Supplementary Material

Waste Para-rubber Wood Ash and Iron Scrap for the Sustainable Preparation of Magnetic Fenton Catalyst for Efficient Degradation of Tetracycline

Natthanan Rattanachueskul^a, Parichart Onsri^a, Waralee Watcharin^b, Arthit Makarasen^c, Supanna Techasakul^c, Decha Dechtrirat^{c,d,e,*}, Laemthong Chuenchom^{a,f,*}

^a Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand

^b Faculty of Biotechnology (Agro-Industry), Assumption University, Hua Mak Campus, Bangkok 10240, Thailand

^c Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand

^d Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

^e Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM),

Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

^fCenter of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand

* Corresponding author. Email address: fscidcd@ku.ac.th (D. Dechtrirat)

* Corresponding author. Email address: laemthong.c@psu.ac.th (L. Chuenchom)

Fig. S1 Photographs show the magnetic separation of (A) MPRA1-4-800 (B) MPRA1-2-800 and (C) MPRA1-1-800 from aqueous solution (D) XRD pattern of MPRA1-2-800, MPRA1-2-700, MPRA1-2-600, and PRA samples.

Fig. S2 Photographs of samples

Fig. S3 FESEM-EDX analysis. (A1 and 2) FESEM images at 3000× of PRA, (A3-A6) Elemental mapping for Ca, O, Si and Fe from (A2), (B1 and 2) FESEM images at 3000× of MPRA1-1-800, (B3-B6) Elemental mapping for Ca, O, Si and Fe from (B2), (C1 and 2) FESEM images at 3000× of MPRA1-2-800, (C3-C6) Elemental mapping for Ca, O, Si and Fe from (C2), (D1 and 2) FESEM images at 3000× MPRA1-4-800, and (D3-D6) Elemental mapping for Ca, O, Si and Fe from (D2)

Fig. S4 FTIR spectra of all samples

Fig. S5 Data fitted with the BMG model for the catalytic degradation of TC on MPRA1-2-800 at pH 3.7

Fig. S6 MS spectra of TC solution before and after catalytic degradation by MPRA1-2-800

Fig. S7 Possible mechanism for the Fenton-like degradation of TC on MPRA1-2-800

Fig. S8 (A) The wide-scan XPS and (B-E) high-resolution C 1s, O 1s, Si 2p, and Fe 2p spectra of MPRA1-2-800 after 4 cycles of use

Sample	Ratio of iron scrap/PRA	Overall Yield (%)	Ms(emu/g)
PRA	-	-	-
Scrap-800	-	45.5±3.22	8.19
MPRA1-1-800	1:1	49.02 ± 2.86	11.08
MPRA1-2-800	1:2	69.47±5.13	5.01
MPRA1-4-800	1:4	68.57 ± 2.81	0.31
MPRA1-2-600	1:2	74.17±3.01	0.043
MPRA1-2-700	1:2	70.36±2.77	0.11

Table S1 Optimization of the preparation conditions and their physical and chemical properties

Samples	%C	SD	% 0	SD	%Ca	SD	%Fe	SD	%Si	SD	%K	SD	%Cl	SD	Other
PRA	11.10	0.70	44.50	0.40	16.20	0.10	1.50	0.00	12.30	0.10	5.20	0.10	2.20	0.00	7.00
MPRA1-1-800	13.40	0.30	27.50	0.20	4.20	0.00	43.30	0.20	6.30	0.10	1.10	0.00	2.70	0.00	1.50
MPRA1-2-800	15.70	0.40	32.90	0.20	6.10	0.10	14.70	0.10	8.10	0.10	6.00	0.10	14.50	0.10	2.00
MPRA1-4-800	14.90	0.40	39.70	0.20	8.40	0.10	6.60	0.10	15.10	0.10	2.20	0.00	10.30	0.10	2.80
Used-MPRA1-2-800	7.90	0.30	40.50	0.20	7.30	0.10	13.50	0.10	23.10	0.10	1.40	0.00	2.50	0.00	3.80

 Table S2 Elemental compositions obtained from EDX spectra

Wave number (cm ⁻¹)	Assignment	Structures
3600-3000	Stretching O-H	Adsorbed water and silanol group
1700 1400	Stretching C-O in carbonate groups	Calcium carbonate (CaCO ₃)
1/00-1400	Stretching C=C	Carbon materials
1109-1064	Stretching Si-O-Si	Silicon oxide
650-550	Stretching Fe-O	Iron Oxide

