Supplementary data

Determination of the absolute configurations and anti-angiogenic activities of new diarylheptanoid glucosides from *Curcuma phaeocaulis*

Cheng-Zhe Li^{†,‡,§}, Cheng Peng^{†,‡}, Xiao-Cui Li^{†,‡,§}, Guang-Xu Wu^{†,‡,§}, Hong-Zhen Shu^{†,‡,§}, Fang Wang[#], Fei Liu^{†,‡,§,*}, Liang Xiong^{†,‡,§,*}

 † State Key Laboratory of Southwestern Chinese Medicine Resources, ‡ School of Pharmacy, and $^{\$}$

Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu

611137, China

[#] Shandong Academy of Pharmaceutical Sciences

No.	Content	Page
1	ECD calculation of compound 1a	S1
2	Table S1. Energy analysis for the conformers of (3R,5S)-1a	S1-S2
3	Figure S1. ω B97XD/DGDZVP-optimized 17 conformers of (3 <i>R</i> ,5 <i>S</i>)-1a	S2-S3
4	ECD calculation of compound 4a	S4
5	Table S2. Energy analysis for the conformers of (3R,5S,6R)-4a	S4-S5
6	Table S3. Energy analysis for the conformers of (3S,5R,6R)-4a	\$5-\$6
7	Figure S2. B3LYP/6-31G (d)-optimized 13 conformers of (3R,5S,6R)-4a	S6-S7
8	Figure S3. B3LYP/6-31G (d)-optimized 21 conformers of (3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a	S7-S8
9	ECD calculation of compound 5a	S8-S9
10	Table S4. Energy analysis for the conformers of $(3R, 5R)$ -5a	S 9
11	Figure S4. ωB97XD/DGDZVP-optimized 27 conformers of (3 <i>R</i> ,5 <i>R</i>)-5a	S10-S11
12	ECD calculation of compound 6a	S11-S12
13	Table S5. Energy analysis for the conformers of (3S,5R,6R)-6a	S12-S13
14	Figure S5. \u03c8B97XD/DGDZVP-optimized 27 conformers of (3S,5R,6R)-6a	S13-S15
15	ECD calculation of Compound 7a	S15
16	Table S6. Energy analysis for the conformers of (1R,2S,3S,5S)-7a	S15-S16
17	Figure S6. <i>ω</i> B97XD/DGDZVP-optimized 10 conformers of (1 <i>R</i> ,2 <i>S</i> ,3 <i>S</i> ,5 <i>S</i>)-7a	S16-S17
18	UV/ECD experiment of compound 1a-7a	S18
19	References	S18-S19
20	Figure S7. The IR spectrum of compound 1	S20
21	Figure S8. The (+)-HRESIMS spectroscopic data of compound 1	S21
22	Figure S9. The ¹ H NMR spectrum of compound 1 in CD ₃ OD	S22
23	Figure S10. The ¹³ C NMR spectrum of compound 1 in CD ₃ OD	S23
24	Figure S11. The DEPT spectrum of compound 1 in CD ₃ OD	S24
25	Figure S12. The HSQC spectrum of compound 1 in CD ₃ OD	S25
26	Figure S13. The ¹ H- ¹ H COSY spectrum of compound 1 in CD ₃ OD	S26
27	Figure S14. The HMBC spectrum of compound 1 in CD ₃ OD	S27
28	Figure S15. The UV spectrum of compound 1a	S28
29	Figure S16. The (+)-HRESIMS spectroscopic data of compound 1a	S29
30	Figure S17. The ¹ H NMR spectrum of compound 1a in CD ₃ OD	S30

31	Figure S18. The ¹³ C NMR spectrum of compound 1a in CD ₃ OD	S31
32	Figure S19. The (+)-HRESIMS spectroscopic data of compound 1b	S32
33	Figure S20. The ¹ H NMR spectrum of compound 1b in CD ₃ OD	S33
34	Figure S21. The IR spectrum of compound 2	S34
35	Figure S22. The (+)-HRESIMS spectroscopic data of compound 2	S35
36	Figure S23. The ¹ H NMR spectrum of compound 2 in CD ₃ OD	S36
37	Figure S24. The ¹³ C NMR spectrum of compound 2 in CD ₃ OD	S37
38	Figure S25. The DEPT spectrum of compound 2 in CD ₃ OD	S38
39	Figure S26. The HSQC spectrum of compound 2 in CD ₃ OD	S39
40	Figure S27. The ¹ H- ¹ H COSY spectrum of compound 2 in CD ₃ OD	S40
41	Figure S28. The HMBC spectrum of compound 2 in CD_3OD	S41
42	Figure S29. The UV spectrum of compound 2a	S42
43	Figure S30. The (+)-HRESIMS spectroscopic data of compound 2a	S43
44	Figure S31. The ¹ H NMR spectrum of compound $2a$ in CD ₃ OD	S44
45	Figure S32. The ¹³ C NMR spectrum of compound $2a$ in CD ₃ OD	S45
46	Figure S33. The IR spectrum of compound 3	S46
47	Figure S34. The (+)-HRESIMS spectroscopic data of compound 3	S47
48	Figure S35. The ¹ H NMR spectrum of compound 3 in CD ₃ OD	S48
49	Figure S36. The ¹³ C NMR spectrum of compound 3 in CD ₃ OD	S49
50	Figure S37. The DEPT spectrum of compound 3 in CD ₃ OD	S50
51	Figure S38. The HSQC spectrum of compound 3 in CD ₃ OD	S51
52	Figure S39. The ¹ H- ¹ H COSY spectrum of compound 3 in CD ₃ OD	S52
53	Figure S40. The HMBC spectrum of compound 3 in CD ₃ OD	S53
54	Figure S41. The UV spectrum of compound 3a	S54
55	Figure S42. The (+)-HRESIMS spectroscopic data of compound 3a	S55
56	Figure S43. The ¹ H NMR spectrum of compound 3a in CD ₃ OD	S56
57	Figure S44. The ¹³ C NMR spectrum of compound 3a in CD ₃ OD	S57
58	Figure S45. The IR spectrum of compound 4	S58
59	Figure S46. The (+)-HRESIMS spectroscopic data of compound 4	S59
60	Figure S47. The ¹ H NMR spectrum of compound 4 in CD ₃ OD	S60
61	Figure S48. The ¹³ C NMR spectrum of compound 4 in CD ₃ OD	S61
62	Figure S49. The DEPT spectrum of compound 4 in CD ₃ OD	S62
63	Figure S50. The HSQC spectrum of compound 4 in CD ₃ OD	S63
64	Figure S51. The ¹ H- ¹ H COSY spectrum of compound 4 in CD ₃ OD	S64

