Supporting information for

Organic acid catalyzed production of platform chemical 5hydroxymethylfurfural from fructose: process comparison and evaluation based on kinetic modeling

Muhammad Sajid ^{1,2,3}, Yuchen Bai ^{1, 2}, Dehua Liu ^{1, 2}, Xuebing Zhao ^{1, 2, *}

¹ Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China;² Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;³ Department of Chemical Engineering, University of Gujrat, Gujrat 50700, Pakistan,

* Corresponding authors: Xuebing Zhao, Email: zhaoxb@mail.tsinghua.edu.cn

Figure S2. Dehydration of fructose to produce HMF under the catalysis of several organic acids in water medium. A: fructose conversion; B: HMF yield; C: levulinic acid yield. Reaction conditions: 1 M fructose and 1M catalysts in 50 ml of ultrapure water system heated in an oil bath at 100 °C and stirred at 200 rpm for 12 hours.

Figure S3. Effect of initial fructose concentration on fructose dehydration to HMF in the DMSO medium. Reaction conditions: 0.5- 2 M fructose with 1 M acid catalyst heated at 120 °C at a stirring speed of 200 rpm. (A): 1 M pTSA as the catalyst for half-hour; (B): 1 M oxalic acid as the catalyst for 2 hours.

Table S1. Comparison of oxalic acid and pTSA-catalyzed conversion of fructose to HMF in different solvent medium. Reaction conditions: 1 M acid catalyst and with 1 M fructose in 50 ml solvent heated in oil bath for certain time with a stirring speed of 200 rpm; the flask was heated in oil bath at 100 °C for water medium, at 110 °C for DMSO, DMF and IPA medium, and at 120 °C for PEG-400, PEG-1000 and PEG-2000 medium.

Solvent	Catalyst	Time (hour)	Fructose conversion $(X_F \%)$	HMF yield $(Y_{\rm HMF} \%)$	Levulinic acid yield (Y _{LA} %)	Formic acid yield (Y _{FA} %)	HMF Selectivity (S _{HMF} %)
Water	Oxalic acid	8	60.3±2	23.3±1.0	10.01	9.04	37.04
DMF	Oxalic acid	4	49.93±1.5	16.3±1.0	1.25	0.881	32.65
DMSO	Oxalic acid	7	99.37±0.5	79.8±0.5	3	2.6	80.28
IPA	Oxalic acid	6	39.31±2.5	9.05±0.8	0	0	23.04
PEG-400	Oxalic acid	2	46.61±2	45.8±1.1	0	0	98.15
PEG-1000	Oxalic acid	7	98.59±1	40.7±1.2	0	0	41.3
PEG-2000	Oxalic acid	6	100	42.9±0.9	0	0	42.93
Water	pTSA	3	50.77±2	17.7±2.0	9.49	7.79	34.89
DMSO	pTSA	1	100	79.03 ± 1.0	0	0	79.03
IPA	pTSA	2	94.96±1.8	36.1±0.8	0	0	38.05

