L	1	Supporting Information for Arabian Journal of Chemistry.
2 3 1	2	
5 5 7	3	Remediation of Cd2+ in aqueous systems by alkali-modified (Ca) biochar and
3 9 1	4	quantitative analysis of its mechanism
2 2	5	
5	6	Jingbo Wang ^{a,b,#} , Yaxin Kang ^{a,b,#} , Huatai Duan ^{a,b} , Yi Zhou ^{a,b} , Hao Li ^{a,b} , Shanguo Chen ^{a,b} , Fenghua
5 7 3	7	Tian ^{a,b} , Lianqing Li ^{a,b,*} , Marios Drosos ^{a,b} , Changxun Dong ^c , Stephen Joseph ^{a,d} , Genxing Pan ^{a,b}
€) I	8	
2 3	9	^a Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural
± 5 6	10	University, 1 Weigang, Nanjing 210095, China
7 3 9	11	^b Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
) L 2	12	^c College of Science, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
- 3 1	13	^d School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052,
5 5 7	14	Australia
3 9)	15	
L 2 3	16	#These authors contributed equally to this work;
1 5 5	17	* Corresponding author at: Institute of Resources, Ecosystem and Environment of Agriculture and
5 7 3	18	Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing
))	19	210095, China.
L 2 2	20	Tel/Fax: +86 25 84398657
5 1 5 5	21	E-mail address: lqli@njau.edu.cn (L. Li).
7 3		
))		
L 2		

	Table S1 The properties of biochar before demineralization.					
Sample	SBB	RSB	Ca-SBB	Ca-RSB		
Yield (%)	31.38	34.44	34.61	38.03		
pH	9.80±0.05b	9.61±0.02c	10.57±0.02a	9.66±0.01c		
EC (ms cm ⁻¹)	1.64±0.01d	8.65±0.06a	6.13±0.05c	6.70±0.12b		
DOC (g kg ⁻¹)	4.24±0.08c	4.06±0.13c	17.83±0.18b	32.99±1.48a		
CO3 ²⁻ (cmol kg ⁻¹)	27.41±5.32b	10.81±0.62c	35.05±3.46a	26.85±1.66b		
CEC (cmol kg ⁻¹)	69.46±2.07c	73.49±3.35b	80.82±3.22a	84.32±2.58a		
C (%)	61.89±0.49a	56.94±0.77b	55.34±0.39c	53.86±1.16c		
H (%)	3.45±0.04b	3.11±0.06c	2.84±0.06d	3.83±0.04a		
N (%)	1.33±0.008a	0.96±0.006c	1.16±0.001b	0.44±0.004d		
H/C	0.06±0.0002b	0.05±0.001b	0.05±0.0008b	0.07±0.0006a		
C/N	46.53±0.33c	59.31±0.43b	47.71±0.34c	122.4±3.41a		
K (g kg ⁻¹)	15.41±0.39c	47.16±0.55a	45.69±0.94a	27.60±1.30b		
Ca (g kg ⁻¹)	32.31±0.86c	24.32±0.54d	75.38±1.37b	82.55±3.44a		
Na (g kg ⁻¹)	0.15±0.03c	6.12±0.12a	0.45±0.02c	1.25±0.27b		
Mg (g kg ⁻¹)	14.41±0.29a	3.67±0.05c	6.38±0.08b	2.54±0.12d		
P (g kg ⁻¹)	0.89±0.02d	2.61±0.08b	4.52±0.04a	2.16±0.09c		
S (g kg ⁻¹)	2.28±0.06c	6.47±0.86a	1.66±0.09c	3.73±0.18b		
$S_{BET} (m^2 g^{-1})$	3.16	5.22	5.51	6.09		
Average pore size (nm)	9.21	5.69	8.96	7.33		
Total pore volume (cm ³ g ^{-1})	0.00728	0.00743	0.0123	0.0112		

23 Note: Subscripts (a, b, c and d) indicate that the differences in the basic properties of biochar in the

```
24 same treatment is significant (P < 0.05).
```