 Table S3 Assignment of the peaks in FTIR spectra of all samples

Peak	MPRA1-2- 800	%Area	Peak	Used MPRA1-2- 800	%Area	Peak	
	BE (eV)			BE (eV)			
	285.06	63.8	sp ³ C	284.9	52.4	sp ³ C	
C1s	286.38	17.5	C-O	286.17	27.2	C-O	
	287.4	7.9	C=O	287.28	10.6	C=O	
	288.94	8	O-C=O	288.55	6.6	O-C=O	
	289.92	2.9	CaCO ₃	289.57	3.1	CaCO ₃	
O1s	530.41	12.7	Fe-O	530.96	9.1	Fe-O	
	532.04	63.7	C-OH/C-O-C	531.99	37.9	C-OH/C-O-C	
	533.37	19.6	SiO_2	533.05	39.7	SiO_2	
	534.69	21.5	adsorbed H ₂ O	534.18	13.4	C-O	
G: 0	102.49	38.5	silicates	102.95	60.1	Si-O-Si	
Si 2p	103.32	61.5	SiO ₂	103.85	39.9	SiO_2	
	709.19	5.5	Fe ²⁺	710.81	27.1	Fe ²⁺ in Fe ₃ O ₄	
	710.66	17.4	Fe ²⁺ in Fe ₃ O ₄	712.22	34.4	Fe ³⁺	
	711.86	23.3	Fe ³⁺	723.88	16.6	Fe ²⁺ in Fe ₃ O ₄	
Es 2a	713.39	16.5	Fe ³⁺	725.26	21.9	Fe ³⁺	
Fe 2p	722.29	4.5	Fe^{2+}				
	723.76	9.8	Fe ²⁺ in Fe ₃ O ₄				
	724.96	13.2	Fe ³⁺				
	726.49	9.8	Fe ³⁺				

Table S4 Assignment of the peaks in XPS analysis (C 1s, O 1s, and Fe 2p) of MPRA1-2-800

Sample	S_{BET} (m ² /g)	Pore volume (cm ³ /g)	Pore size (nm)
PRA	1.95	0.005351	10.96
Scrap-800	0.778	0.000035	0.18
MPRA1-1-800	1.08	0.011419	42.29
MPRA1-2-800	2.386	0.018045	30.25
MPRA1-4-800	2.541	0.011071	17.43