65	Figure S52. The HMBC spectrum of compound 4 in CD ₃ OD	S65
66	Figure S53. The UV spectrum of compound 4a	S66
67	Figure S54. The (+)-HRESIMS spectroscopic data of compound 4a	S67
68	Figure S55. The ¹ H NMR spectrum of compound 4a in CD ₃ OD	S68
69	Figure S56. The ¹³ C NMR spectrum of compound 4a in CD ₃ OD	S69
70	Figure S57. The (+)-HRESIMS spectroscopic data of compound 4b	S70
71	Figure S58. The ¹ H NMR spectrum of compound 4b in DMSO-d ₆	S71
72	Figure S59. The ¹³ C NMR spectrum of compound 4b in DMSO- d_6	S72
73	Figure S60. The HSQC spectrum of compound 4b in DMSO- d_6	S73
74	Figure S61. The ¹ H- ¹ H COSY spectrum of compound 4b in DMSO-d ₆	S74
75	Figure S62. The HMBC spectrum of compound 4b in DMSO- d_6	S75
76	Figure S63.The ¹ H NMR spectrum of compound 4b in pyridine-d ₅	S76
77	Figure S64.The ¹ H NMR spectrum of compound 4c in pyridine-d ₅	S77
78	Figure S65.The ¹ H NMR spectrum of compound 4d in pyridine-d ₅	S78
79	Figure S66. The IR spectrum of compound 5	S79
80	Figure S67. The (+)-HRESIMS spectroscopic data of compound 5	S80
81	Figure S68. The ¹ H NMR spectrum of compound 5 in CD ₃ OD	S81
82	Figure S69. The ¹³ C NMR spectrum of compound 5 in CD ₃ OD	S82
83	Figure S70. The DEPT spectrum of compound 5 in CD ₃ OD	S83
84	Figure S71. The HSQC spectrum of compound 5 in CD ₃ OD	S84
85	Figure S72. The ¹ H- ¹ H COSY spectrum of compound 5 in CD ₃ OD	S85
86	Figure S73. The HMBC spectrum of compound 5 in CD_3OD	S86
87	Figure S74. The UV spectrum of compound 5a	S87
88	Figure S75. The (+)-HRESIMS spectroscopic data of compound 5a	S88
89	Figure S76. The ¹ H NMR spectrum of compound 5a in CD_3OD	S89
90	Figure S77. The ¹³ C NMR spectrum of compound 5a in CD ₃ OD	S90
91	Figure S78. The IR spectrum of compound 6	S91
92	Figure S79. The (+)-HRESIMS spectroscopic data of compound 6	S92
93	Figure S80. The ¹ H NMR spectrum of compound 6 in CD ₃ OD	S93
94	Figure S81. The ¹³ C NMR spectrum of compound 6 in CD ₃ OD	S94
95	Figure S82. The DEPT spectrum of compound 6 in CD ₃ OD	S95
96	Figure S83. The HSQC spectrum of compound 6 in CD ₃ OD	S96
97	Figure S84. The ¹ H- ¹ H COSY spectrum of compound 6 in CD ₃ OD	S97
98	Figure S85. The HMBC spectrum of compound 6 in CD ₃ OD	S98