	Solvent	Temperature Activation Energy (kJ/mol)					
Catalyst		°C	E_{a1}	E_{a2}	E_{a3}	E_{a4}	Ref.,
Oxalic acid	DMSO	100 - 140	96.51	78.39	-	-	This work
pTSA DMSO		100 - 140	33.75	24.94	-	-	This work
HCI KCI	water	74 - 147	126	135	97	62	(Swift at al
pH = 1.1	water	75	115	-	-	-	(3 witt et al., 2014)
	water	150	136	-	-	-	2014)
HCl	Sub critical	210 - 270, 40 Bar	160.6	101.9	97.2	108	(Asghari and
nH = 1.8	water						Yoshida,
p11 – 1.0	water						2007)
Bronsted Acid*	Water	210 - 270	1591	24 65	23.26	31 51	(Nikbin et al.,
pH = 1.8	Water	210 270	157.1	24.05	25.20	51.51	2012)
Formic acid	Water	180 - 220, 100	112	-	-	_	
1 011110 4014	() ator	bar	112				(Li et al.,
Acetic acid	Water	180 - 220, 100	125	_	_	_	2009)
		bar					
H ₂ SO ₄	Water	140 - 180	123	148	92	119	(Fachri et al.,
2		110 100	-		-		2015)
H ₂ SO ₄	[HMIM]Cl	90 - 120	143	_	69	-	(Moreau et
2			-				al., 2006)
H_2SO_4	Water-	180 - 300, 200	99	-	-	-	(Bicker et al.,
	acetone	bar					2003)
NbOPO ₄	Water	90 - 110	65.8	-	-	-	(Carniti et al.,
							2006)
IrCl ₃	[BMIM]Cl	80 - 100	165	124			(Wei et al.,
							2011)
Dowex50wx8-	Water-	100 - 180	103.4				$(Q_1 \text{ et al.},$
100 D 50 0	acetone						2008a)
Dowex50wx8-	DMSO-	100 - 180	60.4				$(Q_1 \text{ et al.},$
100	acetone	1(0, 220					2008D)
Activated carbon	n Water	160 - 220	135				(Sairanen et
		50 bar					al., 2014)

 Table S2. Comparison of the activation energy for acid-catalyzed conversion of fructose to HMF in different solvent systems

*Simulation study

Fructose	Solvent	Catalyst	Temp	Reaction	Conversion	HMF	Ref.
conc.			(°C)	time (h)	(%)	Yield	
(mol/L)						(M %)	
0.5	Water-PEG	pTSA	88	5	97	45.6	(van Dam et
	4000 (50:50	1 M					al., 1986)
	v/v)						
0.05	Subcritical	Oxalic acid	240	2 min	94.12	18.20	(Yoshida,
	water	pH = 1.5					2006)
0.05	Subcritical	pTSA	240	2 min	99.72	37.01	(Yoshida,
	water	pH = 2					2006)
0.28	THF-DMSO	Glucose-	160	1	99	98	(Wang et al.,
	(70:30 v/v) 10	TsOH					2013)
	ml	2.5 Wt. %					
0.46	DMSO	Glucose-	130	1.5	99.9	91.2	(Wang et al.,
	6 ml	TsOH					2011)
		5.6 wt. %					
0.14	Water-DMSO	MeSAPO-11	170	2.5	ND	65.1	(Sun et al.,
	(1:3 g/g) 40 g	0.1 g					2018)
0.5	DMSO	pTSA	120	0.5	100	90.2±0.6	This work
	50 ml	1 M					
1.0	DMSO	pTSA	110	1.5	100	85.8±0.8	This work
	50 ml	1.5 M					
0.5	DMSO	Oxalic acid	120	2	100	80.9±0.7	This work
	50 ml	1 M					
1.0	DMSO	Oxalic acid	130	2	100	84.1 ± 0.8	This work
	50 ml	0.5 M					

Table S3 Comparison of reported results on HMF production from fructose.

References

- Asghari, F.S., Yoshida, H., 2007. Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water: Formation of 5-hydroxymethylfurfural, levulinic, and formic acids. Ind. Eng. Chem. Res. 46, 7703–7710. https://doi.org/10.1021/ie061673e
- Asghari, F.S.F.S., Yoshida, H., 2006. Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Ind. Eng. Chem. Res. 45, 2163–2173. https://doi.org/10.1021/ie051088y
- Bicker, M., Hirth, J., Vogel, H., 2003. Dehydration of fructose to 5-hydroxymethylfurfural in suband supercritical acetone. Green Chem. 5, 280–284. https://doi.org/10.1039/b211468b
- Carniti, P., Gervasini, A., Biella, S., Auroux, A., 2006. Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: Fructose dehydration reaction. Catal. Today 118, 373–378. https://doi.org/10.1016/j.cattod.2006.07.024

Fachri, B.A., Abdilla, R.M., Bovenkamp, H.H.V. De, Rasrendra, C.B., Heeres, H.J., 2015.

