11:1209.
    [Google Scholar]
  121. , , , . Trichilia emetica (Meliaceae)–a review of traditional uses, biological activities and phytochemistry. Phytochem. Lett.. 2011;4:1-9.
    [Google Scholar]
  122. , , , , , , . Evaluation of antiepileptic activity and probable mechanism of action of Coleus amboinicus in MES and PTZ models. J. Pharm. Res.. 2012;5:1587-1591.
    [Google Scholar]
  123. , . Screening of Ricinus communis Linn. leaves for anticonvulsant and analgesic activity. Asian J. Pharm. Clin. Res.. 2014;7:110-114.
    [Google Scholar]
  124. , , , . Identification and evaluation of antiepileptic activity of C21 steroidal glycosides from the roots of Cynanchum wilfordii. J. Nat. Prod.. 2016;79:89-97.
    [Google Scholar]
  125. , , , . Anticonvulsant activity of ginseng on seizures induced by chemical convulsants. Epilepsia. 2005;46:15-22.
    [Google Scholar]
  126. , , , , , , . The anticonvulsant and neuroprotective effects of baicalin on pilocarpine-induced epileptic model in rats. Neurochem. Res.. 2012;37:1670-1680.
    [Google Scholar]
  127. , , , , , , . Plectranthus amboinicus (Lour.) Spreng. (orégano francés): efecto antimuscarínico y potenciación de la adrenalina. Rev. Cuba. Plantas Med.. 1999;4:29-32.
    [Google Scholar]
  128. , , , , . Effects of the Areca nut constituents arecaidine and guvacine on the action of GABA in the cat central nervous system. Brain Res.. 1977;136:513-522.
    [Google Scholar]
  129. , , , , . Antiepileptic activity of alcohol and aqueous extracts of roots and rhizomes of Smilax zeylanica Linn. Pharmacolonline. 2008;3:263-272.
    [Google Scholar]
  130. Mahendran, G., Thamotharan, G., Sengottuvelu, S., Bai, V.N., 2014. Evaluation of anticonvulsant, sedative, anxiolytic, and phytochemical profile of the methanol extract from the aerial parts of Swertia corymbosa (Griseb.) wight ex CB Clarke. BioMed Res. Int. 2014, 542385.
  131. , , , , . Detail study on Boerhaavia diffusa plant for its medicinal importance – a review. Res. J. Pharm. Sci.. 2012;1:28-36.
    [Google Scholar]
  132. , , . Anticonvulsant activity of Harpagophytum procumbens DC [Pedaliaceae] secondary root aqueous extract in mice. Brain Res. Bull.. 2006;69:57-62.
    [Google Scholar]
  133. , , , , . Antimicrobial, cytotoxicity, mutagenicity and anti-epileptic potential of ethanol extracts of a multipurpose medicinal plant Dalbergia sissoo. Biocatal. Agric. Biotechnol.. 2019;19:101155
    [Google Scholar]
  134. , , , , , , . Neuropharmacological effects of an ethanol extract of the Magnolia dealbata Zucc. leaves in mice. J. Ethnopharmacol.. 2006;106:250-255.
    [Google Scholar]
  135. , , , , . Bacopa monnieri and Bacoside-A for ameliorating epilepsy associated behavioral deficits. Fitoterapia. 2010;81:315-322.
    [Google Scholar]
  136. , , , , , , . Study of the effects of hydro-methanol extracts of Lavandula vera DC. and Cuscuta epithymum Murr. on the seizure induced by pentylentetranzol in mice. J. Kerman Univ. Medical Sci.. 2007;13:25-32.
    [Google Scholar]
  137. , , , . A glance at Berberis integerimma pharmacological effects and its active constituents. Trends Pharmacol. Sci.. 2020;6:1-10.
    [Google Scholar]
  138. , , , , , , . Anticonvulsant and sedative effects of Salvadora persica L. stem extracts. Phytother. Res.. 2002;16:395-397.
    [Google Scholar]
  139. , , , . Plants used to treat epilepsy by Tanzanian traditional healers. J. Ethnopharmacol.. 2005;97:327-336.
