Supporting Information

Pogocablanols A–G, a new class of sesquiterpenoids with an unprecedented bicyclic sesquiterpenoid skeleton from *Pogostemon cablin* (patchouli) and their activities

Qin-Mei Zhou,^{a,b,c,d,#} Huan Zhu,^{a,b,c,#} Chuan Ma,^{a,b,#} Li Guo,^{a,b} Cheng Peng,^{*,a,b} and Liang Xiong^{*,a,b,c}

^aState Key Laboratory of Southwestern Chinese Medicine Resources, ^bSchool of Pharmacy, ^cInstitute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, ^dInnovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

The List of Contents

No.	Content	Page			
1	ECD calculation of compound 7				
2	Figure S1. ωB97XD/DGDZVP optimized eight conformers of (1 <i>S</i> ,5 <i>R</i> ,7 <i>S</i> ,8 <i>S</i> ,10 <i>S</i>)-7	S1			
3	Table S1. Energy analysis for the conformers of (1S,5R,7S,8S,10S)-7	S2			
4	References	S2			
5	Figure S2. The UV spectrum of compound 1 in acetonitrile	S3			
6	Figure S3. The IR spectrum of compound 1	S4			
7	Figure S4. The (+)-HRESIMS spectroscopic data of compound 1	S 5			
8	Figure S5. The ¹ H NMR spectrum of compound 1 in acetone- d_6	S6			
9	Figure S6. The ¹³ C NMR spectrum of compound 1 in acetone- d_6	S 7			
10	Figure S7. The DEPT spectrum of compound 1 in acetone- d_6	S 8			
11	Figure S8. The HSQC spectrum of compound 1 in acetone- d_6	S9			
12	Figure S9. The $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of compound 1 in acetone- d_{6}	S10			
13	Figure S10. The HMBC spectrum of compound 1 in acetone- d_6	S11			
14	Figure S11. The NOESY spectrum of compound 1 in acetone- d_6	S12			
15	Figure S12. The UV spectrum of compound 2 in acetonitrile	S13			
16	Figure S13. The IR spectrum of compound 2	S14			
17	Figure S14. The (+)-HRESIMS spectroscopic data of compound 2	S15			
18	Figure S15. The ¹ H NMR spectrum of compound 2 in acetone- d_6	S16			
19	Figure S16. The ¹³ C NMR spectrum of compound 2 in acetone- d_6	S17			
20	Figure S17. The DEPT spectrum of compound 2 in acetone- d_6	S18			
21	Figure S18. The HSQC spectrum of compound 2 in acetone- d_6	S19			
22	Figure S19. The ¹ H- ¹ H COSY spectrum of compound 2 in acetone- d_6	S20			
23	Figure S20. The HMBC spectrum of compound 2 in acetone- d_6	S21			
24	Figure S21. The NOESY spectrum of compound 2 in acetone- d_6	S22			
25	Figure S22. The UV spectrum of compound 3 in acetonitrile	S23			
26	Figure S23. The IR spectrum of compound 3	S24			
27	Figure S24. The (+)-HRESIMS spectroscopic data of compound 3	S25			
28	Figure S25. The ¹ H NMR spectrum of compound 3 in acetone- d_6	S26			
29	Figure S26. The ¹³ C NMR spectrum of compound 3 in acetone- d_6	S27			
30	Figure S27. The DEPT spectrum of compound 3 in acetone- d_6	S28			
31	Figure S28. The HSQC spectrum of compound 3 in acetone- d_6	S29			
32	Figure S29. The ¹ H- ¹ H COSY spectrum of compound 3 in acetone- d_6	S30			
33	Figure S30. The HMBC spectrum of compound 3 in acetone- d_6	S31			
34	Figure S31. The NOESY spectrum of compound 3 in acetone- d_6	S32			
35	Figure S32. The UV spectrum of compound 4 in acetonitrile	S33			
36	Figure S33. The IR spectrum of compound 4	S34			
37	Figure S34. The (+)-HRESIMS spectroscopic data of compound 4	S35			
38	Figure S35. The ¹ H NMR spectrum of compound 4 in acetone- d_6	S36			