99	Figure S86. The UV spectrum of compound 6a	S99
100	Figure S87. The (+)-HRESIMS spectroscopic data of compound 6a	S100
101	Figure S88. The ¹ H NMR spectrum of compound 6a in DMSO- d_6	S101
102	Figure S89. The ¹³ C NMR spectrum of compound 6a in DMSO- d_6	S102
103	Figure S90. The NOESY spectrum of compound 6a in DMSO- d_6	S103
104	Figure S91. The IR spectrum of compound 7	S104
105	Figure S92. The (+)-HRESIMS spectroscopic data of compound 7	S105
106	Figure S93. The ¹ H NMR spectrum of compound 7 in CD ₃ OD	S106
107	Figure S94. The ¹³ C NMR spectrum of compound 7 in CD ₃ OD	S107
108	Figure S95. The DEPT spectrum of compound 7 in CD ₃ OD	S108
109	Figure S96. The HSQC spectrum of compound 7 in CD ₃ OD	S109
110	Figure S97. The ¹ H- ¹ H COSY spectrum of compound 7 in CD ₃ OD	S110
111	Figure S98. The HMBC spectrum of compound 7 in CD ₃ OD	S111
112	Figure S99. The NOESY spectrum of compound 7 in CD ₃ OD	S112
113	Figure S100. The UV spectrum of compound 7a	S113
114	Figure S101. The (+)-HRESIMS spectroscopic data of compound 7a	S114
115	Figure S102. The ¹ H NMR spectrum of compound 7a in CD ₃ OD	S115
116	Figure S103. The IR spectrum of compound 8	S116
117	Figure S104. The (+)-HRESIMS spectroscopic data of compound 8	S117
118	Figure S105. The ¹ H NMR spectrum of compound 8 in CD ₃ OD	S118
119	Figure S106. The ¹³ C NMR spectrum of compound 8 in CD ₃ OD	S119
120	Figure S107. The DEPT spectrum of compound 8 in CD ₃ OD	S120
121	Figure S108. The HSQC spectrum of compound 8 in CD ₃ OD	S121
122	Figure S109. The ¹ H- ¹ H COSY spectrum of compound 8 in CD ₃ OD	S122
123	Figure S110. The HMBC spectrum of compound 8 in CD ₃ OD	S123
124	Figure S111. The NOESY spectrum of compound 8 in CD ₃ OD.	S124
125	Figure S112. The UV spectrum of compound 8a	S125
126	Figure S113. The (+)-HRESIMS spectroscopic data of compound 8a	S126
127	Figure S114. The ¹ H NMR spectrum of compound 8a in CD ₃ OD	S127
128	Figure S115. The ¹³ C NMR spectrum of compound 8a in CD ₃ OD	S128
129	Figure S116. The TLC picture of the glucose in the compounds with the authentic sugar sample	S129

ECD calculation of compounds 1a, 4a-7a.

ECD calculation of compound 1a. Conformation searches based on molecular mechanics with MMFF94s force field were performed for (3*R*,5*S*)-1a within 10 kcal/mol and gave 521 conformers. In this case, 17 conformers were selected for the calculations (Boltzmann distribution $\ge 1\%$, Figure S1) [1]. The selected conformers were optimized using DFT at the B3LYP/6-31G (d) level in vacuum, and the solve for more states (N=50) was set. This was carried out using the Gaussian 16 program (Table S1), while memory limit was 10 GB [2]. The B3LYP/6-31G (d)-optimized conformers were then reoptimized at the ω B97XD/DGDZVP level in acetonitrile. ECD computations for the ω B97XD/DGDZVP-optimized conformers (Fig. S1) were carried out at the CAM-B3LYP/DGDZVP level in acetonitrile [3]. The model of solvation in acetonitrile was **IEFPCM.** According to the Boltzmann distribution theory and their relative Gibbs free energy (ΔG), the ECD spectrum for (3R,5S)-1a was generated using SpecDis 1.71 with $\sigma = 0.25$ eV [4]. The corresponding theoretical ECD spectrum of (3S, 5R)-1a was depicted by inverting that of (3*R*,5*S*)-1a.

	MMFF	B3LYP/6-31G (d) Gibbs free energy				ωB97XD/DG	DZVP Gibbs	free energy
Conf	energy		(298.15 K)			(298.15 K)		
Com,	ΔE (<mark>k</mark> cal/	G (Hartree)	ΔG (<mark>k</mark> cal/mol)		Boltzmann	G (Hartree)	ΔG	Boltzmann
	mol)	0 (11			Distribution	0 (11	(<mark>k</mark> cal/mol)	Distribution
1a-1	0	-1307.269769	<mark>0.</mark>	.0650	0.179	-1307.021966	1.2590	0.063
1a-2	0.23766	-1307.267745	1.	.3350	0.021	-1307.020001	2.4920	0.008

Table S1. Energy analysis for the conformers of (3R, 5S)-1a.

1a-3	0.41412	-1307.268213	1.0410	0.034	-1307.020192	2.3720	0.01
1a-4	0.5267	-1307.269333	0.3390	0.113	-1307.022242	1.0860	0.084
1a-5	0.8877	-1307.269044	0.5200	0.083	-1307.022835	0.7140	0.158
1a-6	1.01408	-1307.268867	0.6310	0.069	-1307.019608	2.7390	0.005
1a-7	1.19945	-1307.269872	0.0000	0.199	-1307.021494	1.5550	0.038
1a-8	1.22704	-1307.269316	0.3490	0.111	-1307.023973	0.0000	0.528
1a-9	1.39302	-1307.267945	1.2100	0.026	-1307.019959	2.5180	0.008
1a-10	1.43303	-1307.26703	1.7840	0.01	-1307.020146	2.4010	0.009
1a-11	1.43447	-1307.268224	1.0350	0.035	-1307.020703	2.0520	0.017
1a-12	1.49673	-1307.268244	1.0220	0.036	-1307.019331	2.9120	0.004
1a-13	1.52988	-1307.26511	2.9890	0.001	-1307.019663	2.7040	0.005
1a-14	1.61391	-1307.268413	0.9160	0.042	-1307.021059	1.8280	0.024
1a-15	1.62922	-1307.266112	2.3600	0.004	-1307.020763	2.0140	0.018
1a-16	1.63068	-1307.26824	1.0240	0.035	-1307.019339	2.9070	0.004
1a-17	1.70283	-1307.265999	2.4310	0.003	-1307.020792	1.9960	0.018

1a-1

1a-2

1a-6

1a-5

1a-7

1a-10

1a-11

1a-12

1a-14

1a-15

1a-16

1a-17

Figure S1. ω B97XD/DGDZVP-optimized 17 conformers of (3*R*,5*S*)-1a.

