Design, Synthesis and Evaluation of Novel Dehydroabietic Acid-Dithiocarbamate Hybrids as Potential Multi-Targeted Compounds for Tumor Cytotoxicity

Supplementary Materials

Figure S1. ¹H NMR spectrum of the target compound II.

Figure S2. ¹H NMR spectrum of the target compound III-a.

Figure S3. ¹H NMR spectrum of the target compound III-b.

Figure S4. ¹H NMR spectrum of the target compound III-c.

Figure S5. ¹H NMR spectrum of the target compound III-d.

Figure S6. ¹H NMR spectrum of the target compound III-e.

Figure S7. ¹H NMR spectrum of the target compound III-f.

Figure S8. ¹H NMR spectrum of the target compound III-g.

Figure S9. ¹H NMR spectrum of the target compound III-h.

Figure S10. ¹H NMR spectrum of the target compound III-i.

Figure S11. ¹H NMR spectrum of the target compound III-j.

Figure S12. ¹H NMR spectrum of the target compound III-k.

Figure S13. ¹H NMR spectrum of the target compound III-l.

Figure S14. ¹H NMR spectrum of the target compound III-m.

Figure S15. ¹H NMR spectrum of the target compound III-n.

Figure S16. ¹H NMR spectrum of the target compound III-o.

Figure S17. ¹H NMR spectrum of the target compound III-p.

Figure S18. ¹H NMR spectrum of the target compound III-q.

 7112

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 6005

 605

 605

 605

 605

 605

 605

 605

 605

 605

 605

Figure S19. ¹H NMR spectrum of the target compound III-r.

Figure S20. ¹H NMR spectrum of the target compound III-s.

Figure S22. ¹³C NMR spectrum of the target compound III-a.

Figure S23. ¹³C NMR spectrum of the target compound III-b.

Figure S24. ¹³C NMR spectrum of the target compound III-c.

Figure S25. ¹³C NMR spectrum of the target compound III-d.

Figure S26. ¹³C NMR spectrum of the target compound III-e.

Figure S27. ¹³C NMR spectrum of the target compound III-f.

Figure S28. ¹³C NMR spectrum of the target compound III-g.

Figure S29. ¹³C NMR spectrum of the target compound III-h.

Figure S30. ¹³C NMR spectrum of the target compound III-i.

Figure S31. ¹³C NMR spectrum of the target compound III-j.

Figure S32. ¹³C NMR spectrum of the target compound III-k.

Figure S33. ¹³C NMR spectrum of the target compound III-l.

Figure S34. ¹³C NMR spectrum of the target compound III-m.

Figure S35. ¹³C NMR spectrum of the target compound III-n.

Figure S36. ¹³C NMR spectrum of the target compound III-o.

Figure S37. ¹³C NMR spectrum of the target compound III-p.

Figure S38. ¹³C NMR spectrum of the target compound III-q.

Figure S39. ¹³C NMR spectrum of the target compound III-r.

Figure S40. ¹³C NMR spectrum of the target compound III-s.

Figure S41. HR-MS spectrum of the target compound III-a.

Figure S42. HR-MS spectrum of the target compound III-b.

Figure S44. HR-MS spectrum of the target compound III-d.

Figure S45. HR-MS spectrum of the target compound III-e.

Figure S46. HR-MS spectrum of the target compound III-f.

Figure S47. HR-MS spectrum of the target compound III-g.

Figure S48. HR-MS spectrum of the target compound III-h.

Figure S50. HR-MS spectrum of the target compound III-j.

Figure S52. HR-MS spectrum of the target compound III-l.

Figure S53. HR-MS spectrum of the target compound III-m.

Figure S54. HR-MS spectrum of the target compound III-n.

Figure S56. HR-MS spectrum of the target compound III-p.

Figure S57. HR-MS spectrum of the target compound III-q.

Figure S58. HR-MS spectrum of the target compound III-r.

Figure S59. HR-MS spectrum of the target compound III-s.

Compound	Canonical SMILES	Formula	Molecular Weight (≤500)	Rotatable Bonds (≤10)	H-bond acceptors (≤ 10)	H-bond donors (≤ 5)	$TPSA (A2) \\ (\leq 140)$	iLOGP (≤5)	ABS
III-a	CC(C)C1=CC=C2 C(CCC3C(C)(CC CC23C)C(=O)OC CSC(=S)N2CCC(C)CC2)=C1	C29H43N O2S2	501.79	8	2	1	86.93	4.53	0.17
Ш-ь	OC1CCN(CC1)C(=S)SCCOC(=O)C 1(C)CCCC2(C1C Cc1c2ccc(c1)C(C) C)C	C28H41N O3S2	503.76	8	3	1	107.16	4.77	0.55
III-c	S=C(N1CCN(CC1)C(=O)C)SCCOC(=O)C1(C)CCC2(C1CCc1c2ccc(c1) C(C)C)C	C29H42N 2O3S2	530.79	9	3	0	107.24	4.73	0.17
III-e	OC1CCCN(C1)C(=S)SCCOC(=O)C 1(C)CCCC2(C1C Cc1c2ccc(c1)C(C) C)C	C28H41N O3S2	503.76	8	3	1	107.16	4.94	0.17

III-h	OCCN1CCN(CC1)C(=S)SCCOC(=O)C1(C)CCC2(C1 CCc1c2ccc(c1)C(C)C)C	C29H44N 2O3S2	532.80	10	4	1	110.40	5.29	0.55
III-i	OCC1CCN(CC1) C(=S)SCCOC(=O) C1(C)CCC2(C1 CCc1c2ccc(c1)C(C)C)C	C29H43N O3S2	517.79	9	3	1	107.16	4.98	0.17
III-j	OCCC1CCN(CC1)C(=S)SCCOC(=O)C1(C)CCC2(C1 CCc1c2ccc(c1)C(C)C)C	C30H45N O3S2	531.81	10	3	1	107.16	4.98	0.17
III-k	OCCC1CCCCN1 C(=S)SCCOC(=O) C1(C)CCC2(C1 CCc1c2ccc(c1)C(C)C)C	C ₃₀ H ₄₅ N O ₃ S ₂	531.81	10	3	1	107.16	4.75	0.17

Table S1. Evaluation data of drug properties of target compounds.