10.8
CiteScore
 
5.3
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Corrigendum
Current Issue
Editorial
Erratum
Full Length Article
Full lenth article
Letter to Editor
Original Article
Research article
Retraction notice
Review
Review Article
SPECIAL ISSUE: ENVIRONMENTAL CHEMISTRY
10.8
CiteScore
5.3
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Corrigendum
Current Issue
Editorial
Erratum
Full Length Article
Full lenth article
Letter to Editor
Original Article
Research article
Retraction notice
Review
Review Article
SPECIAL ISSUE: ENVIRONMENTAL CHEMISTRY
View/Download PDF

Translate this page into:

Original article
8 (
5
); 655-670
doi:
10.1016/j.arabjc.2011.01.035

Coordination chemistry of pyrazolone based Schiff bases relevant to uranyl sequestering agents: Synthesis, characterization and 3D molecular modeling of some octa-coordinate mono- and binuclear-dioxouranium(VI) complexes

Coordination and Bioinorganic Chemistry Laboratory,Department of P.G. Studies and Research Chemistry,R.D. University,Jabalpur 482 001,India

⁎Corresponding author. Tel.: +91 761 2601303; fax: +91 761 2603752. rcmaurya1@gmail.com (R.C. Maurya)

Disclaimer:
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.

Peer review under responsibility of King Saud University.

Abstract

Synthesis of two new series of octa-coordinate dioxouranum(VI) chelates: (i) mononuclear chelates of compositions, [UO2(L1)2(H2O)2] (where L1H = N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-p-anisidine (bumphp-paH, I), N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-m-phenetidine (bumphp-mpH, II) or N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-p-toluidine (bumphp-ptH, III), and [UO2(L2)(H2O)2] (where L2H2 = N,N′-bis(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazo-lin-5′-one)-o-phenylenediamine (bumphp-ophdH2, IV), and (ii) the ligand bridged binuclear chelate of composition [UO2(μ-L3)(H2O)2]2 (where L3H2 = N,N′-bis(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazo-lin-5′-one)-benzidine (bumphp-bzH2, V), are described. These complexes have been characterized by elemental analyses, uranium determination, molar conductance, decomposition temperature and magnetic measurements, thermogravimetric studies, 1H NMR, IR, and electronic spectral studies. The 3D molecular modeling and analysis for bond lengths and bond angles have also been carried out for the two representative compounds, [UO2(bumphp-pa)2(H2O)2] (1) and [UO2(bumphp-bz)(H2O)2]2 (5) to substantiate the proposed structures.

Keywords

Dioxouranium(VI) chelates
Mono- and binuclear
Pyrazolone based Schiff base ligands
3D Molecular modeling
1

1 Introduction

Uranium is the second and most commonly naturally occurring actinide (after thorium), and is more widely used than thorium. Uranium is most commonly used as nuclear fuel in fission reactors for civilian purpose. The hexavalent uranyl ion { UO 2 + , U(VI)} was proved to be the most stable form in aqueous solutions and in vivo at physiological pH (Hamilton, 1948).

With the commercial development of nuclear reactors, the actinides have become important industrial elements. A major concern of the nuclear industry is the biological hazard associated with nuclear fuels and their wastes. When actinides such as uranium are introduced in the body in the case of internal contamination or in the event of a nuclear accident by ingestion, inhalation or through wounds, they are chelated in the body by complexing agents such as proteins or carbonates. After chelation, toxic species are distributed and retained in target organs such as kidneys, liver and bones (Balman, 1980). This causes kidney damage from chemical toxicity/interactions (Raymond et al., 1984, 1999) and internally deposited high specific activity (alpha emission) of uranium isotopes can cause bone cancer (Finkel, 1953).

Increased handling of uranium in the nuclear fuel cycle worldwide and the threat of internal contamination of military personnel wounded with finely divided uranium shrapnel has stimulated interest in the development of uranium chelators suitable for human use. In fact, non-toxic chelators can form highly stable complexes so that the body can rapidly excrete the poison from blood and target organs. Furthermore, the uranyl chelates must be soluble and stable in physiological fluids in a pH range 2–9 to be subsequently eliminated from the body after crossing the renal and hepatic barriers (Leydier et al., 2008). Thus, uranyl concentrations and radiation doses, and subsequently tumor risks may be reduced.