ECD calculation of compound 4a. Conformation searches based on molecular mechanics with MMFF94s force field were performed for (3R,5S,6R)-4a and (3S,5R,6R)-4a. As a result, 954 and 5475 conformers were generated for (3R,5S,6R)-4a and (3S,5R,6R)-4a within 10 kcal/mol, among them, 13 and 21 conformers were selected for calculations (Boltzmann distribution≥1%, Figure S2) and S3) [1]. The selected conformers were optimized using DFT at the B3LYP/6-31G (d) level in vacuum, and the solve for more states (N=50) was set. This was carried out using the Gaussian 16 program (Table S2 and S3), while memory limit was 10 GB [2]. ECD computations for the B3LYP/6-31G (d)-optimized conformers (Fig. S2 and S3) were carried out at the CAM-B3LYP/DGDZVP level in acetonitrile [3]. The model of solvation in acetonitrile was **IEFPCM.** According to the Boltzmann distribution theory and their relative Gibbs free energy (ΔG), the ECD spectra for (3R,5S,6R)-4a and (3S,5R,6R)-4a were generated using SpecDis 1.71 with $\sigma =$ 0.25 eV and a UV shift of +10 nm [4].

Conf.	MMFF energy	B3LYP/6-31G(d) Gibbs free energy (298.15 K)					
	ΔE (<mark>k</mark> cal/ mol)	G (Hartree)	ΔG (<mark>k</mark> cal/mol)	Boltzmann Distribution			
(3 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>)-4a-1	0	-1535.034582	4.0740	0			
(3 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>) -4a-2	0.03	-1535.035399	3.5610	0.001			
(3 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>)-4a-3	0.66	-1535.034592	4.0680	0			
(3 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>)-4a-4	0.76	-1535.035395	3.5640	0.001			
(3 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>)-4a-5	0.91	-1535.041074	0.0000	0.472			
(3 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>) -4a-6	0.96	-1535.03475	3.9690	0.001			

Table S2. Energy analysis for the conformers of (3*R*,5*S*,6*R*)-4a.

(3 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>)-4a-7	1.08	-1535.034587	4.0710	0
(3 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>)-4a-8	1.48	-1535.038344	1.7130	0.026
(3 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>)-4a-9	1.65	-1535.039866	0.7580	0.131
(3 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>)-4a-10	1.74	-1535.040145	0.5830	0.176
(3 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>)-4a-11	1.91	-1535.039436	1.0280	0.083
(3 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>)-4a-12	1.94	-1535.035346	3.5950	0.001
(3 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>)-4a-13	1.94	-1535.039656	0.8900	0.105

Table S3. Energy analysis for the conformers of (3*S*,5*R*,6*R*)-4a.

	MMFE on or gy	B3LYP/6-31G(d) Gibbs free energy						
Conf.	where the gy	(298.15 K)						
	ΔE (<mark>k</mark> cal/ mol)	G (Hartree)	ΔG (<mark>k</mark> cal/mol)	Boltzmann Distribution				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-1	0	-1535.030116	0.9050	0.026				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)- 4a-2	0.0154	-1535.031201	0.2240	0.082				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)- 4a-3	0.217	-1535.030113	0.9070	0.026				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-4	0.2812	-1535.029482	1.3030	0.013				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-5	0.2926	-1535.028295	2.0480	0.004				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>) -4a-6	0.3042	-1535.031552	0.0040	0.119				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)- 4a-7	0.3371	-1535.031232	0.2050	0.084				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)- 4a-8	0.339	-1535.031555	0.0020	0.119				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-9	0.3541	-1535.029377	1.3690	0.012				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-10	0.3739	-1535.030115	0.9060	0.026				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-11	0.3974	-1535.031264	0.1850	0.087				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-12	0.4262	-1535.031558	0.0000	0.119				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-13	0.4609	-1535.029377	1.3690	0.012				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-14	0.4847	-1535.028306	2.0410	0.004				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-15	0.4852	-1535.031334	0.1410	0.094				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-16	0.5339	-1535.030857	0.4400	0.057				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-17	0.5394	-1535.028301	2.0440	0.004				
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-18	0.5442	-1535.030089	0.9220	0.025				

(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-19	0.5501	-1535.030085	0.9240	0.025	
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-20	0.5515	-1535.029622	1.2150	0.015	
(3 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-4a-21	0.5731	-1535.030688	0.5460	0.047	

Figure S3. B3LYP/6-31G (d)-optimized 21 conformers of (3*S*,5*R*,6*R*)-4a.