 Table S5 BET surface area, pore volume and pore size for all samples

Catalyst	Preparation Method	BET (m²/g)	Ms (emu/g)	pН	H ₂ O ₂ conc. (mM)	H2O2 amount (mmol)	Catalyst loading (g/L)	T (°C)	C ₀ (mg/L)	V (mL)	Reaction	Reaction time (min)	%Removal	TC removal (mg)	%TOC Removal	Ref.
MnFe ₂ O ₄ /bio-char composite	Co-precipitation method	121.45	11.75	5.5	100	10	0.5	20	40	100	Photo-Fenton Degradation	120	95	3.80	37.5	(Lai et al., 2019)
C-TiO ₂ nanocomposites	Calcination and acid etching	165.5	-	-	-	-	0.2	-	10	50	Photocatalytic Degradation	160	90.8	0.45	-	(Ma et al., 2019)
Fe ₃ O ₄ @MSC	Co-precipitation and calcination	120.09	28.71	7	10	2.5	0.5	23	50	250	UV-Fenton Degradation	40	99.2	12.40	72.1	(Yu et al., 2019)
Fe ₃ O ₄ @void@TiO ₂ sphere	Sol-gel, calcination, and etching method	101	28.71	7	377	15.08	0.25	RT	40	40	UV-Fenton- like Degradation	10	94	1.50	26.9	(Du et al., 2017)
Fe/N-C composite	Pyrolysis at 900°C for 2 h	-	62	7	60	1.5	0.2	-	100	25	Ultrasound- assisted Fenton-like Degradation	80	92.77	2.32	40	(Yang et al., 2018)
Schorl	-	-	-	3	9.9	0.99	10	40	100	100	Fenton-like Degradation	600	95.2	9.52	29.8	(Zhang et al., 2018)
Fe ₃ O ₄ nanospheres	Solvothermal at 200°C for 10 h	25.4	66.8	7	50	1.5	0.5	25	40	30	Fenton-like Degradation	110	82	0.98	32.9	(Nie et al., 2020)
NZVI/g-C ₃ N ₄ @EGC composite	Calcination and KBH ₄ reduction method	48.41	26.5	5	-	-	0.5	30	30	60	Photo-Fenton Degradation	120	99.5	1.79	-	(Wang et al., 2019)
Fe-MOFs	Solvothermal at 110°C for 20 h	180.41	-	4.1	98	9.8	0.1	14	50	100	Photo-Fenton Degradation	20	82.52	4.13	48	(Wu et al., 2020)
Pal@Fe ₃ O ₄	Co-precipitation method	69.4	44.11	7	100	10	0.2	30	100	100	Fenton-like Degradation	60	72.9	7.29	-	(Lian et al., 2019)
Fe ₃ O ₄ -Cs	solvothermal at 200°C for 24 h	20.57	-	3	10	2	0.5	40	48	200	Fenton-like Degradation	120	96	9.22	68.3	(Li et al., 2020)
SCH/GO nanocomposites	Oxidation-co-precipitation method	208.6	-	3.5	1	0.2	0.25	25	15	200	Photo- Fenton-like Degradation	60	98.3	2.95	27.3	(Ma et al., 2020)
yolk-shell ZnFe ₂ O ₄	Hydrothermal method 180°C for 6 h	83.1	-	2	20	2	0.3	25	60	100	Photo- Fenton-like Degradation	40	94.2	5.65	-	(Xiang et al., 2020)
Fe/S-doped aerogel	Sol-gel and carbonization method	222	-	6	15	0.3	1	25	10	20	Fenton Degradation	180	99.56	0.20	45	(Wang et al., 2020)
FeNi ₃ @SiO ₂	Co-precipitation method	481.58	69.69	7	4.4	0.88	0.5	20	20	200	Fenton-like Degradation	180	87	3.48	-	(Khodadadi et al., 2019)
Pyrite	Natural resource	11.61	-	4	5	0.25	1	25	50	50	Fenton-like Degradation	30	85	2.13	62	(Mashayekh-Salehi et al., 2021)
C@FONC	Coprecipitation method	-	23.1	3	5	2.5	0.5	40	150	500	Fenton-like Degradation	120	97	72.75	52.7	(Zhou et al., 2020)
CuFeO ₂ /BC	Pyrolysis at 450°C for 2 h, hydrothermal method 180°C for 24 h	37.3	0.084	5	50	5	0.5	25	20	100	Fenton-like Degradation	300	89	1.78	58.5	(Xin et al., 2021)
Fe-MPC	Pyrolysis at 500°C for 2 h	33.49	-	4.3	1	0.05	0.02	25	40	50	Fenton-like Degradation	10	83	1.66	-	(Wang et al., 2021)
Fe ₃ O ₄ @SC nanocomposites	Ball milled followed by pyrolysis at 800°C for 2 h	386.2	52.2	5.0	5	0.15	0.8	25	20	30	Photo- Fenton-like Degradation	35	98.2	0.59	79.5	(Wu et al., 2024)
MPRA1-2-800	Pyrolysis at 800°C for 1.5 h	2.39	5.01	3.7	5	1	1	28	80	200	Fenton-like Degradation	240	95.61	15.30	90.81	This work

 Table S6 Curated data from the literature on catalysts for TC removal and results from the current study

