Supplementary data

A pair of new enantiomeric hybrid phthalide-adenines with a rare 5-oxa-1-azaspiro[3,4]octane moiety and two pairs of new enantiomeric hybrid paraethyl phenol-adenines from *Ligusticum chuanxiong*

Rui Feng ^{a,b,c,1}, Juan Liu ^{a,b,c,1}, Li Guo ^{a,b,c,*}, Hong-Zhen Shu ^{a,b,c}, Qin-Mei Zhou ^{a,c}, Li Liu ^d, Cheng Peng ^{a,b,*}, Liang Xiong ^{a,b,c,*}

^a State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

^b School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

^c Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

^d Chiataj Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, 310023, China

* Corresponding authors.

E-mail addresses: xiling0505@126.com (L. Xiong), pengcheng@cdutcm.edu.cn (C. Peng), guoli@cdutcm.edu.cn (L. Guo).

¹ Both authors contributed equally to this work.

The List of Contents

No.	Content	Page
1	ECD calculation of compound 1	S1
2	Fig. S1. ω B97XD/DGDZVP optimized four conformers of (3' <i>R</i> ,9' <i>S</i>)-1 (Boltzmann distribution $\geq 1\%$)	S 1
3	Table S1. Energy analysis for the conformers of $(3'R,9'S)$ -1	S2
4	ECD calculation of compound 2	S2
5	Fig. S2. ω B97XD/DGDZVP optimized four conformers of (7'S)-2 (Boltzmann distribution $\geq 1\%$)	S3
6	Table S2. Energy analysis for the conformers of (7'S)-2	S3
7	ECD calculation of compound 3	S3
8	Fig. S3. ω B97XD/DGDZVP optimized four conformers of (7' <i>R</i>)- 3 (Boltzmann distribution $\geq 1\%$)	S4
9	Table S3. Energy analysis for the conformers of $(7'R)$ -3	S4
10	References	S4
11	Fig. S4. The IR spectrum of compound 1	S 6
12	Fig. S5. The (+)-HR-ESI-MS spectroscopic data of compound 1	S 7
13	Fig. S6. The ¹ H NMR spectrum of compound 1 in CD ₃ OD	S 8
14	Fig. S7. The ¹³ C NMR spectrum of compound 1 in CD ₃ OD	S9
15	Fig. S8. The DEPT spectrum of compound 1 in CD ₃ OD	S10
16	Fig. S9. The HSQC spectrum of compound 1 in CD ₃ OD	S11
17	Fig. S10. The ¹ H- ¹ H COSY spectrum of compound 1 in CD ₃ OD	S12
18	Fig. S11. The HMBC spectrum of compound 1 in CD ₃ OD	S13
19	Fig. S12. The NOESY spectrum of compound 1 in CD ₃ OD	S14
20	Fig. S13. The IR spectrum of compound 2	S15
21	Fig. S14. The (+)-HR-ESI-MS spectroscopic data of compound 2	S16
22	Fig. S15. The ¹ H NMR spectrum of compound 2 in CD_3OD	S17
23	Fig. S16. The 13 C NMR spectrum of compound 2 in CD ₃ OD	S18
24	Fig. S17. The DEPT spectrum of compound 2 in CD ₃ OD	S19
25	Fig. S18. The HSQC spectrum of compound 2 in CD ₃ OD	S20
26	Fig. S19. The ^{1}H - ^{1}H COSY spectrum of compound 2 in CD ₃ OD	S21
27	Fig. S20. The HMBC spectrum of compound 2 in CD ₃ OD	S22
28	Fig. S21. The IR spectrum of compound 3	S23
29	Fig. S22. The (+)-HR-ESI-MS spectroscopic data of compound 3	S24
30	Fig. S23. The ¹ H NMR spectrum of compound 3 in CD ₃ OD	S25
31	Fig. S24. The ¹³ C NMR spectrum of compound 3 in CD ₃ OD	S26
32	Fig. S25. The DEPT spectrum of compound 3 in CD ₃ OD	S27
33	Fig. S26. The HSQC spectrum of compound 3 in CD ₃ OD	S28
34	Fig. S27. The ¹ H- ¹ H COSY spectrum of compound 3 in CD ₃ OD	S29
		-

ECD calculation of compound 1.

Conformation searches based on molecular mechanics with MMFF94s force field were performed for (3'*R*,9'*S*)-1 and gave four conformers (Boltzmann distribution $\geq 1\%$)^[1]. The selected conformers were optimized using DFT at the B3LYP/6-31G (d) level in vacuum with the Gaussian 16 program (Table S1)^[2]. The B3LYP/6-31G (d)-optimized conformers (Boltzmann distribution $\geq 1\%$) were then reoptimized at the ω B97XD/DGDZVP level in acetonitrile. ECD computations for the ω B97XD/DGDZVP-optimized conformers (Fig. S1) were carried out at the CAM-B3LYP/DGDZVP level in acetonitrile ^[3]. Finally, according to the Boltzmann distribution theory and their relative Gibbs free energy (Δ G), the ECD spectrum for (3'*R*,9'*S*)-1 was generated using SpecDis 1.71 with $\sigma = 0.26$ eV and a UV shift of -3 nm^[4]. The corresponding theoretical ECD spectrum of (3'*S*,9'*R*)-1 was depicted by inverting that of (3'*R*,9'*S*)-1.