ECD calculation of Compound 5a Conformation searches based on molecular mechanics with MMFF94s force field were performed for (3R,5R)-**5a** within 10 kcal/mol and gave 4042 conformers. Among them, 16 conformers were selected for the calculations (Boltzmann distribution \geq 1%, Figure S4). [1]. The selected conformers were optimized using DFT at B3LYP/6-31G (d) level in vacuum, and the solve for more states (N=50) was set. This was carried out using the Gaussian 16 program (Table S4), while memory limit was 10 GB [2]. The B3LYP/6-31G (d)-optimized conformers were

then reoptimized at the ω B97XD/DGDZVP level in acetonitrile. ECD computations for the ω B97XD/DGDZVP-optimized conformers except for the repetitive ones (Fig. S4) were carried out at the CAM-B3LYP/DGDZVP level in acetonitrile [3]. The model of solvation in acetonitrile was IEFPCM. According to the Boltzmann distribution theory and their relative Gibbs free energy (Δ G), the ECD spectrum for (3*R*,5*R*)-**5a** was generated using SpecDis 1.71 with σ = 0.30 eV and a UV shift of +20 nm [4]. The corresponding theoretical ECD spectrum of (3*S*,5*S*)-**5a** was depicted by inverting that of (3*R*,5*R*)-**5a**.

	MMFF	<mark>B3LYP/6-3</mark> 1	l <mark>G (d) Gibbs f</mark> r	ωB97XD/DGDZVP Gibbs free energy			
Conf	energy		<mark>(298.15 K)</mark>		<mark>(298.15 K)</mark>		
Conf.	<mark>ΔΕ (kcal/</mark>		ΔG	Boltzmann	C (Hartana)	ΔG	Boltzmann
	mol)	G (Hartree)	<mark>(kcal/mol)</mark>	Distribution	G (Hartree)	<mark>(kcal/mol)</mark>	Distribution
<mark>5a-1</mark>	<mark>o</mark>	<mark>-1266.789441</mark>	5.8920	<mark>o</mark>	<mark>-1266.550546</mark>	1.0830	<mark>0.028</mark>
<mark>5a-2</mark>	<mark>0.4044</mark>	<mark>-1266.788465</mark>	6.5040	o	<mark>-1266.550014</mark>	1.4170	<mark>0.016</mark>
<mark>5a-3</mark>	<mark>0.4338</mark>	<mark>-1266.792895</mark>	3.7250	0.001	-1266.552043	0.1440	<mark>0.135</mark>
<mark>5a-4</mark>	0.438	-1266.789752	5.6970	o	-1266.550088	1.3700	<mark>0.017</mark>
<mark>5a-5</mark>	0.7565	<mark>-1266.788651</mark>	6.3880	o	-1266.550126	1.3470	<mark>0.018</mark>
<mark>5a-6</mark>	0.8028	-1266.787586	7.0560	<mark>o</mark>	-1266.552272	0.0000	<mark>0.172</mark>
5a-7	0.8238	-1266.786473	7.7540	<mark>o</mark>	-1266.551757	0.3230	<mark>0.1</mark>
5a-8	0.8427	<mark>-1266.788638</mark>	6.3960	o	<mark>-1266.549428</mark>	1.7850	<mark>0.008</mark>
5a-9	<mark>0.9976</mark>	<mark>-1266.790322</mark>	5.3390	o	-1266.550534	1.0910	<mark>0.027</mark>
5a-10	1.1128	<mark>-1266.788266</mark>	6.6290	o	<mark>-1266.551806</mark>	0.2920	<mark>0.105</mark>
5a-11	1.3137	<mark>-1266.79883</mark>	0.0000	0.499	-1266.551694	0.3630	<mark>0.093</mark>
5a-12	1.3254	<mark>-1266.79883</mark>	0.0000	0.499	-1266.551694	0.3630	<mark>0.093</mark>
5a-13	1.3397	-1266.790548	5.1970	o	-1266.549395	1.8050	0.008

Table S4. Energy analysis for the conformers of (3R,5R)-5a.

5a-14	<mark>1.3798</mark>	<mark>-1266.787844</mark>	<mark>6.8940</mark>	<mark>o</mark>	<mark>-1266.550008</mark>	1.4210	0.016
5a-15	1.3966	<mark>-1266.790865</mark>	4.9980	<mark>o</mark>	<mark>-1266.551954</mark>	0.1990	0.123
5a-16	<mark>1.4189</mark>	-1266.787925	6.8430	<mark>0</mark>	-1266.550952	0.8280	0.042

<mark>5a-4</mark>

<mark>5a-7</mark>

<mark>5a-5</mark>

5a-6

<mark>5a-3</mark>

<mark>5a-9</mark>

ECD calculation of compound 6a. Conformation searches based on molecular mechanics with MMFF94s force field were performed for (3S,5R,6R)-**6a** within 10 kcal/mol and gave 619 conformers. Among them, 27 conformers were selected for the calculations (Boltzmann distribution

≥1%, Figure S5). [1]. The selected conformers were optimized using DFT at the B3LYP/6-31G (d) level in vacuum, and the solve for more states (N=50) was set. This was carried out using the Gaussian 16 program (Table S5), while memory limit was 10 GB [2]. The B3LYP/6-31G (d)-optimized conformers were then reoptimized at the ω B97XD/DGDZVP level in acetonitrile. ECD computations for the ω B97XD/DGDZVP-optimized conformers (Fig. S5) were carried out at the CAM-B3LYP/DGDZVP level in acetonitrile [3]. The model of solvation in acetonitrile was IEFPCM. According to the Boltzmann distribution theory and their relative Gibbs free energy (Δ G), the ECD spectrum for (3*S*,5*R*,6*R*)-**6a** was generated using SpecDis 1.71 with σ = 0.25 eV [4]. The corresponding theoretical ECD spectrum of (3*R*,5*S*,6*S*)-**6a** was depicted by inverting that of (3*S*,5*R*,6*R*)-**6a**.

