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Fig. S1 Synthesis sequence diagram of Cd-CeO2@C.
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Fig. S2 SEM of 0.5%Cd-CeO2-0.02C.
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Fig. S3 Effect of pH (a) and concentration of AR14 (b) on the removal efficiency of AR14 over 0.5%Cd-CeO2-0.02C.
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Fig. S4 Reuse performance (a) and XRD patterns before and after photocatalysis (b) of 0.5%Cd-CeO2-0.02C.
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Fig. S5 Effect of different scavengers on the degradation efficiency of AR14.
During the photocatalysis, hydroxyl radicals (•OH), superoxide radicals (•[image: image10.png]


), and holes (h+) play an important role in the catalytic efficiency (He et al., 2019, Jiang et al., 2018). To determine the main active species, 0.5%Cd-CeO2-0.02C was chosen as the representative for active species capturing tests, and terephthalic acid (PTA), benzoquinone (BQ), and potassium iodide (KI) were added to capture the hydroxyl radicals (•OH), superoxide radical anions (•[image: image12.png]


), and holes (h+), respectively. Fig.S5 shows the effect of the different scavengers on the degradation efficiency of AR14. As shown in Fig. S5, the photocatalytic efficiency of AR14 was hardly changed after addition of benzoquinone and potassium iodide, while the degradation rate significantly decreased when terephthalic acid was added, indicating that hydroxyl radical is mainly responsible for the degradation of AR14. From the results of Fig. S6, it can be seen that signals of •OH are actually detected during the photocatalysis.
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Fig. S6 ESR spectra of DMPO-⋅OH over 0.5%Cd-CeO2-0.02C.
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Fig. S7 Mechanism diagram of AR14 degradation by Cd-CeO2@C. VB: valence band. CB: conduction band.
Based on the corresponding experimental results and analysis, the photocatalytic degradation mechanism of AR14 over Cd-CeO2@C is presented in Fig. S7. After the replacement of Ce4+ or Ce3+ by Cd2+, oxygen vacancies easily form, resulting in the intermediate valence band (oxygen vacancy level). Under solar radiation, photogenerated electrons easily move from valence band to the intermediate valence band. Due to the formation of a large number of carbon bonds in the catalyst, the electrons transferred to the catalyst surface can be accelerated to interact with the adsorbed O2 and form •[image: image16.png]


. •[image: image18.png]


 can in turn reduce Ce4+ to Ce3+ (promoting the formation of oxygen defects), and it can also be converted into H2O2 and •OH (Xiao et al., 2020). The holes in the valence band migrate to the CeO2 surface to oxidize the adsorbed water and OH−, generating hydroxyl radicals (•OH) to oxidize AR14 into smaller molecules.
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