References

- Du, D., Shi, W., Wang, L., Zhang, J. 2017. Yolk-shell structured Fe₃O₄@void@TiO₂ as a photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline. Appl. Catal. B: Environ. **200**, 484-492.
- Khodadadi, M., Hossein Panahi, A., Al-Musawi, T.J., Ehrampoush, M.H., Mahvi, A.H. 2019. The catalytic activity of FeNi₃@SiO₂ magnetic nanoparticles for the degradation of tetracycline in the heterogeneous Fenton-like treatment method. J. Water Proc.engineering. **32**, 100943.
- Lai, C., Huang, F., Zeng, G., Huang, D., Qin, L., Cheng, M., Zhang, C., Li, B., Yi, H., Liu, S., Li, L., Chen, L. 2019. Fabrication of novel magnetic MnFe₂O₄/bio-char composite and heterogeneous photo-Fenton degradation of tetracycline in near neutral pH. Chemosphere. 224, 910-921.
- Li, X., Cui, K., Guo, Z., Yang, T., Cao, Y., Xiang, Y., Chen, H., Xi, M. 2020. Heterogeneous Fenton-like degradation of tetracyclines using porous magnetic chitosan microspheres as an efficient catalyst compared with two preparation methods. Chem. Eng. J. 379, 122324.
- Lian, J., Ouyang, Q., Tsang, P.E., Fang, Z. 2019. Fenton-like catalytic degradation of tetracycline by magnetic palygorskite nanoparticles prepared from steel pickling waste liquor. Appl. Clay Sci. **182**, 105273.
- Ma, S., Gu, J., Han, Y., Gao, Y., Zong, Y., Ye, Z., Xue, J. 2019. Facile Fabrication of C–TiO₂ nanocomposites with enhanced photocatalytic activity for degradation of tetracycline. ACS Omega. **4**(25), 21063-21071.
- Ma, S., Jing, J., Liu, P., Li, Z., Jin, W., Xie, B., Zhao, Y. 2020. High selectivity and effectiveness for removal of tetracycline and its related drug resistance in food wastewater through schwertmannite/graphene oxide catalyzed photo-Fenton-like oxidation. J. Hazard. Mater. **392**, 122437.
- Mashayekh-Salehi, A., Akbarmojeni, K., Roudbari, A., Peter van der Hoek, J., Nabizadeh, R., Dehghani, M.H., Yaghmaeian, K. 2021. Use of mine waste for H₂O₂-assisted heterogeneous Fenton-like degradation of tetracycline by natural pyrite nanoparticles: Catalyst characterization, degradation mechanism, operational parameters and cytotoxicity assessment. J. Clean. Prod. **291**, 125235.
- Nie, M., Li, Y., He, J., Xie, C., Wu, Z., Sun, B., Zhang, K., Kong, L., Liu, J. 2020. Degradation of tetracycline in water using Fe₃O₄ nanospheres as Fenton-like catalysts: kinetics, mechanisms and pathways. New J. Chem. **44**(7), 2847-2857.
- Wang, C., Sun, R., Huang, R., Wang, H. 2021. Superior fenton-like degradation of tetracycline by iron loaded graphitic carbon derived from microplastics: Synthesis, catalytic performance, and mechanism. Sep. Purif. Technol. **270**, 118773.
- Wang, X., Xie, Y., Ma, J., Ning, P. 2019. Facile assembly of novel g-C₃N₄@expanded graphite and surface loading of nano zerovalent iron for enhanced synergistic degradation of tetracycline. RSC Adv. **9**(59), 34658-34670.
- Wang, X., Zhuang, Y., Zhang, J., Song, L., Shi, B. 2020. Pollutant degradation behaviors in a heterogeneous Fenton system through Fe/S-doped aerogel. Sci. Total Environ. **714**, 136436.

- Wu, C., Guo, T., Chen, Y., Tian, Q., Zhang, Y., Huang, Z., Hu, H., Gan, T. 2024. Facile synthesis of excellent Fe₃O₄@starch-derived carbon Photo-Fenton catalyst for tetracycline degradation: Rapid Fe³⁺/Fe²⁺ circulation under visible light condition. Sep. Purif. Technol. **329**, 125174.
- Wu, Q., Yang, H., Kang, L., Gao, Z., Ren, F. 2020. Fe-based metal-organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range: Acceleration of Fe(II)/ Fe(III) cycle under visible light irradiation. Appl. Catal. B: Environ. 263, 118282.
- Xiang, Y., Huang, Y., Xiao, B., Wu, X., Zhang, G. 2020. Magnetic yolk-shell structure of ZnFe₂O₄ nanoparticles for enhanced visible light photo-Fenton degradation towards antibiotics and mechanism study. Appl. Surf. Sci. **513**, 145820.
- Xin, S., Liu, G., Ma, X., Gong, J., Ma, B., Yan, Q., Chen, Q., Ma, D., Zhang, G., Gao, M., Xin, Y. 2021. High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO₂ for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism. Appl. Catal. B: Environ. **280**, 119386.
- Yang, Y., Zhang, X., Chen, Q., Li, S., Chai, H., Huang, Y. 2018. Ultrasound-assisted removal of tetracycline by a Fe/N–C Hybrids/H₂O₂ Fenton-like system. ACS Omega. **3**(11), 15870-15878.
- Yu, X., Lin, X., Li, W., Feng, W. 2019. Effective removal of tetracycline by using biochar supported Fe₃O₄ as a UV-Fenton catalyst. *C* Chem. Res. Chin. Univ. **35**(1), 79-84.
- Zhang, Y., Shi, J., Xu, Z., Chen, Y., Song, D. 2018. Degradation of tetracycline in a schorl/H₂O₂ system: Proposed mechanism and intermediates. Chemosphere. **202**, 661-668.
- Zhou, J., Ma, F., Guo, H., Su, D. 2020. Activate hydrogen peroxide for efficient tetracycline degradation via a facile assembled carbon-based composite: Synergism of powdered activated carbon and ferroferric oxide nanocatalyst. Appl. Catal. B: Environ. 269, 118784.