Fig. S1. ω B97XD/DGDZVP optimized four conformers of (3'*R*,9'*S*)-1 (Boltzmann distribution \geq 1%).

	MMFF	B3LYP/6-3	B1G(d) Gibbs fr	ee energy	ωB97XD/DGDZVP Gibbs free energy (298.15 K)			
Conf.	energy		(298.15 K)					
	ΔΕ	G	ΔG	Boltzmann	G	ΔG	Boltzmann	
	(Kcal/mol)	(Hartree)	(Kcal/mol)	distribution	(Hartree)	(Kcal/mol)	distribution	
(3' <i>R</i> ,9' <i>S</i>)-1-C1	0.00	-1080.809793	0.0000 0.379		-1080.581001	0.0000	0.805	
(3' <i>R</i> ,9' <i>S</i>)-1-C2	1.08	-1080.810152	-0.2250	0.554	-1080.579437	0.9810	0.154	
(3' <i>R</i> ,9' <i>S</i>)-1-C3	1.51	-1080.807376	1.5170	0.029	-1080.576618	2.7500	0.008	
(3' <i>R</i> ,9' <i>S</i>)-1-C4	1.73	-1080.807617	1.3650	0.038	-1080.577995	1.8860	0.033	

Table S1. Energy analysis for the conformers of (3'R,9'S)-1.

ECD calculation of compound 2.

Conformation searches based on molecular mechanics with MMFF94s force field were performed for (7'S)-2 and gave four conformers (Boltzmann distribution $\geq 1\%$)^[1]. The selected conformers were optimized using the DFT at B3LYP/6-31G (d) level in vacuum with the Gaussian 16 program (Table S2) ^[2]. The B3LYP/6-31G (d)-optimized conformers were then reoptimized at the ω B97XD/DGDZVP level in acetonitrile. ECD computations for the ω B97XD/DGDZVP-optimized conformers (Boltzmann distribution $\geq 1\%$; Fig. S2) were carried out at the CAM-B3LYP/DGDZVP level in acetonitrile ^[3]. Finally, according to the Boltzmann distribution theory and their relative Gibbs free energy (Δ G), the ECD spectrum for (7'S)-2 was generated using SpecDis 1.71 with $\sigma = 0.25$ eV and a UV shift of +15 nm ^[4]. The corresponding theoretical ECD spectrum of (7'*R*)-2 was depicted by inverting that of (7'S)-2.

Fig. S2. ω B97XD/DGDZVP optimized four conformers of (7'S)-2 (Boltzmann distribution $\geq 1\%$).

	MMFF	B3LYP/6-3	B1G(d) Gibbs t	free energy	ωB97XD/E	OGDZVP Gibbs	free energy		
Conf.	energy		(298.15 K)		(298.15 K)				
	ΔΕ	G	ΔG	Boltzmann	G	ΔG	Boltzmann		
	(Kcal/mol)	(Hartree)	(Kcal/mol)	distribution	(Hartree)	(Kcal/mol)	distribution		
(7'S)-2-C1	0.00	-966.482995	0.0000	0.057	-966.283448	0.0000	0.021		
(7'S)-2-C2	0.43	-966.485460 -1.5470		0.777	-966.286636	-2.0010	0.609		
(7'S)-2-C3	0.67	-966.482153	0.5280	0.023	-966.283946	-0.3120	0.035		
(7'S)-2-C4	2.02	-966.483856	-0.5400	0.142	-966.286072	-1.6470	0.335		

Table S2. Energy analysis for the conformers of (7'S)-2.

ECD calculation of compound 3.

Conformation searches based on molecular mechanics with MMFF94s force field were performed for (7'*R*)-**3** and gave four conformers (Boltzmann distribution $\ge 1\%$)^[1]. The selected conformers were optimized using DFT at the B3LYP/6-31G (d) level in vacuum with the Gaussian 16 program (Table S3) ^[2]. The B3LYP/6-31G (d)-optimized conformers (Boltzmann distribution \geq 1%) were then reoptimized at the ω B97XD/DGDZVP level in acetonitrile. ECD computations for the ω B97XD/DGDZVP-optimized conformers (Boltzmann distribution $\geq 1\%$; Fig. S3) were carried out at the CAM-B3LYP/DGDZVP level in acetonitrile^[3]. Finally, according to the Boltzmann distribution theory and their relative Gibbs free energy (ΔG), the ECD spectrum for (7'R)-3 was generated using SpecDis 1.71 with $\sigma = 0.45$ eV and a UV shift of +11 nm^[4]. The corresponding theoretical ECD spectrum of (7'S)-3 was depicted by inverting that of (7'R)-3.