    [Google Scholar]
  140. , , , . Two new antiepilepsy compounds–otophyllosides A and B. Sci. Sin. B.. 1986;29:295-301.
    [Google Scholar]
  141. , , . A review of traditional plants used in the treatment of epilepsy amongst the Hausa/Fulani tribes of northern Nigeria. Afr. J. Tradit. Complement. Altern. Med.. 2008;5:387-390.
    [Google Scholar]
  142. , , , , . Acorus calamus.: Scientific validation of Ayurvedic tradition from natural resources. Pharm. Biol.. 2007;45:651-666.
    [Google Scholar]
  143. , , , , . Indigenous knowledge and folk use of medicinal plants by the tribal communities of Hazar Nao Forest, Malakand District. North Pakistan. J. Med. Plant Res.. 2011;5:1072-1086.
    [Google Scholar]
  144. , , . Anti epileptic activity of Morinda citrifolia linn fruit extract. J. Chem.. 2010;7:795804
    [Google Scholar]
  145. , , . Anticonvulsant activity of methanol leaf extract of Celtis integrifolia Lam (Ulmaceae) in chicks and mice. Ther: Afr. J. Pharmacol; . p. :6.
  146. , , , . Conservation status and use of medicinal plants by traditional medical practitioners in Machakos District, Kenya. National Museums of Kenya: Nairobi, Kenya; .
  147. , , , , . Sedative and antiepileptic effects of Anthocephalus cadamba Roxb. in mice and rats. Indian J. Pharmacol.. 2011;43:699-702.
    [Google Scholar]
  148. , , , . Anticonvulsant effects of aerial parts of Passiflora incarnata extract in mice: involvement of benzodiazepine and opioid receptors. BMC Complement. Altern. Med.. 2007;7:26.
    [Google Scholar]
  149. , , , , , , . The anticonvulsant and sedative effects of Gladiolus dalenii extracts in mice. Epilepsy Behav.. 2013;28:450-456.
    [Google Scholar]
  150. , , , , , , . Analgesic and anticonvulsant effects of extracts from the leaves of Kalanchoe crenata (Andrews) Haworth (Crassulaceae) J. Ethnopharmacol.. 2006;106:70-75.
    [Google Scholar]
  151. , , , , , . Anticonvulsant, analgesic and antipyretic activities of Taxus wallichiana Zucc. J. Ethnopharmacol.. 2008;116:490-494.
    [Google Scholar]
  152. , , , . “Wild cannabis”: A review of the traditional use and phytochemistry of Leonotis leonurus. J. Ethnopharmacol.. 2015;174:520-539.
    [Google Scholar]
  153. , , , , . Identification and quantification of the sedative and anticonvulsant flavone glycoside from Chrysanthemum boreale. Arch. Pharm. Res.. 2013;36:51-60.
    [Google Scholar]
  154. , , , , , . Tian ma, an ancient Chinese herb, offers new options for the treatment of epilepsy and other conditions. Epilepsy Behav.. 2006;8:376-383.
    [Google Scholar]
  155. , . Anticonvulsant effect of Sclerocarya birrea (A. Rich.) Hochst. subsp. caffra (Sond.) Kokwaro (Anacardiaceae) stem-bark aqueous extract in mice. J. Nat. Med.. 2007;61:67-72.
    [Google Scholar]
  156. , . Anticonvulsant activity of Hypoxis hemerocallidea Fisch. & CA Mey. (Hypoxidaceae) corm (‘African potato’) aqueous extract in mice. Phytother. Res.. 2008;22:91-96.
    [Google Scholar]
  157. , . Anticonvulsant property of Sutherlandia frutescens R. BR. (variety Incana E. MEY.) [Fabaceae] shoot aqueous extract. Brain Res. Bull.. 2008;75:126-132.
    [Google Scholar]
  158. , , . Anticonvulsant effect of Persea americana Mill (Lauraceae) (Avocado) leaf aqueous extract in mice. Phytother. Res.. 2006;20:696-700.
    [Google Scholar]
  159. , , , , , . Anticonvulsant effect of kaurenoic acid isolated from the root bark of Annona senegalensis. Pharmacol. Biochem. Behav.. 2013;109:38-43.