During the past 30 years, several uranyl ligands were synthesized, based on different complexing functions. Phosphorous containing molecules, especially biophosphonates were found to be very effective uranyl Ligands (Sawicki et al., 2005; Bailly et al., 2002; Burgada et al., 2007; Xu et al., 2004), but few significant decorporation work has been reported so far concerning the decorporation efficacy of ethane-1-hydroxy-1,1-bisphosphonate (EHBP) (Martinez et al., 2000; Ubios et al., 1998, 1994; Fukuda et al., 2005). Bidentate methyl-terphthalimide (MeTAM)-based chelating ligands were also studied and found not to be suitable for biological decorporation due to their high toxicity (Durbin et al., 2000). A rational design of uranyl sequestering agents based on 3-hydroxy-2(1H)-pyridinone and sulfocatacholamide (CAMS) ligands resulted in the first effective agent for mammalian uranyl decorporation (Gorden et al., 2003). A new family of CAMS ligands as sequestering agents for uranyl chelation has been recently reported by Leydier et al. (2008).

Uranium(VI)-bearing inorganic–organic hybrid materials have been gaining considerable attention due to their interesting structural topologies and diverse physical–chemical properties for potential optical, magnetic, catalytic and ion-exchange applications as well as their ability for the binding and activation of N2 for nitrogen fixation (Krivovichev and Burns, 2002; Frisch and Cahill, 2005, 2006; Salmon et al., 2006; Fox et al., 2008; Hutchings et al., 1996; Evans et al., 2003; Fortiera and Hayton, 2010; Sun et al., 2010). Uranium prefers to bind two axial O atoms to form the linear uranyl species UO 2 2 + in its +6 oxidation state. The uranyl ion exhibits good stability and forms complexes with various O-, N- and S-donor ligands (Thuéry et al., 2004; Sarsfield and Helliwell, 2004; Sarsfield et al., 2003; Berthetm et al., 2004; Rowland et al., 2010; Pan et al., 2010; Back et al., 2010). Furthermore, the U(VI) takes on a variety of coordination environments ranging from tetragonal six-coordination, to pentagonal seven-coordination and to hexagonal bipyramidal eight-coordination (Cotton and Wilkinson, 1988). These features of U(VI) lead to a large structural diversity of uranyl complexes (Yu et al., 2003, 2005, 2004; Chen et al., 2003; Jiang et al., 2006a,b; Liao et al., 2008).

In continuation with our laboratory’s serialized studies on the interaction between the chelating Schiff bases of 4-acyl-3-methyl-1-phenyl-2-pyrazolin-5-one and transition/inner transition metal ions (Maurya et al., 1993, 1994, 1997a,b,c, 2002, 2006; Maurya and Rajput, 2006, 2007) in non-aqueous media, the entitled complexes were synthesized and characterized. Apart from the strong analgesic, antihistaminic and anti-fungal properties (Goodman and Gilman, 1970; Alaudeen et al., 2003) of pyrazolones, the 4-acyl derivatives have been shown to be very efficient extractants for (Zolotov and Kuzmin, 1977; Mirza, 1968; Karalova and Pyzhova, 1968) metal ions in various aqueous media. Attempts at using other derivatives of pyrazolones in constructing mixed-ligand resins for trapping toxic metals chromatographically (Chouhan and Rao, 1982; Korotkin, 1981) have been made.

Maurya and Maurya have recently reviewed coordination chemistry of Schiff base complexes of uranium (Maurya and Maurya, 1995). Previous reports (Maurya et al., 1998, 2007, 2008) from our laboratory describe the preparation and characterization of mononuclear, dinuclear and trinuclear complexes of dioxouranium(VI) with a series of multidentate chelating Schiff bases. A literature Survey on chelating Schiff base complexes of dioxouranium(VI) reveals that there is no report on such complexes involving chelating Schiff bases derived from 4-butryl-3-methyl-1-phenyl-2-pyrazolin-5-one. Owing to the lack of work on coordination complexes of dioxouranuim(VI) uranium with pyrazolone based Schiff bases and, obviously, the potential application of 4-acylpyrazolones in medicine and in the extraction and construction of ion exchange resins for metal ions, it was thought that it would be of interest to synthesize and characterize some dioxouranium(VI) complexes with chelating Schiff bases derived from 4-butryl-3-methyl-1-phenyl-2-pyrazolin-5-one and aromatic amines, such as, N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-p-anisidine (bumphp-paH, I), N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-m-phenetidine (bumphp-mpH, II) or N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-p-toluidine (bumphp-ptH, III), N,N′-bis(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazo-lin-5′-one)-o-phenylenediamine (bumphp-ophdH2, IV) and N,N′-bis(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazo-lin-5′-one)-benzidine (bumphp-bzH2, V). The designing of the Schiff base ligands (Fig. 1) in the present study is based on the consideration that the uranyl ion, a hard Lewis acid, has a high affinity for hard donor (O, N) groups in order to form stable complexes.