Conf.	MMFF	B3LYP/6-31G (d) Gibbs free energy			ωB97XD/DGDZVP Gibbs free energy		
	energy	(298.15 K)			(298.15 K)		
	ΔE (<mark>k</mark> cal/	G (Hartree)	ΔG Boltzmann	G (Hartree)	ΔG	Boltzmann	
	mol)		(<mark>k</mark> cal/mol)	Distribution		(<mark>k</mark> cal/mol)	Distribution
6a-1	0	-1265.605411	0.7580	0.04	-1265.355677	<mark>1.2860</mark>	0.031
6a-2	0.5782	-1265.6053	0.8280	0.035	-1265.355532	<mark>1.3770</mark>	0.026
6a-3	0.5826	-1265.606029	0.3700	0.076	-1265.355117	<mark>1.6370</mark>	0.017
6a-4	0.803	-1265.605983	0.3990	0.072	-1265.355723	1.2570	0.032
6a-5	0.8364	-1265.605984	0.3980	0.073	-1265.355721	1.2580	0.032
6a-6	0.9299	-1265.603029	2.2530	0.003	-1265.355227	1.5680	0.019
6a-7	1.018	-1265.604136	1.5580	0.01	-1265.353819	<mark>2.4520</mark>	0.004
6a-8	1.2395	-1265.604513	1.3220	0.015	-1265.355895	<mark>1.1490</mark>	0.039
6a-9	1.2808	-1265.604314	1.4460	0.012	-1265.354228	2.1950	0.007

Table S5. Energy analysis for the conformers of (3*S*,5*R*,6*R*)-6a.

6a-10	1.3143	-1265.606619	0.0000	0.142	-1265.356235	<mark>0.9360</mark>	0.056
6a-11	1.3535	-1265.604819	1.1290	0.021	-1265.35533	1.5040	0.021
6a-12	1.4011	-1265.606131	0.3060	0.085	-1265.356692	<mark>0.6490</mark>	0.09
6a-13	1.4089	-1265.604014	1.6350	0.009	-1265.353506	2.6480	0.003
6a-14	1.4246	-1265.605311	0.8210	0.036	-1265.355567	1.3550	0.027
6a-15	1.4845	-1265.605311	0.8210	0.036	-1265.355561	1.3590	0.027
6a-16	1.4907	-1265.60466	1.2290	0.018	-1265.354746	1.8700	0.011
6a-17	1.5134	-1265.604747	1.1750	0.02	-1265.35471	1.8930	0.011
6a-18	1.5744	-1265.604392	1.3970	0.013	-1265.357727	<mark>0.0000</mark>	0.27
6a-19	1.5748	-1265.606295	0.2030	0.101	-1265.355966	1.1050	0.042
6a-20	1.5755	-1265.602338	2.6860	0.002	-1265.354349	2.1190	0.008
6a-21	1.6013	-1265.604817	1.1310	0.021	-1265.355581	1.3460	0.028
6a-22	1.6047	-1265.606294	0.2040	0.101	-1265.355966	1.1050	0.042
6a-23	1.6111	-1265.60418	1.5300	0.011	-1265.354706	1.8950	0.011
6a-24	1.6186	-1265.604394	1.3960	0.013	-1265.356938	<mark>0.4950</mark>	0.117
6a-25	1.6338	-1265.603939	1.6820	0.008	-1265.353388	2.7220	0.003
6a-26	1.6408	-1265.604372	1.4100	0.013	-1265.354754	1.8650	0.012
6a-27	1.6493	-1265.604465	1.3520	0.015	-1265.354951	1.7420	0.014

6a-1

6a-6

6a-7

6a-11

6a-12

6a-15

Figure S5. ωB97XD/DGDZVP-optimized 27 conformers of (3*S*,5*R*,6*R*)-6a.

ECD calculation of compound 7a. Conformation searches based on molecular mechanics with MMFF94s force field were performed for (1R,2S,3S,5S)-7a within 10 kcal/mol and gave 254 conformers. Among them, 10 conformers were selected for the calculations (Boltzmann distribution \geq 1%, Figure S6) [1]. The selected conformers were optimized using DFT at the B3LYP/6-31G (d) level in vacuum, and the solve for more states (N=50) was set. This was carried out using the Gaussian 16 program (Table S6), while memory limit was 10 GB [2]. The B3LYP/6-31G (d)-optimized conformers were then reoptimized at the ω B97XD/DGDZVP level in acetonitrile. ECD computations for the ω B97XD/DGDZVP-optimized conformers (Fig. S6) were carried out at

the CAM-B3LYP/DGDZVP level in acetonitrile [3]. The model of solvation in acetonitrile was **IEFPCM**. According to the Boltzmann distribution theory and their relative Gibbs free energy (Δ G), the ECD spectrum for (1*R*,2*S*,3*S*,5*S*)-**7a** was generated using SpecDis 1.71 with σ = 0.25 eV [4]. The corresponding theoretical ECD spectrum of (1*S*,2*R*,3*R*,5*R*)-**7a** was depicted by inverting that of (1*R*,2*S*,3*S*,5*S*)-**7a**.