    [Google Scholar]
  160. , , , , , , . Phytochemical screening and anticonvulsant property of Ocimum basilicum leaf essential oil. Bol. Latinoam. Caribe Plantas Med. Aromat.. 2009;8:195-202.
    [Google Scholar]
  161. , , , , , , . Anticonvulsant activity of bisabolene sesquiterpenoids of Curcuma longa in zebrafish and mouse seizure models. Epilepsy Behav.. 2012;24:14-22.
    [Google Scholar]
  162. , , , , , , . Neuropharmacological profile and chemical analysis of fresh rhizome essential oil of Curcuma longa (turmeric) cultivated in Southwest Nigeria. Toxicol. Rep.. 2017;4:391-398.
    [Google Scholar]
  163. , , , , , , . Anticonvulsant effect of wogonin isolated from Scutellaria baicalensis. Eur. J. Pharmacol.. 2007;574:112-119.
    [Google Scholar]
  164. , , , . Investigation into the mechanism of action of Madhuca longifolia for its anti-epileptic activity. Pharmacogn. Commun.. 2011;1:18-22.
    [Google Scholar]
  165. , , , . Analgesic, antiepileptic, and behavioral study of Mimosa pudica (Linn.) on experimental rodents. Int. J. Nutr. Pharmacol. Neurol. Dis.. 2015;5:144.
    [Google Scholar]
  166. , , , , , , . Pharmacological screening of Malian medicinal plants used against epilepsy and convulsions. J. Ethnopharmacol.. 2009;121:472-475.
    [Google Scholar]
  167. Penfield, W., Erickson, T.C., 1941. Epilepsy and cerebral localization: A study of the mechanism, treatment and prevention of epileptic seizures. Springfield, Ill: C.C. Thomas.
  168. , , . Behavioral and antiepileptic effects of acute administration of the extract of the plant Cestrum nocturnum Lin (lady of the night) Epilepsy Behav.. 2008;12:366-372.
    [Google Scholar]
  169. , , . Neuroprotective effect of Annona squamosa & (-) Anonaine in decreased GABA receptor of epileptic rats. J. App. Pharm. Sci.. 2015;5:18-23.
    [Google Scholar]
  170. , , , , , . Evaluation of the anticonvulsant activity of the essential oil of Eugenia caryophyllata in male mice. J. Ethnopharmacol.. 1999;64:167-171.
    [Google Scholar]
  171. , , , , , , . Phythochemical screening and anticonvulsant activity of Cymbopogon winterianus Jowitt (Poaceae) leaf essential oil in rodents. Phytomedicine. 2008;15:619-624.
    [Google Scholar]
  172. , , , , , . Anticonvulsant activity of Viola tricolor against seizures induced by Pentylenetetrazol and maximal electroshock in mice. Iran. J. Med. Sci.. 2019;44:220.
    [Google Scholar]
  173. , , . Anticonvulsant effect of Erythrina indica Lam. Pharmacologyonline. 2008;3:744-747.
    [Google Scholar]
  174. , , , . Screening for antiepileptic activity of Moringa oleifa root extract. Int. J. Pharm. Life Sci.. 2012;3:2115-2119.
    [Google Scholar]
  175. , , , . Anti-epileptic activity of Nelumbo nucifera fruit. Metab. Brain Dis.. 2017;32:1883-1887.
    [Google Scholar]
  176. , , , . Evaluation of antiepileptic activity of the methanol extract of Trachyspermum ammi (L.) Arch. Biol. Sci.. 2013;65:815-819.
    [Google Scholar]
  177. , , , , . A study on the anticonvulsant activity of Withania somnifera (Dunal) in albino rats. Natl. J. Physiol. Pharm. Pharmacol.. 2017;7:17-21.
    [Google Scholar]
  178. , , , , , . The effect of Rosa damascena essential oil on the amygdala electrical kindling seizures in rat. Pak. J. Biol. Sci.. 2008;11:746-751.
    [Google Scholar]
  179. , , , . Profile of bioactive compounds in Syzygium cumini – a review. J. Pharm. Res.. 2012;5:4548-4553.