Structures of the ligands.
Figure 1
Structures of the ligands.

2

2 Experimental

2.1

2.1 Materials

3-Methyl-1-phenyl-2-pyrazolin-5-one (Johnson Chemical Co., Bombay), benzidine (B.D.H. Chemicals, Bombay), p-anisidine, and m-phenetidine (Aldrich Chemical Co., USA), p-toluidine (Sarabhi M. Chemicals, Baroda), o and m-phenylenediamine (Fluka A.G., Switzerland), uranyl acetate dihydrate (B.D.H. Chemicals, Poole, English) and butyryl chloride (B.D.H. Chemicals, Bombay) were used as supplied. All other chemicals used were of an analytical reagent grade.

2.2

2.2 Preparation of 4-butyryl-3-methyl-1-phenyl-2-pyrazolin-5-one (bumphpH)

It was prepared by the interaction of 3-methyl-1-phenyl-2-pyrazolin-5-one in dioxane with calcium hydroxide and butyryl chloride by the procedure reported by Jensen (1959), and was recrystallized from ethanol, m.p. = 65 °C.

2.3

2.3 Synthesis of the Schiff bases

The Schiff bases used in the present investigation were synthesized by the usual condensation of bumphpH and aromatic amines, viz., p-anisidine, m-phenetidine, p-toluidine, o-phenylenediamine or benzidine as reported in our previous communication (Maurya et al., 2002).

2.4

2.4 Synthesis of complexes

The complexes were prepared by following general method. An ethanolic solution (∼15 mL) of the appropriate Schiff base, I (0.002 mol, 0.698 g)/II (0.002 mol, 0.726 g)/III (0.002 mol, o.666 g)/IV (0.002 mol, 1.120 g)/V (0.002 mol, 1.272 g) was added to an ethanolic solution (∼15 ml) of uranyl acetate dihydrate [(0.001 mol, 0.424 g) in case of the ligands IIII and (0.002 mol, 0.848 g) in case of the ligands IV and V] with a stirring and the resulting mixture was kept under reflux for 6–7 h. The reaction mixture was then concentrated to a small volume by direct heating and left overnight. The crystalline mass thus obtained was filtered by suction and washed several times with ethanol, and dried in vaco. The analytical data of complexes are given in Table 1.

Table 1 Analytical data and some physical properties of the synthesized complexes.
S. No. Complexa (empirical formula)(F.W.) Analyses, found/(calc.), % Color Deco. temp.(°C) Yield (%) AM (ohm−1 cm2 mol−1)
C H N U
1 [UO2(bumphp-pa)2(H2O)2] 50.74 4.48 8.15 23.38 Raw silk 180 55 18.7
(C42H48N6O8U) (1002.02) (50.30) (4.79) (8.38) (23.75)
2 [UO2(bumphp-mp)2(H2O)2] 51.67 4.82 8.48 23.50 Mid cream 185 55 16.5
(C44H52N6O8U) (1030.02) (51.26) (5.05) (8.16) (23.11)
3 [UO2(bumphp-pt)2(H2O)2] 51.48 5.15 8.85 24.25 Cream 205 58 17.1
(C42H48N6O8U)(790.02) (51.96) (4.95) (8.66) (24.54)
4 [UO2(bumphp-ophd)(H2O)2] 47.64 4.22 9.50 27.32 Pepper-mint 190 60 25.4
(C34H38N6O8U) (864.02) (47.22) (4.40) (9.72) (27.55)
5 [UO2(bumphp-bz)(H2O)2]2 51.42 4.20 8.53 25.67 White 220 52 20.5
(C80H84N12O12U) (1880.04) (51.06) (4.47) (8.94) (25.32)
IUPAC name of the complexes: (1) diaquabis{N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-ono)-p-anisidine}dioxouranium(VI); (2) diaquabis{N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-ono)-m-phenetidine}dioxouranium(VI); (3) diaquabis{N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-ono)-p-toluidine}dioxouranium(VI); (4) diaqua{N,N′-bis(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-ono)-o-phenylenediamine}dioxouranium(VI); (5) bis[μ-{N,N′-bis(4′-butyrylidene-3′-methyl-r-phenyl-2′-pyrazolin-5′-ono)-benzidine}]di{diaquadioxournium(VI)}.