39	Figure S36. The ¹³ C NMR spectrum of compound 4 in acetone- d_6	S37
40	Figure S37. The DEPT spectrum of compound 4 in acetone- d_6	S38
41	Figure S38. The HSQC spectrum of compound 4 in acetone- d_6	S39
42	Figure S39. The 1 H- 1 H COSY spectrum of compound 4 in acetone- d_{6}	S40
43	Figure S40. The HMBC spectrum of compound 4 in acetone- d_6	S41
44	Figure S41. The NOESY spectrum of compound 4 in acetone- d_6	S42
45	Figure S42. The UV spectrum of compound 5 in acetonitrile	S43
46	Figure S43 The IR spectrum of compound 5	S44
47	Figure S44. The (+)-HRESIMS spectroscopic data of compound 5	S45
48	Figure S45. The ¹ H NMR spectrum of compound 5 in acetone- d_6	S46
49	Figure S46. The ${}^{13}C$ NMR spectrum of compound 5 in acetone- d_6	S47
50	Figure S47. The DEPT spectrum of compound 5 in acetone- d_6	S48
51	Figure S48. The HSQC spectrum of compound 5 in acetone- d_6	S49
52	Figure S49. The ¹ H- ¹ H COSY spectrum of compound 5 in acetone- d_6	S50
53	Figure S50. The HMBC spectrum of compound 5 in acetone- d_6	S51
54	Figure S51. The NOESY spectrum of compound 5 in acetone- d_6	S52
55	Figure S52. The UV spectrum of compound 6 in acetonitrile	S53
56	Figure S53 The IR spectrum of compound 6	S54
57	Figure S54. The (+)-HRESIMS spectroscopic data of compound 6	S55
58	Figure S55. The ¹ H NMR spectrum of compound 6 in acetone- d_6	S56
59	Figure S56. The ¹³ C NMR spectrum of compound 6 in acetone- d_6	S57
60	Figure S57. The DEPT spectrum of compound 6 in acetone- d_6	S58
61	Figure S58. The HSQC spectrum of compound 6 in acetone- d_6	S59
62	Figure S59. The ¹ H- ¹ H COSY spectrum of compound 6 in acetone- d_6	S60
63	Figure S60. The HMBC spectrum of compound 6 in acetone-d ₆	S61
64	Figure S61. The NOESY spectrum of compound 6 in acetone- d_6	S62
65	Figure S62. The UV spectrum of compound 7 in acetonitrile	S63
66	Figure S63 The IR spectrum of compound 7	S64
67	Figure S64. The (+)-HRESIMS spectroscopic data of compound 7	S65
68	Figure S65. The ¹ H NMR spectrum of compound 7 in acetone- d_6	S66
69	Figure S66. The ${}^{13}C$ NMR spectrum of compound 7 in acetone– d_6	S67
70	Figure S67. The DEPT spectrum of compound 7 in acetone- d_6	S68
71	Figure S68. The HSQC spectrum of compound 7 in acetone- d_6	S69
72	Figure S69. The 1 H- 1 H COSY spectrum of compound 7 in acetone- d_{6}	S70
73	Figure S70. The HMBC spectrum of compound 7 in acetone- d_6	S71

ECD calculation of compound 7

Conformation searches based on molecular mechanics with MMFF94s force field were performed for (1S,5R,7S,8S,10S)-7 and gave eight conformers with populations higher than 1% ^[1]. The selected conformers were optimized using DFT at the B3LYP/6-31G (d) level in vacuum with the Gaussian 16 program (Table S1)^[2]. The B3LYP/6-31G (d)-optimized conformers were then reoptimized at the ω B97XD/DGDZVP level in acetonitrile. ECD computations for the ω B97XD/DGDZVP-optimized conformers (Figure S1) were carried out at the CAM-B3LYP/DGDZVP level in acetonitrile ^[3]. Then, the ECD spectrum for (1S, 5R, 7S, 8S, 10S)-7 was generated using SpecDis 1.71 with $\sigma = 0.2$ eV and a UV shift of +15 nm^[4] according to the Boltzmann distribution theory and their relative Gibbs free energy (ΔG). The corresponding theoretical ECD spectrum of (1*R*,5*S*,7*R*,8*R*,10*R*)-7 was depicted by inverting that of (1*S*,5*R*,7*S*,8*S*,10*S*)-7.