    [Google Scholar]
  180. , , , . Anticonvulsant and neurotoxicity profile of Nardostachys jatamansi in rats. J. Ethnopharmacol.. 2005;102:351-356.
    [Google Scholar]
  181. , , , , , , . Anticonvulsant activity of a loe vera leaf extract in acute and chronic models of epilepsy in mice. J. Pharm. Pharmacol.. 2014;66:477-485.
    [Google Scholar]
  182. , , , , , , . Anticonvulsant activities of ethanolic extract and aqueous fraction isolated from Delphinium denudatum. J. Ethnopharmacol.. 2001;78:73-78.
    [Google Scholar]
  183. , , , , . Anticonvulsant effect of aqueous extract of Valeriana officinalis in amygdala-kindled rats: possible involvement of adenosine. J. Ethnopharmacol.. 2010;127:313-318.
    [Google Scholar]
  184. , , , , , , . Anticonvulsant and depressant effects of aqueous extracts of Carum copticum seeds in male rats. Epilepsy Behav.. 2011;22:220-225.
    [Google Scholar]
  185. , , , , , , . Screening of plants used in southern Africa for epilepsy and convulsions in the GABAA-benzodiazepine receptor assay. J. Ethnopharmacol.. 2004;93:177-182.
    [Google Scholar]
  186. , , , . Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E.. 2002;65:041924
    [Google Scholar]
  187. , , , , , . Anticonvulsant activity of Casimiroa edulis in comparison to phenytoin and phenobarbital. J. Ethnopharmacol.. 1995;45:199-206.
    [Google Scholar]
  188. , , , . The antiepileptic activity of Vitex agnus castus extract on amygdala kindled seizures in male rats. Neurosci. Lett.. 2008;441:193-196.
    [Google Scholar]
  189. , , , . Medicinal plants used in Iranian traditional medicine to treat epilepsy. Seizure. 2014;23:328-332.
    [Google Scholar]
  190. , , . Pharmacological screening of an ethanol extract of defatted seeds of Annona squamosa. Int. J. Pharmacogn.. 1994;32:154-162.
    [Google Scholar]
  191. , , , , . Traditional herbs used in treatment of epileptic seizures. Int. J. Pharm. Chem.. 2012;1:1411-1417.
    [Google Scholar]
  192. , , , . Sedative and anticonvulsant effects of aqueous extract of Ficus sycomorus L. (Moraceae) stembark in rats. Vet. Arh.. 2003;73:103-110.
    [Google Scholar]
  193. , , , . The leaf essential oil of Psidium guyanensis offers protection against pentylenetetrazole-induced seizures. Planta Med.. 1997;63:133-135.
    [Google Scholar]
  194. , , , . Anticonvulsant effect of the fruit essential oil of Cuminum cyminum in mice. Pharm. Biol.. 2002;40:478-480.
    [Google Scholar]
  195. , , , . Evaluation of the anticonvulsant activity of the seed acetone extract of Ferula gummosa Boiss. against seizures induced by pentylenetetrazole and electroconvulsive shock in mice. J. Ethnopharmacol.. 2002;82:105-109.
    [Google Scholar]
  196. , , , . Anticonvulsant activity of Heracleum persicum seed. J. Ethnopharmacol.. 2005;98:209-211.
    [Google Scholar]
  197. , , , . Anticonvulsant activity and chemical composition of Artemisia dracunculus L. essential oil. J. Ethnopharmacol.. 2004;94:283-287.
    [Google Scholar]
  198. , , , . Anticonvulsant activity of the leaf essential oil of Laurus nobilis against pentylenetetrazole-and maximal electroshock-induced seizures. Phytomedicine. 2002;9:212-216.
    [Google Scholar]
  199. , , . The genetics of human epilepsy. Trends Pharmacol. Sci.. 2003;24:428-433.
    [Google Scholar]
  200. , , . Checklist of medicinal plants of Siran Valley, Mansehra, Pakistan. Ethnobot. Leafl.. 2006;10:63-71.
    [Google Scholar]
  201. , , . The herbal cure for epilepsy: an overview. Pakistan J. Med. Dent.. 2017;6:48-53.