2.5

2.5 Analyses

Carbon, hydrogen and nitrogen were determined micro-analytically at the Central Drug Research Institute, Lucknow. The uranium contents of all the synthesized complexes were determined gravimetrically (Vogel, 1961) as U3O8 after decomposing the complexes with concentrated nitric acid and igniting the residue.

3

3 Physical methods

The room temperature magnetic susceptibilities of the complexes were measured with a PAR VSM 155 vibrating sample magnetometer at the Regional Sophisticated Instrumentation Centre, Indian Institutes of Technology, Chennai. Electronic Spectra of complexes were recorded on ATI Unicam UV-2-100 UV/visible Spectrophotometer in our department. Solid-state infrared spectra were recorded in Nujol mulls at Central Drug Research Institute, Lucknow. Conductance measurements were performed at room temperature in dimethylformamide using a Toshniwal conductivity bridge and dip type cell with a smooth platinum electrode of cell constant 1.02. Thermogravimetric curves were recorded by heating the sample at the rate of 20 °C min−1 up to 740 °C on a thermal analyzer, Mettler Toledo Stare system at the Regional Sophisticated Instrumentation Centre, Nagpur.

4

4 Results and discussion

The dioxouranium(VI) complexes with chelating Schiff bases were prepared according to the following Eqs. (1)–(3).

(1)
UO 2 ( CH 3 COO ) 2 · 2 H 2 O + 2 LH Reflux Ethanol [ UO 2 ( L ) 2 ( H 2 O ) 2 ] + 2 CH 3 COOH where LH = bumphp-paH (1), bumphp-mpH (2) or bumphp-ptH (3),
(2)
UO 2 ( CH 3 COO ) 2 · 2 H 2 O + LH 2 Reflux Ethanol [ UO 2 ( L ) ( H 2 O ) 2 ] + 2 CH 3 COOH
where LH2 = bumphp-ophdH2 (4),
(3)
2 UO 2 ( CH 3 COO ) 2 · 2 H 2 O + 2 LH 2 Reflux Ethanol [ UO 2 ( μ - L ) ( H 2 O ) 2 ] 2 + 4 CH 3 COOH
where LH2 = bumphp-bzH2 (5).

The synthesized complexes are colored, non-hygroscopic and air-stable solids. They are soluble in dimethylformamide, dimethylsulfoxide and insoluble in all other common organic solvent. The resulting complexes were characterized using the following physical studies.

4.1

4.1 Infrared spectra

The infrared spectra of all the five Schiff bases display (Maurya et al., 2002) a medium broad band (except the ligands IV and V which exhibits two bands at 3480–3490 and 3200–3300 cm−1) with fine structure in the region 3500–3150 cm−1. This indicates that all the ligands exist in the enol form (Fig. 1) in solid state. Hence, the ligands bumphp-paH, bumphp-mpH and bumphp-ptH contain four potential donor sites: (i) the enolic oxygen, (ii) the azomethine nitrogen, (iii) the cyclic nitrogen N1 and (iv) the cyclic nitrogen N2 of the pyrazolon skeleton. On the other hand the rest of the Schiff bases, such as, bumphp-ophdH2 and bumphp-bzH2 have eight potential donor sites: (i) the two enolic oxygen, (ii) the two azomethine nitrogens, (iii) the two cyclic nitrogens N1 and (iv) the two cyclic nitrogens N2 of the pyrazolon skeleton.

The IR spectra of all the ligands display (Maurya et al., 2002) a strong band at 1616–1635 cm−1, which is assigned to ν(C⚌N) of azomethine group. In the spectra of all the six complexes, this band is shifted to lower frequency side and is observed at 1605–1620 cm−1 suggesting coordination of the azomethine nitrogen to the UO 2 2 + moiety (Maurya et al., 2002).

