Supplement Information

Removal of water-soluble lignin model pollutants with graphene oxide loaded Ironic sulfide as an efficient adsorbent and heterogeneous Fenton catalyst

Junjian An^{1, 2}, Shanshan Wang¹, Mengxuan Huang¹, Jian Zhang², Peng Wang^{1, *}

- 1. Hubei provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, P.R.China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P.R.China
 *Corresponding author: ahwp1234@163.com

Fig. S1 Effects of (a) preparation temperature and (b) graphene oxide content of GO-Fe₃S₄ composite on the degradation of vanillic acid. The graphene oxide content was 4% in (a), and the preparation temperature of the composite was 180 °C in (b). Dependence of vanillic acid degradation on (c) catalyst load, (d) initial H₂O₂ concentration, (e) solution pH value and (f) reactive temperature for GO-Fe₃S₄ composite. Other reaction conditions: vanillic acid concentration 35 mg L⁻¹, GO-Fe₃S₄ composite load 0.4 g L⁻¹(a, b, d, e, f), initial H₂O₂ concentration 12 mmol L⁻¹(a, b, c, e, f), solution pH 4 (a, b, c, d, f), and reactive temperature 35 °C (a, b, c, d, e).

Fig. S2 Zeta potential of GO-Fe₃S₄ composite nanoparticles at different pH values

Fig. S3 Adsorption of vanillic acid on GO-Fe₃S₄ composite at different pH values

Fig. S4 The normal probability distribution of residuals

Fig. S5 the distribution of residuals vs. predicted

	Sum of		Mean	F	p-value
Source	Squares	df	Square	Value	Prob>F
Model	14188.96	9	1576.55	331.34	< 0.0001
A-catalyst load	1930.22	1	1930.22	405.66	< 0.0001
$B-H_2O_2$	904.43	1	904.43	190.08	< 0.0001
C-pH	258.84	1	258.84	54.40	< 0.0001
AB	166.62	1	166.62	35.02	0.0001
AC	63.68	1	63.68	13.38	0.0044
BC	19.56	1	19.56	4.11	0.0701
A^2	3935.54	1	3935.54	827.11	< 0.0001
B^2	4217.43	1	4217.43	886.36	< 0.0001
C^2	4838.43	1	4838.43	1016.87	< 0.0001
Residual	47.58	10	4.76		
Lack of Fit	42.14	5	8.43	7.75	0.0211
Pure Error	5.44	5	1.09		
Cor Tobal	14236.55	19			

Table S1 Analysis of variance table

Fig. S6 MS spectra of vanillic acid and its degradation intermediates

Fig. S7 MS spectra of PHBA and its degradation intermediates

Fig. S8 Degradation of vanillic acid with the recycled GO-Fe $_3S_4$ composite

Fig. S9 Percentage of total dissolved iron during the degradation in the $GO-Fe_3S_4-H_2O_2$ systems.

Fig. S10 FT-IR spectra of GO-Fe $_3S_4$, vanillic acid and GO-Fe $_3S_4$ after the

adsorption of vanillic acid.