    [Google Scholar]
  202. , , , , , . Ethnomedicinal plants used for treating epilepsy by indigenous communities of sub-Himalayan region of Uttarakhand. India. J. Ethnopharmacol.. 2013;150:353-370.
    [Google Scholar]
  203. , , , , , . Chrysin isolated from Pyrus pashia fruit ameliorates convulsions in experimental animals. Nutr. Neurosci.. 2019;22:569-577.
    [Google Scholar]
  204. , , , . Pharmacological evaluation of ethanolic extract of flowers of Tagetes erecta on epilepsy. J. Pharm. Res.. 2009;2:1035-1038.
    [Google Scholar]
  205. , , , , , , . Preliminary pharmacological screening of Bixa orellana L. leaves. J. Ethnopharmacol.. 2006;108:264-271.
    [Google Scholar]
  206. Shorvon, S.D., Andermann, F., Guerrini, R., 2011. The causes of epilepsy: Common and uncommon causes in adults and children. Cambridge University Press 1212.
  207. , , . Anticonvulsant effect of Ficus religiosa: role of serotonergic pathways. J. Ethnopharmacol.. 2009;123:330-334.
    [Google Scholar]
  208. , , , , . Antiepileptic activity of aqueous extract of Tricosanthes dioica Roxb. Asian J. Plant Sci. Res.. 2012;2:45-47.
    [Google Scholar]
  209. , , , , , , . Antinociceptive, anticonvulsant and antibacterial effects of the essential oil from the flower heads of Egletes viscosa L. Phytother. Res.. 1998;12:28-31.
    [Google Scholar]
  210. , , , . Anticonvulsant activity of Hedranthera barteri. Pharm. Biol.. 2012;50:828-831.
    [Google Scholar]
  211. , , . Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb. Perspect. Med.. 2015;5:a022426
    [Google Scholar]
  212. , , , , , , . Biflavones from Rhus species with affinity for the GABAA/benzodiazepine receptor. J. Ethnopharmacol.. 2006;103:276-280.
    [Google Scholar]
  213. , , , , , . Neuropharmacological effects in mice of Lychnophora species (Vernonieae, Asteraceae) and anticonvulsant activity of 4, 5-di-O-[E]-caffeoylquinic acid isolated from the stem of L. rupestris and L. staavioides. Basic Clin. Pharmacol. Toxicol.. 2008;102:281-286.
    [Google Scholar]
  214. , , , , . Antiepileptic activity of lobeline isolated from the leaf of Lobelia nicotianaefolia and its effect on brain GABA level in mice. Asian Pac. J. Trop. Biomed.. 2012;2:537-542.
    [Google Scholar]
  215. , , . An experimental evaluation of anticonvulsant activity of Vitex-negundo. Indian J. Physiol. Pharmacol.. 2005;49:199-205.
    [Google Scholar]
  216. , , , , , . Ursolic acid plays a role in Nepeta sibthorpii Bentham CNS depressing effects. Phytother. Res.. 2007;21:382-385.
    [Google Scholar]
  217. , , , , , . Sedative effect of Eucalyptus urophylla and E. brassiana in mice. Nat. Prod. Commun.. 2008;3:1539-1542.
    [Google Scholar]
  218. , , , , , , . Epilepsy in North America: a report prepared under the auspices of the global campaign against epilepsy, the International Bureau for Epilepsy, the International League Against Epilepsy, and the World Health Organization. Epilepsia. 2006;47:1700-1722.
    [Google Scholar]
  219. , , , , , . Anticonvulsant screening of the aqueous and ethanol extracts of Mitragyna inermis bark in pentylenetetrazole and strychnine induced seizures in albino rats. Int. J. Pharm. Ther.. 2014;5:358-363.
    [Google Scholar]
  220. , , , , , , . Anticonvulsant activity of furanocoumarins and the essential oil obtained from the fruits of Heracleum crenatifolium. Food Chem.. 2008;107:990-993.
    [Google Scholar]
  221. , , , . Phytochemical investigation characterisation and anticonvulsant activity of Ricinus communis seeds in mice. Nat. Prod. Res.. 2011;25:1881-1884.
