Supplementary Information

Utilization of Agricultural Waste to Herbicide Removal: Magnetic BEA Zeolite Adsorbents Prepared by Dry-Gel Conversion Using Rice Husk Ash–Derived SiO₂ for Paraquat Removal

Vanpaseuth Phouthavong^a, Takeshi Hagio^{a,b,*}, Jae-Hyeok Park^b, Supinya Nijpanich^c, Teeranun Srihirunthanon^{d,e}, Nutchanan Chantanurak^{d,e}, Kanchanok Duangkhai^{d,e}, Ratana Rujiravanit^{d,e}, Vanseng Chounlamany^f, Kesiny Phomkeona^f, Long Kong^g, Liang Li^g, Ryoichi Ichino^{a,b}

^aDepartment of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

^bInstitute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

^cSynchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand

^dThe Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand

^eCenter of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand

^fDepartment of Chemistry, Faculty of Natural Sciences, National University of Laos, Vientiane Capital, Laos

^gSchool of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road Shanghai 200240, China

*Corresponding author: Takeshi Hagio, email: hagio@mirai.nagoya-u.ac.jp

Extraction of RHAS from RHA

As-received RHA was refluxed with 4M HCl and continuously stirred at 110°C for 3 h in order to remove metals and impurities, followed by washing with distilled water until a neutral pH, filtration and drying at 60°C. Then, it was treated with 5M NaOH (110°C, 3 h) to obtain a Na₂SiO₃ solution. RHAS was then precipitated from the solution after cooling down to room temperature by adding 5M H₂SO₄ until pH reached 2. The precipitated RHAS was collected, washed using deionized water, and dried in a hot air oven at 60°C.

* Calculation of BEA zeolite mass percentage in the calcined magnetic RHAS-BEA sample

The Fe₃O₄ content in the as-synthesized magnetic RHAS-BEA sample (before calcination, BC) was calculated to be 20.9 wt% using weight of the obtained precursor gel, the amount of gel used for DGC and weight of the as-synthesized product totally obtained. In this case, we neglect the phase change of Fe₃O₄ to α -Fe₂O₃ by calcination, therefore the Fe₃O₄ amount in the sample before and after calcination did not significantly change. Amount of Fe₃O₄ in the sample obtained after calcination (AC) can be calculated using **Eq. S1**.

$$(W)_{Fe_{304}AC} \approx (W)_{Fe_{304}BC} = 0.209 \times (W)_{BEA/Fe_{304}BC}$$
 (Eq. S1)

Weight of RHAS-BEA after calcination at 450°C for 12 h was 71.8 wt% of the as-synthesized RHAS-BEA (before calcination). The loss of weight represents the burned-off SDA, while the remaining part was considered to be the BEA zeolite phase. The amount of BEA in calcined samples can be calculated by using **Eq. S2**.

$$(W)_{BEA_AC} = 0.718 \times (W)_{BEA_BC} = 0.718 \times ((W)_{BEA_Fe304_BC} - (W)_{Fe304_BC})$$
(Eq. S2)

Substitute W_{Fe3O4_BC} in Eq. S2 with Eq. S1,

$$(W)_{BEA_AC} = 0.718 \times ((W)_{BEA/Fe_{304}_BC} - 0.209 \times (W)_{BEA/Fe_{304}_BC})$$
(Eq. S3)

For example, when 0.2008 g of as-synthesized magnetic RHAS-BEA was calcined, the amount of BEA in calcined sample was calculated using **Eq. S3**

$$(W)_{BEA AC} = 0.718 \times (0.2008 g - 0.209 \times 0.2008 g) = 0.1140 g$$

The amount of the sample remained after calcination was found to be 0.1570 g, therefore weight percentage of BEA in the calcined magnetic RHAS-BEA is $(0.1140 \text{ g}/0.1570 \text{ g}) \times 100 = 72.6 \text{ wt}\%$.

Fig. S1. UV-Vis absorption spectra of paraquat and Cibacron blue 3GA.

 Table S1 Intraparticle diffusion model parameters of paraquat adsorption on RHAS-BEA and

 magnetic RHAS-BEA.

	Intraparticle diffusion model parameter values					
	RHAS-BEA			Magnetic RHAS-BEA		
	1 st Step	2 nd Step	3 rd Step	1 st Step	2 nd Step	3 rd Step
$k_{\rm id} ({\rm mg/(g \cdot min^{1/2})})$	9.2327	5.534	0.6142	13.198	3.7999	0.4327
С	23.471	32.114	54.787	10.977	31.018	46.566
R^2	0.8690	0.9725	0.9328	0.9987	0.9246	0.9999