Experimental and Kinetic Modeling Studies on the Sulfuric Acid Catalyzed Conversion of d -Fructose to 5-Hydroxymethylfurfural and Levulinic Acid in Water. ACS Sustain. Chem. Eng. 3, 3024–3034. https://doi.org/10.1021/acssuschemeng.5b00023

- Li, Y., Lu, X., Yuan, L., Liu, X., 2009. Fructose decomposition kinetics in organic acids-enriched high temperature liquid water. Biomass and Bioenergy 33, 1182–1187. https://doi.org/10.1016/j.biombioe.2009.05.003
- Moreau, C., Finiels, A., Vanoye, L., 2006. Dehydration of fructose and sucrose into 5hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst. J. Mol. Catal. A Chem. 253, 165–169. https://doi.org/10.1016/J.MOLCATA.2006.03.046
- Nikbin, N., Caratzoulas, S., Vlachos, D.G., 2012. A First Principles-Based Microkinetic Model for the Conversion of Fructose to 5-Hydroxymethylfurfural. ChemCatChem 4, 504–511. https://doi.org/10.1002/cctc.201100444
- Pawar, H., Lali, A., 2014. Microwave assisted organocatalytic synthesis of 5-hydroxymethyl furfural in a monophasic green solvent system †. RSC Adv. 4, 26714–26720. https://doi.org/10.1039/c4ra03137g
- Qi, X., Watanabe, M., Aida, T.M., Smith, R.L., 2008a. Catalytic dehydration of fructose into 5hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem. 10, 799–805. https://doi.org/10.1039/b801641k
- Qi, X., Watanabe, M., Aida, T.M., Smith, R.L., 2008b. Selective Conversion of <scp>D</scp> -Fructose to 5-Hydroxymethylfurfural by Ion-Exchange Resin in Acetone/Dimethyl sulfoxide Solvent Mixtures. Ind. Eng. Chem. Res. 47, 9234–9239. https://doi.org/10.1021/ie801016s
- Sairanen, E., Karinen, R., Lehtonen, J., 2014. Comparison of solid acid-catalyzed and autocatalyzed C5 and C6 sugar dehydration reactions with water as a solvent. Catal. Letters 144, 1839–1850. https://doi.org/10.1007/s10562-014-1350-1
- Sun, X., Wang, J., Chen, J., Zheng, J., Shao, H., Huang, C., 2018. Dehydration of fructose to 5hydroxymethylfurfural over MeSAPOs synthesized from bauxite. Microporous Mesoporous Mater. 259, 238–243. https://doi.org/10.1016/J.MICROMESO.2017.10.022
- Swift, T.D., Bagia, C., Choudhary, V., Peklaris, G., Nikolakis, V., Vlachos, D.G., 2014. Kinetics of Homogeneous Brønsted Acid Catalyzed Fructose Dehydration and 5-Hydroxymethyl Furfural Rehydration: A Combined Experimental and Computational Study. ACS Catal. 4, 259–267. https://doi.org/10.1021/cs4009495
- van Dam, H.E., Kieboom, A.P.G.G., van Bekkum, H., 1986. The Conversion of Fructose and Glucose in Acidic Media: Formation of Hydroxymethylfurfural. Starch Stärke 38, 95–101. https://doi.org/10.1002/star.19860380308
- Wang, J., Ren, J., Liu, X., Lu, G., Wang, Y., 2013. High Yield Production and Purification of 5-Hydroxymethylfurfural. Am. Inst. Chem. Eng. AIChE J 59, 2558–2566. https://doi.org/10.1002/aic
- Wang, J., Xu, W., Ren, J., Liu, X., Lu, G., Wang, Y., 2011. Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chem. 13,

2678. https://doi.org/10.1039/c1gc15306d

Wei, Z., Li, Y., Thushara, D., Liu, Y., Ren, Q., 2011. Novel dehydration of carbohydrates to 5hydroxymethylfurfural catalyzed by Ir and Au chlorides in ionic liquids. J. Taiwan Inst. Chem. Eng. 42, 363–370. https://doi.org/10.1016/j.jtice.2010.10.004