    [Google Scholar]
  222. , , , , , , . Ethnopharmacological and ethnomedical study of antiepileptic plants used in traditional medicine in Yaounde and its surroundings areas (Cameroon) J. Biol. Chem. Res.. 2016;33:496-509.
    [Google Scholar]
  223. , , , , , . Protective effects of peony root extract and its components on neuron damage in the hippocampus induced by the cobalt focus epilepsy model. Exp. Neurol.. 1997;146:518-525.
    [Google Scholar]
  224. , , , , . Phytochemical and pharmacological profile of Withania somnifera Dunal: A review. J. App. Pharm. Sci.. 2012;2:170-175.
    [Google Scholar]
  225. , , , . Phytochemical anticonvulsant screening of the ethanolic flower extracts of Newbouldia laevis (Bignoniaccae) in mice. J. Pharmacol. Toxicol.. 2008;3:127-133.
    [Google Scholar]
  226. , , , , . A phytochemical investigation of Craterocapsa tarsodes, a plant used for the treatment of epilepsy by the Northern Sotho people of South Africa. S. Afr. J. Bot.. 2002;68:77-79.
    [Google Scholar]
  227. , , , , , , . Improving access to mental health care and psychosocial support within a fragile context: A case study from Afghanistan. PLoS Med. 2012;9:e1001225
    [Google Scholar]
  228. , , . Anxiolytic and anticonvulsant activity of alcoholic extract of heart wood of Cedrus deodara Roxb in rodents. Asian J. Pharma. Res. Health Care. 2009;4:1374-1381.
    [Google Scholar]
  229. , , , , , . Evaluation of the anticonvulsant effect of Centella asiatica (gotu kola) in pentylenetetrazol-induced seizures with respect to cholinergic neurotransmission. Epilepsy Behav.. 2010;17:332-335.
    [Google Scholar]
  230. , , , . Anticonvulsant effect of water extract of Scutellariae radix in mice. J. Ethnopharmacol.. 2000;73:185-190.
    [Google Scholar]
  231. , , , , , . Anti-seizure activity of the aqueous leaf extract of Solanum nigrum linn (solanaceae) in experimental animals. Afr. Health Sci.. 2008;8:74-79.
    [Google Scholar]
  232. , , , . Antiepileptic potential of Silybum marianum seeds in pentylenetetrazol-induced kindled mice. Bangladesh J. Pharmacol.. 2016;11:603-609.
    [Google Scholar]
  233. , , , , , . Studies on the active principles of magnolia bark: Centrally acting muscle relaxant activity of magnolol and honokiol. Jpn. J. Pharmacol.. 1975;25:605-607.
    [Google Scholar]
  234. , , , . Gas chromatographic-mass spectrometric analysis of essential oil of Jasminum officinale L var grandiflorum flower. Trop. J. Pharm. Res.. 2015;14:149-152.
    [Google Scholar]
  235. , , , , . Review of the use of botanicals for epilepsy in complementary medical systems-Traditional Chinese Medicine. Epilepsy Behav.. 2015;52:281-289.
    [Google Scholar]
  236. , , , , , . Anticonvulsant activity of Carissa edulis (Vahl) (Apocynaceae) root bark extract. J. Ethnopharmacol.. 2008;120:255-258.
    [Google Scholar]
  237. , , , , , , . Effect of Acorus gramineus and its active component alpha-asarone on apoptosis of hippocampal neurons in epileptic young rats. Chin. Tradit. Herb. Drugs. 2006;37:1196.
    [Google Scholar]
  238. , , , , , , . Saikosaponin a mediates the anticonvulsant properties in the HNC models of AE and SE by inhibiting NMDA receptor current and persistent sodium current. PLoS ONE. 2012;7:e50694
    [Google Scholar]
  239. , , , , , , . Effect of repeated administration of Paeonia emodi wall root extract in experimental models of epilepsy and behaviour. J. Pharmacol. Toxicol.. 2012;7:64-77.
    [Google Scholar]
  240. , , , , , , . Anticonvulsant, anxiolytic and neurotoxicity profile of Aqarqarha (Anacyclus pyrethrum) DC (Compositae) root ethanolic extract. Pharmacol. Pharm.. 2013;4:535-541.
    [Google Scholar]
Show Sections