Biochar	Q _{cme} (mg g ⁻¹)	$Q_{cmp} (mg g^{-1})$	$Q_{co}(mg~g^{\text{-}1})$	$Q_{c\pi}(mg g^{-1})$
SBB	11.55±0.05d	23.63±0.55b	14.16±0.30a	5.29±0.76a
RSB	19.41±0.20c	14.30±1.79c	8.07±0.15c	3.36±0.10b
Ca-SBB	30.26±0.72b	43.18±0.89a	12.30±0.23b	0.90±0.60c
Ca-RSB	36.66±0.29a	10.94±0.35d	6.80±0.35d	4.81±0.75a

Table S2 Absorption capacity of Cd^{2+} by each mechanism on biochar (mean \pm S.D., n=3)

27 Note: Absorption capacity of Cd^{2+} by ion exchange (Q_{cme}), minerals precipitation (Q_{cmp}), functional

28 groups complexation (Q_{co}) and $Cd^{2+}-\pi$ coordination ($Q_{c\pi}$) on biochars. Subscripts (a, b, c and d)

29 indicate that the differences in the absorption capacity of Cd^{2+} by each mechanism on biochar in the

30 same treatment is significant ($P \le 0.05$)

Biochar	$Q_{\text{K}}/\left(mg~g^{\text{-}1}\right)$	$Q_{Ca}/\left(mg\;g^{\text{-}1}\right)$	$Q_{\text{Na}}/\left(mg\;g^{\text{-}1}\right)$	$Q_{Mg}/\left(mg~g^{\text{-}1}\right)$	$Q_{cme} / (mg \ g^{-1})$
SBB	3.35±0.07d	4.55±0.07c	N.D	3.65±0.04a	11.55±0.05d
RSB	16.88±0.19a	1.60±0.10d	0.28±0.03	0.65±0.01d	19.41±0.20c
Ca-SBB	15.74±0.20b	11.49±0.43b	N.D	3.03±0.09b	30.26±0.72b
Ca-RSB	9.38±0.10c	25.92±0.28a	N.D	1.36±0.03c	36.66±0.29a

33 Note: Q_{cme} , the adsorption capacity resulted from ion exchange mechanism, mg g⁻¹. Subscripts (a,

34 b, c and d) indicate that the differences in the release of K^+ , Ca^{2+} , Na^+ and Mg^{2+} during Cd^{2+}

adsorption on biochar in the same treatment is significant (P < 0.05).

Biochar	Initial pH	Final pH	Y (%)	Q_{co} (mg g ⁻¹)
SBB	4.06±0.01	3.38±0.03	78.20	14.16±0.30a
RSB	4.06±0.01	3.57±0.01	66.46	8.07±0.15c
Ca-SBB	4.06±0.01	3.38±0.02	64.47	12.30±0.23b
Ca-RSB	4.06±0.01	3.56±0.03	63.77	6.80±0.35d

Table S4 Changes in pH of the Cd²⁺ adsorption on demineralized biochar

39 Note: Q_{co}, the adsorption capacity resulted from functional group complexation mechanism, mg g⁻

40 ¹. Y, the yield of demineralized biochar from original biochar. Subscripts (a, b, c and d) indicate

41 that the differences in the absorption capacity of Cd^{2+} by functional groups complexation (Q_{co}) on

42 biochar in the same treatment is significant (P < 0.05).

52 Fig. S1 SEM images and corresponding EDS spectra of biochar before and after Cd^{2+} adsorption.

55 Fig. S2 FTIR spectra of SBB, Ca-SBB (a) and RSB, Ca-RSB (b) before and after Cd²⁺ adsorption,

56 respectively

59 Fig. S3 Correlation between CEC and Q_{cme} in biochar. Q_{cme} , the adsorption capacity resulted from

60 metal ion exchange mechanism, mg g^{-1}

 $\textbf{63} \qquad \textbf{Fig. S4} Correlation between pH and Q_{cmp} in biochar. Q_{cmp} the adsorption capacity resulted from$

 $^{64 \}qquad \mbox{precipitation with minerals mechanism, mg g^{-1}}$