All the complexes exhibit a medium-intensity band at 901–932 cm−1 and a strong band at 817–858 cm−1 assignable to νas(O⚌U⚌O) and νs(O⚌U⚌O) modes, respectively. This observation indicates that the UO2 moiety is virtually linear (Maurya and Maurya, 1995).

The force constants [f(U–O)] for all the complexes were calculated by the method of McGlynn et al. (1961) and bonds lengths of the U–O bond for all the complexes were calculated using the Jones equation (Jones, 1958, 1959). The values of f (6.74–7.21 mdyne/Å) and RU–O (1.72–1.74Å) (Table 2) are found in the usual range observed for other dioxouranuim(VI) complexes (Maurya and Maurya, 1995). For the sake of convenience, the remaining interpretation of infrared spectra is divided into three parts.

Table 2 Important IR spectral bands (cm−1), force constant and bond distance of U–O bond in synthesized complexes.
S. No. Compound ν(C⚌N) (Azometh.) ν(C–O) (Enolic) νas(O⚌U⚌O) νs(O⚌U⚌O) ν(OH) (H2O) FU–O mdyne (Å) U–O (bond dist.) (Å)
1 [UO2(bumphp-pa)2(H2O)2] 1620 1205 901 839 3470 6.74 1.74
2 [UO2(bumphp-mp)2(H2O)2] 1620 1232 910 817 3480 6.87 1.73
3 [UO2(bumphp-pt)2(H2O)2] 1610 1225 930 840 3500 7.18 1.72
4 [UO2(bumphp-ophd)(H2O)2] 1608 1360 925 850 3470 7.10 1.73
5 [UO2(bumphp-bz)(H2O)2]2 1605 1340 920 840 3580–3300 7.03 1.71

4.1.1

4.1.1 Complexes with bumphp-paH (I), bumphp-mpH (II) or bumphp-ptH (III)

The coordination of ring nitrogen N1 in these Schiff base ligands is unlikely due to the presence of bulky phenyl group attached to it. Considering the planarity of the ligands, the coordination of ring nitrogens, N2 is also unlikely due to being back side of the suitable donor sites: (i), (ii), with reference to the details of donor sites given above. In fact, the coordination of the ring nitrogen N2 in these ligands is found to be inert to the metal center as revealed by the almost unaltered positions of the ν(C⚌N2) (cyclic) (1592–1594 cm−1) (Maurya et al., 2002) mode of the respective ligands after complexation. The interaction of these enolic ligands with the UO 2 2 + moiety with elimination of a proton is revealed by the presence of a new band in the complexes at 1205–1232 cm−1 due to the ν(C–O) enol (Ledon et al., 1979) mode. The appearance of two medium broad bands in 3470–3500 and 3360–3410 cm−1 regions due to ν(OH) indicates that these complexes contain at least one coordinated water molecule.

4.1.2

4.1.2 Complex with bumphp-ophdH2 (IV)

The coordination of the two ring nitrogens N1 and two ring nitrogens N2 in this ligand is not taking place to the uranyl center by the same reasoning already given in case of ligands IIII. However, the coordination of the two enolic oxygens, after deprotonation, to the uranyl center in these complexes is indicated by the appearance of a new band at 1330–1360 cm−1 due to ν(C–O) (enolic) (Maurya et al., 1998). The overall IR results conclude that the ligand under discussion is chelating dibasic tetradentate.

4.1.3

4.1.3 Complex bumphp-bzH2 (V)

The analytical data suggest that this complex is a binuclear involving ligand bridging. The significant absorption band due to coordinated enolic oxygens in this complex is ν(C–O) (enol). This band is observed at 1340 cm−1 in this complex, similar to the complex (4). Again the overall IR results conclude that ligand under discussion is also behaving as a chelating dibasic tetradentate. The appearance of a broad band at 3580–3500 cm−1 may be due to coordinated water in the complex. The formation of a binuclear complex may be attributed due the presence of two azomethine nitrogens at 1,6-positions in the ligand, wherein coordination of both the azomethine nitriogens to the same metal center is difficult. The above-mentioned observations suggest that compound (5) is a ligand bridged binuclear dioxouranium(VI) complex. Such a result has already been reported elsewhere (Maurya et al., 2008).