7C1

7C2

7C3

7C4

7C5

7C6

7C7

Figure S1. ω B97XD/DGDZVP optimized eight conformers of (1*S*,5*R*,7*S*,8*S*,10*S*)-7.

Conf	MMFF energy	B3LYP/6-31G(d) Gibbs free energy (298.15 K)			ωB97XD/DGDZVP Gibbs free energy (298.15 K)		
Com.	ΔE (Kcal/ mol)	G (Hartree)	ΔG (Kcal/mol)	Boltzmann Distribution	G (Hartree)	ΔG (Kcal/mol)	Boltzmann Distribution
7C1	0.00000	-812.589599	0.0000	0.311	-812.462169	0.0000	0.444
7C2	0.48818	-812.589472	0.0800	0.271	-812.461155	0.6360	0.152
7C3	0.57338	-812.589481	0.0740	0.274	-812.461417	0.4720	0.200
7C4	0.66893	-812.586036	2.2360	0.007	-812.458776	2.1290	0.012
7C5	0.78336	-812.588665	0.5860	0.115	-812.461295	0.5480	0.176
7C6	1.29817	-812.585750	2.4150	0.005	-812.458501	2.3020	0.009
7C7	1.70531	-812.584991	2.8920	0.002	-812.457139	3.1560	0.002
7C8	1.90831	-812.586652	1.8490	0.014	-812.458002	2.6150	0.005

Table S1. Energy analysis for the conformers of (1*S*,5*R*,7*S*,8*S*,10*S*)-7.

References

[1] (a) Goto, H., Osawa, E., 1989. Corner flapping: a simple and fast algorithm for exhaustive generation of ring conformations. J. Am. Chem. Soc. 111, 8950–8951. (b) Goto, H., Osawa, E., 1993. An efficient algorithm for searching low-energy conformers of cyclic and acyclic molecules. J. Chem. Soc., Perkin Trans. 2, 187–198.

[2] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A.Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J., 2016. Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT.

[3] Liu, Y., Liu, F., Qiao M. M., Guo, L., Chen, M. H., Peng, C., Xiong, L., 2019. Curcumanes A and B, Two bicyclic sesquiterpenoids with significant vasorelaxant activity from *Curcuma longa*. Org. Lett. 21, 1197–1201.

[4] Bruhn, T., Schaumlöffel, A., Hemberger, Y., Bringmann, G., 2017. Spec Dis, version 1.71, University of Würzburg, Germany

Figure S2. The UV spectrum of compound 1 in acetonitrile.

Figure S3. The IR spectrum of compound 1.

Figure S4. The (+)-HRESIMS spectroscopic data of compound 1.

Figure S5. The ¹H NMR spectrum of compound 1 in acetone- d_6 .

Figure S6. The ¹³C NMR spectrum of compound **1** in acetone- d_6 .

Figure S7. The DEPT spectrum of compound 1 in acetone- d_6 .

Figure S8. The HSQC spectrum of compound 1 in acetone- d_6 .

Figure S9. The ¹H-¹H COSY spectrum of compound 1 in acetone- d_6 .

Figure S10. The HMBC spectrum of compound 1 in acetone- d_6 .

Figure S11. The NOESY spectrum of compound 1 in acetone- d_6 .

Figure S12. The UV spectrum of compound 2 in acetonitrile.

Figure S13. The IR spectrum of compound 2.

Figure S14. The (+)-HRESIMS spectroscopic data of compound 2.

Figure S15. The ¹H NMR spectrum of compound 2 in acetone- d_6 .

Figure S16. The ¹³C NMR spectrum of compound 2 in acetone- d_6 .

Figure S17. The DEPT spectrum of compound 2 in acetone- d_6 .

Figure S18. The HSQC spectrum of compound 2 in acetone- d_6 .

Figure S19. The ${}^{1}H-{}^{1}H$ COSY spectrum of compound 2 in acetone- d_{6} .