Conf.	MMFF	B3LYP/6-31G (d) Gibbs free energy			ωB97XD/DGDZVP Gibbs free energy			
	energy	(298.15 K)			(298.15 K)			
	ΔE (<mark>k</mark> cal/	G (Hartree)	ΔG	Boltzmann	G (Hartree)	ΔG	Boltzmann	
	mol)		(<mark>k</mark> cal/mol)	Distribution		(<mark>k</mark> cal/mol)	Distribution	
7a-1	<mark>0</mark>	-1342.021021	<mark>1.8690</mark>	0.016	-1341.781389	0.0000	0.403	
7a-2	<mark>0.34907</mark>	-1342.022861	0.7140	0.116	-1341.780735	0.4100	0.202	
7a-3	<mark>0.7028</mark>	-1342.021375	1.6470	0.024	-1341.77976	1.0220	0.072	
7a-4	1.54516	-1342.022804	0.7500	0.109	-1341.779725	1.0440	0.069	
7a-5	1.71868	-1342.02193	1.2990	0.043	-1341.780534	0.5370	0.163	
7a-6	<mark>1.86335</mark>	-1342.020825	<mark>1.9920</mark>	0.013	-1341.777119	2.6790	0.004	
7a-7	1.91997	-1342.024	0.0000	0.386	-1341.778706	1.6840	0.023	
7a-8	<mark>1.92395</mark>	-1342.016572	4.6610	0	-1341.776879	2.8300	0.003	
7a-9	<mark>1.99913</mark>	-1342.023737	0.1650	0.292	-1341.779378	1.2620	0.048	
7a-10	2.02204	-1342.016969	4.4120	0	-1341.778065	2.0860	0.012	

Table S6. Energy analysis for the conformers of (1*R*,2*S*,3*S*,5*S*)-7a.

7a-2

7a-4

7a-3

7**a-8**

7a-9

Figure S6. *ω*B97XD/DGDZVP-optimized 10 conformers of (1*R*,2*S*,3*S*,5*S*)-7**a**.

UV/ECD experiment of compound 1a-7a. Compounds **1a** (1.15 mmol/L), **2a** (1.24 mmol/L), **3a** (1.04 mmol/L), **4a** (0.94 mmol/L), **5a** (1.07 mmol/L), **6a** (1.16 mmol/L), and **7a** (1.18 mmol/L) were putted into the Spectrophotometer Cell (path length:1 cm). Baseline corrections of compounds **1a** and **4a-7a** were with acetonitrile as blank solvent, while compounds **2a** and **3a** were with methanol as blank solvent. The data was recorded by Applied Chirascan-plus Circular Dichroism Spectrometer, and the scans were repeated twice and averaged.

References

- [1] (a) Goto, H., and Osawa, E. (1989). Corner flapping: a simple and fast algorithm for exhaustive generation of ring conformations. J. Am. Chem. Soc. 111, 8950-8951. (b) Goto, H., and Osawa, E. (1993). An efficient algorithm for searching low-energy conformers of cyclic and acyclic molecules. J. Chem. Soc., Perkin. Trans. 2, 187-198.
- [2] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G>, Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N.,

Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C.,

Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W.,

Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016.

- [3]. Liu, Y.; Liu, F.; Qiao M.M.; Guo, L.; Chen, M.H.; Peng, C.; Xiong, L. Curcumanes A and B, Two Bicyclic Sesquiterpenoids with Significant Vasorelaxant Activity from *Curcuma longa*. Org. Lett. 2019, 21(4), 1197–1201.
- [4]. Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Bringmann, G. Spec Dis, version 1.71, University of Würzburg,

Germany, 2017

Figure S7. The IR spectrum of compound 1.

Figure S8. The (+)-HRESIMS spectroscopic data of compound 1.

Figure S9. The ¹H NMR spectrum of compound 1 in CD₃OD.

Figure S10. The ¹³C NMR spectrum of compound 1 in CD₃OD.

Figure S12. The HSQC spectrum of compound 1 in CD₃OD.

Figure S13. The ¹H-¹H COSY spectrum of compound 1 in CD₃OD.

Figure S14. The HMBC spectrum of compound 1 in CD₃OD.

Figure S15. The UV spectrum of compound 1a

Figure S<mark>16</mark>. The (+)-HRESIMS spectroscopic data of compound 1a.

Figure S<mark>17</mark>. The ¹H NMR spectrum of compound **1a** in CD₃OD.

S31

Figure S<mark>19</mark>. The (+)-HRESIMS spectroscopic data of compound **1b**.

Figure S²⁰. The ¹H NMR spectrum of compound **1b** in CD₃OD.

Figure S<mark>21</mark>. The IR spectrum of compound **2**.

Figure S22. The (+)-HRESIMS spectroscopic data of compound 2.

Figure S23. The ¹H NMR spectrum of compound 2 in CD_3OD .

Figure S²⁴. The ¹³C NMR spectrum of compound 2 in CD₃OD.

S38

Figure S 27 . The ¹H-¹H COSY spectrum of compound 2 in CD₃OD.

Figure S28. The HMBC spectrum of compound 2 in CD₃OD.

Figure S29. The UV spectrum of compound 2a.

Figure S<mark>30</mark>. The (+)-HRESIMS spectroscopic data of compound **2a**.