4.2

4.2 Conductance measurements

The observed molar conductances of these complexes measured in 10−3 M dimethylformamide solutions are in the range 16.5–25.4 ohm−1 cm2 mol−1, and thereby indicate their non-electrolytic (Geary, 1971) nature.

4.3

4.3 Magnetic measurements

The magnetic measurements of these complexes indicate that they are diamagnetic, as expected for the dioxouranium(IV) complexes.

4.4

4.4 Electronic spectra

Electronic Spectra compounds were recorded in 10−3 M dimethylformamide solution. The electronic spectral peaks observed along with their molar extinction coefficient are given in Table 3. In view of the high intensity of the first four peaks in each of the complexes analyzed, they appear to be due to intra-ligand transitions. The fifth peak of lower intensity (ε = 2368–2538 L mol−1 cm−1) in each of the complex may be due to 1 E g + 3 ν U transition (Maurya and Maurya, 1995).

Table 3 Electronic spectra data of some complexes.
Compound No. Compound λmax (nm) ε (L mol−1 cm−1) Peak assignment
1 [UO2(bumphp-pa)2(H2O)2] 305 4230
335 4145 Intra-ligand
360 4245 transitions
370 4085
445 2538 1Eg → 3πu
2 [UO2(bumphp-mp)2(H2O)2] 315 4378
345 4162 Intra-ligand
357 4342 transitions
368 4000
450 2445 1Eg → 3πu
3 [UO2(bumphp-pt)2(H2O)2] 310 4250
350 4160 Intra-ligand
362 4260 transitions
372 4065
440 2530 1Eg → 3πu
4 [UO2(bumphp-ophd)(H2O)2] 305 4280
335 4090 Intra-ligand
345 4550 transitions
365 4845
410 2460 1Eg → 3πu
5 [UO2(bumphp-bz)(H2O)2]2 297 4378
326 4000 Intra-ligand
340 5297 transitions
359 5297
396 2368 1Eg → 3πu

4.5

4.5 1H NMR spectra

The proton NMR spectrum of a representative compound [UO2(bumphp-pa)2(H2O)2] was recorded in DMSO-d6. The proton signals observed at δ 7.05–8.03 ppm are assigned for the aromatic protons present in the ligand. The appearance of a proton signal at δ 12.65 ppm may be due to the presence of coordinated water molecule in the complex. Other significant proton signals were also observed in the lower ppm range in the complex as δ 3.85 (singlet)-OCH3 (a), δ 3.39 (singlet)-solvent/CH3 (b), δ 2.29–2.66 (multiplet)-CH2 (d), δ 1.43–1.55 (triplett)-CH3 (e) and δ 0.78–0.85 (triplet)-CH2 (c). The indexing of various protons is given in Fig. 2.

Indexing of various protons in [UO2 (bumphp-pa)2(H2O)2].
Figure 2
Indexing of various protons in [UO2 (bumphp-pa)2(H2O)2].

4.6

4.6 Thermogravimetric analysis

The thermograms of two compounds [UO2(bumphp-pa)2(H2O)2] (1) and [UO2(bumphp-mp)2(H2O)2] (2) were recorded in the temperature range 30–850 °C at the heating rate of 20 °C min−1. Observations of thermograms of these two compounds indicate that they are stable up to 250 and 300 °C, respectively. Thereafter, they start decomposing and their weights became constant beyond 400 °C. In case of the compound (1), the weight loss observed in the temperature range 250–400 °C roughly corresponds to elimination of two coordinated water molecules and two ligand moieties (bumphp-pa). Similar to compound (1), the observed weight loss in the temperature range 300–400 °C for the compound (2) also roughly matches with the elimination of two coordinated water molecules and two ligand moieties (bumphp-mp). The thermograms of these two compounds, therefore, corroborate some of the observations made by IR spectral studies for these complexes (vide supra).