Fig. S3. ω B97XD/DGDZVP optimized four conformers of (7'*R*)-3 (Boltzmann distribution \geq 1%).

	MMFF	B3LYP/6-	31G(d) Gibbs fi	ree energy	ω B97XD/DGDZVP Gibbs free energy				
Conf	energy		(298.15 K)		(298.15 K)				
com.	ΔΕ	G	ΔG	Boltzmann	G	ΔG	Boltzmann		
	(Kcal/mol)	(Hartree)	(Kcal/mol)	distribution	(Hartree)	(Kcal/mol)	distribution		
(7' <i>R</i>)-3-C1	0.00	-966.499845	0.0000	0.611	-966.293503	0.0000	0.370		
(7' <i>R</i>)-3-C2	0.81	-966.498775	0.6710	0.197	-966.292853	0.4080	0.186		
(7'R)-3-C3	0.82	-966.498629	0.7630	0.168	-966.293566	-0.0400	0.395		
(7' <i>R</i>)-3-C4	1.98	-966.496804	1.9080	0.024	-966.291597	1.1960	0.049		

Table S3. Energy analysis for the conformers of (7'R)-3.

References

[1] (a) Goto, H.; Osawa, E. Corner flapping: a simple and fast algorithm for exhaustive generation of ring

conformations. J. Am. Chem. Soc. 1989, 111, 8950–8951. (b) Goto, H.; Osawa, E. An efficient algorithm for searching low-energy conformers of cyclic and acyclic molecules. J. Chem. Soc., Perkin Trans. 2 1993, 2, 187–198.

[2] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J.A.Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016.

[3] Lodewyk, M.W.; Siebert, M.R.; Tantillo, D. J. Computational prediction of ¹H and ¹³C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. *Chem. Rev.* 2012, 112, 1839-1862..

[4] Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. *J. Org. Chem.* 2015, 80, 12526-12534.

Fig. S4. The IR spectrum of compound 1.

Single Ma Tolerance = Element pre Number of is Monoisotopi 585 formulae Elements Us	tess Analysis 0.5 mDa / ediction: Off sotope peaks c Mass, Even E (e) evaluated w sed:	DBE: n used fo lectron ith 1 res	nin = -1 r i-FIT : lons sults wit	1.5, ma = 3 thin lim	ax = 50.0 aits (all results (up to 1000) for each m	nass)								E	
Mass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	C	H	N	0	Na		Ĩ
344.1126	344.1123	0.3	0.9	12.5	C17 H15 N5 O2 Na	260.3	n/a	n/a	17	15	5	2	1		Ĩ

٦

Fig. S5. The (+)-HR-ESI-MS spectroscopic data of compound 1.

Fig. S6. The ¹H NMR spectrum of compound 1 in CD₃OD.

Fig. S7. The 13 C NMR spectrum of compound 1 in CD₃OD.

Fig. S8. The DEPT spectrum of compound 1 in CD₃OD.

Fig. S9. The HSQC spectrum of compound 1 in CD₃OD.

Fig. S10. The ¹H-¹H COSY spectrum of compound **1** in CD₃OD.

Fig. S11. The HMBC spectrum of compound 1 in CD₃OD.

Fig. S12. The NOESY spectrum of compound 1 in CD₃OD.

Fig. S13. The IR spectrum of compound 2.

Single Mass Analysis	*									
Tolerance = 0.5 mDa / DBE: min = -1.5, max = 50.0										
ilement prediction: Off										
Number of isotope peaks used for i-FIT = 3	E									
Monoisotopic Mass, Even Electron Ions										
369 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)										
Elements Used:	-									
Mass Calc. Mass mDa PPM DBE Formula i-FIT i-FIT Norm Fit Conf % C H N O Na										
308.1127 308.1123 0.4 1.3 9.5 C14 H15 N5 O2 Na 26.8 n/a n/a 14 15 5 2 1										

Fig. S14. The (+)-HR-ESI-MS spectroscopic data of compound **2**.

Fig. S18. The HSQC spectrum of compound 2 in CD₃OD.

Fig. S19. The ¹H-¹H COSY spectrum of compound **2** in CD₃OD.

Fig. S20. The HMBC spectrum of compound 2 in CD₃OD.

Fig. S21. The IR spectrum of compound 3.

٦

Fig. S22. The (+)-HR-ESI-MS spectroscopic data of compound 3.

Fig. S26. The HSQC spectrum of compound 3 in CD₃OD.

Fig. S27. The ¹H-¹H COSY spectrum of compound **3** in CD₃OD.

Fig. S28. The HMBC spectrum of compound 3 in CD₃OD.