Figure S³¹. The ¹H NMR spectrum of compound 2a in CD₃OD.

Figure S³². The ¹³C NMR spectrum of compound 2a in CD₃OD.

Figure S<mark>33</mark>. The IR spectrum of compound **3**.

Figure S³⁴. The (+)-HRESIMS spectroscopic data of compound **3**.

Figure S³⁶. The ¹³C NMR spectrum of compound **3** in CD₃OD.

Figure S37. The DEPT spectrum of compound 3 in CD₃OD.

Figure S³⁸. The HSQC spectrum of compound **3** in CD₃OD.

Figure S40. The HMBC spectrum of compound **3** in CD₃OD.

Figure S41. The UV spectrum of compound 3a.

Figure S42. The (+)-HRESIMS spectroscopic data of compound 3a.

Figure S<mark>43</mark>. The ¹H NMR spectrum of compound **3a** in CD₃OD.

S57

Figure S<mark>45</mark>. The IR spectrum of compound **4**.

Figure S46. The (+)-HRESIMS spectroscopic data of compound 4.

Figure S $\frac{47}{10}$. The ¹H NMR spectrum of compound 4 in CD₃OD.

Figure S48. The 13 C NMR spectrum of compound 4 in CD₃OD.

Figure S_{49}^{49} . The DEPT spectrum of compound 4 in CD₃OD.

Figure S⁵⁰. The HSQC spectrum of compound 4 in CD₃OD.

Figure S51. The ¹H-¹H COSY spectrum of compound 4 in CD₃OD.

S65

Figure S53. The UV spectrum of compound 4a.

Figure S⁵⁴. The (+)-HRESIMS spectroscopic data of compound **4a**.

Figure S55. The ¹H NMR spectrum of compound 4a in CD₃OD.

Figure S_{56}^{56} . The ¹³C NMR spectrum of compound 4a in CD₃OD.

Figure S<mark>57</mark>**.** The (+)-HRESIMS spectroscopic data of compound **4b**.

Figure S⁵⁸. The ¹H NMR spectrum of compound **4b** in DMSO- d_6 .

Figure S^{59.} The ¹³C NMR spectrum of compound **4b** in DMSO- d_6 .

Figure S $_{60}$. The HSQC spectrum of compound **4b** in DMSO- $d_{6.}$

Figure S61. The ¹H-¹H COSY spectrum of compound 4b in DMSO- d_6 .

Figure S⁶². The HMBC spectrum of compound 4b in DMSO- d_6 .

Figure S63. The ¹H NMR spectrum of compound 4b in pyridine- d_5 .

Figure S $_{64}$. The ¹H NMR spectrum of compound 4c in pyridine- $d_{5.}$

Figure S $_{65}$. The ¹H NMR spectrum of compound 4d in pyridine- d_{5} .

Figure S<mark>66</mark>. The IR spectrum of compound **5**.

S80

Figure 8_{69}^{69} **.** The ¹³C NMR spectrum of compound **5** in CD₃OD.

Figure S<mark>70</mark>. The DEPT spectrum of compound **5** in CD₃OD.

Figure S⁷². The ¹H-¹H COSY spectrum of compound 5 in CD₃OD.

Figure S73. The HMBC spectrum of compound 5 in CD₃OD.

Figure S74. The UV spectrum of compound 5a.

Figure S<mark>75</mark>. The (+)-HRESIMS spectroscopic data of compound **5a**.

Figure S⁷⁶. The ¹H NMR spectrum of compound **5**a in CD₃OD.

Figure S78. The IR spectrum of compound 6.

Figure S79. The (+)-HRESIMS spectroscopic data of compound 6.

Figure S81. The 13 C NMR spectrum of compound 6 in CD₃OD.

Figure S86. The UV spectrum of compound 6a.

Figure S<mark>87</mark>. The (+)-HRESIMS spectroscopic data of compound **6a**.

Figure S89. The 13 C NMR spectrum of compound 6a in DMSO- d_6 .

Figure S90. The NOESY spectrum of compound 6a in DMSO- d_{6} .

Figure S<mark>91</mark>. The IR spectrum of compound 7.

Figure S</mark>92.The (+)-HRESIMS spectroscopic data of compound 7.

Figure S 93 . The ¹H NMR spectrum of compound 7 in CD₃OD.

Figure S<mark>95</mark>. The DEPT spectrum of compound **7** in CD₃OD.

Figure S 97 . The ¹H-¹H COSY spectrum of compound 7 in CD₃OD.

Figure S</mark>98. The HMBC spectrum of compound **7** in CD₃OD.

Figure S100. The UV spectrum of compound 7a.

Figure S101. The (+)-HRESIMS spectroscopic data of compound 7a.

Figure S<mark>103</mark>. The IR spectrum of compound **8**.

Figure S104. The (+)-HRESIMS spectroscopic data of compound 8.

Figure S¹⁰⁵. The ¹H NMR spectrum of compound 8 in CD₃OD.

Figure S106. The ¹³C NMR spectrum of compound 8 in CD₃OD.

Figure S113. The (+)-HRESIMS spectroscopic data of compound 8a.

S128

Figure S116. The TLC picture of the glucose in the compounds with the authentic sugar sample (CHCl₃/MeOH/ H₂O, 7:3:0.1; $R_f = 0.2$; 1: D-glucose; 2-9: the glucose in the compounds 1-8)