Figure S20. The HMBC spectrum of compound 2 in acetone-*d*₆.

Figure S21. The NOESY spectrum of compound 2 in acetone- d_6 .

Figure S22. The UV spectrum of compound 3 in acetonitrile.

Figure S23. The IR spectrum of compound 3.

Figure S24. The (+)-HRESIMS spectroscopic data of compound 3.

Figure S25. The ¹H NMR spectrum of compound 3 in acetone- d_6 .

Figure S26. The ¹³C NMR spectrum of compound 3 in acetone- d_6 .

Figure S27. The DEPT spectrum of compound 3 in acetone- d_6 .

Figure S28. The HSQC spectrum of compound 3 in acetone- d_6 .

Figure S29. The ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of compound **3** in acetone- d_{6} .

Figure S30. The HMBC spectrum of compound 3 in acetone-*d*₆.

Figure S31. The NOESY spectrum of compound 3 in acetone- d_6 .

Figure S32. The UV spectrum of compound 4 in acetonitrile.

Figure S33. The IR spectrum of compound 4.

Figure S34. The (+)-HRESIMS spectroscopic data of compound 4.

Figure S35. The ¹H NMR spectrum of compound 4 in acetone- d_6 .

Figure S36. The 13 C NMR spectrum of compound 4 in acetone- d_6 .

Figure S37. The DEPT spectrum of compound 4 in acetone- d_6 .

Figure S38. The HSQC spectrum of compound 4 in acetone- d_6 .

Figure S39. The ¹H-¹H COSY spectrum of compound **4** in acetone- d_6 .

Figure S40. The HMBC spectrum of compound 4 in acetone-*d*₆.

Figure S41. The NOESY spectrum of compound 4 in acetone-*d*₆.

Figure S42. The UV spectrum of compound 5 in acetonitrile.

Figure S43. The IR spectrum of compound 5.

Figure S44. The (+)-HRESIMS spectroscopic data of compound 5.

Figure S45. The ¹H NMR spectrum of compound 5 in acetone- d_6 .

Figure S46. The 13 C NMR spectrum of compound 5 in acetone- d_6 .

Figure S47. The DEPT spectrum of compound 5 in acetone- d_6 .

Figure S48. The HSQC spectrum of compound 5 in acetone- d_6 .

Figure S49. The 1 H- 1 H COSY spectrum of compound **5** in acetone- d_{6} .

Figure S50. The HMBC spectrum of compound 5 in acetone-*d*₆.

Figure S51. The NOESY spectrum of compound 5 in acetone- d_6 .

Figure S52. The UV spectrum of compound 6 in acetonitrile.

Figure S53. The IR spectrum of compound 6.

Figure S54. The (+)-HRESIMS spectroscopic data of compound 6.

Figure S55. The ¹H NMR spectrum of compound 6 in acetone- d_6 .

Figure S56. The 13 C NMR spectrum of compound 6 in acetone- d_6 .

Figure S57. The DEPT spectrum of compound 6 in acetone- d_6 .

Figure S58. The HSQC spectrum of compound 6 in acetone- d_6 .

Figure S59. The $^{1}H^{-1}H$ COSY spectrum of compound 6 in acetone- d_{6} .

Figure S60. The HMBC spectrum of compound 6 in acetone-*d*₆.

Figure 61. The NOESY spectrum of compound 6 in acetone-*d*₆.

Figure S62. The UV spectrum of compound 7 in acetonitrile.

Figure S63. The IR spectrum of compound 7.

Figure S64. The (+)-HRESIMS spectroscopic data of compound 7.

Figure S65. The ¹H NMR spectrum of compound 7 in acetone- d_6 .

Figure S66. The 13 C NMR spectrum of compound 7 in acetone- d_6 .

Figure S67. The DEPT spectrum of compound 7 in acetone- d_6 .

Figure S68. The HSQC spectrum of compound 7 in acetone- d_6 .

Figure S69. The ¹H-¹H COSY spectrum of compound 7 in acetone- d_6 .

Figure S70. The HMBC spectrum of compound 7 in acetone-*d*₆.