4.7

4.7 3D Molecular modeling and analysis

Based on the proposed structures (Fig. 4), the 3D molecular modeling of one of the representative compounds, viz., [UO2(bumphp-pa)2(H2O)2] (1) and [UO2(bumphp-bz)(H2O)2]2 (5), were carried out with the CS Chem 3D Ultra Molecular Modeling and Analysis Program. The details of bond lengths, bond angles as per the 3D structures (Figs. 3 and 4) are given in Tables 4a1, 4a2, 4b1, and 4b2, respectively. For convenience of looking over the different bond lengths and bond angles, the various atoms in the compound in question are numbered in Arabic numerals. Compound (1) displays a total of 320 measurements of the bond lengths (112 in number), plus the bond angles (208 in number, while compound (5) displays a total of 594 measurements of the bond lengths (206 in number), plus the bond angles (388 in number). Except few cases, optimal values of both the bond lengths and the bond angles are given in the Tables along with the actual ones. The actual bond lengths/bond angles given in Tables are calculated values as a result of energy optimization in CHEM 3D Ultra (www.cambridgesoft.com), while the optimal bond length/optimal bond angle values are the most desirable/favorable (standard) bond lengths/bond angles established by the builder unit of the CHEM 3D. The missing of some values of standard bond lengths/bond angles may be due to the limitations of the software, which we had already noticed in modeling of other systems (Maurya et al., 2006, 2007, 2008, 2010, 2011). In most of the cases, the observed bond lengths and bond angles are close to the optimal values, and thus the proposed structures of compound (1) and (4) (and also others) are acceptable (Maurya et al., 2006, 2007, 2008, 2010, 2015).

3D structure of compound (5).
Figure 4
3D structure of compound (5).
3D structure of compound (1).
Figure 3
3D structure of compound (1).
Table 4a1 Various bond lengths of compound (1).
S. No. Atoms Actual bond length Optimal bond length S. No. Atoms Actual bond length Optimal bond length
1 N(1)–N(2) 1.614 1.426 57 C(29)–O(30) 1.355 1.355
2 N(1)–C(5) 1.266 1.462 58 O(30)–U(49) 2.06
3 N(1)–C(7) 1.266 1.462 59 C(31)–C(32) 1.337 1.42
4 N(2)–C(3) 1.26 1.26 60 C(31)–C(36) 1.337 1.42
5 C(3)–C(4) 1.337 1.503 61 C(32)–C(33) 1.337 1.42
6 C(3)–C(13) 1.497 1.497 62 C(32)–H(81) 1.1 1.1
7 C(4)–C(5) 1.337 1.337 63 C(33)–C(34) 1.337 1.42
8 C(4)–C(14) 1.337 1.503 64 C(33)–H(82) 1.1 1.1
9 C(5)–O(6) 1.355 1.355 65 C(34)–C(35) 1.337 1.42
10 O(6)–U(49) 2.06 66 C(34)–H(83) 1.1 1.1
11 C(7)–C(8) 1.337 1.42 67 C(35)–C(36) 1.337 1.42
12 C(7)–C(12) 1.337 1.42 68 C(35)–H(84) 1.1 1.1
13 C(8)–C(9) 1.337 1.42 69 C(36)–H(85) 1.1 1.1
14 C(8)–H(62) 1.1 1.1 70 C(37)–H(86) 1.113 1.113
15 C(9)–C(10) 1.337 1.42 71 C(37)–H(87) 1.113 1.113
16 C(9)–H(63) 1.1 1.1 72 C(37)–H(88) 1.113 1.113
17 C(10)–C(11) 1.337 1.42 73 C(38)–N(39) 1.266 1.266
18 C(10)–H(64) 1.1 1.1 74 C(38)–C(40) 1.497 1.497
19 C(11)–C(12) 1.337 1.42 75 C(48)–N(39) 1.266 1.462
20 C(11)–H(65) 1.1 1.1 76 N(39)–U(49) 2.0961
21 C(12)–H(66) 1.1 1.1 77 C(40)–C(41) 1.523 1.523
22 C(13)–H(67) 1.113 1.113 78 C(40)–H(89) 1.113 1.113
23 C(13)–H(68) 1.113 1.113 79 C(40)–H(90) 1.113 1.113
24 C(13)–H(69) 1.113 1.113 80 C(41)–C(42) 1.523 1.523
25 C(14)–N(15) 1.266 1.266 81 C(41)–H(91) 1.113 1.113
26 C(14)–C(16) 1.497 1.497 82 C(41)–H(92) 1.113 1.113
27 C(24)–N(15) 1.266 1.462 83 C(42)–H(93) 1.113 1.113
28 N(15)–U(49) 2.096 84 C(42)–H(94) 1.113 1.113
29 C(16)–C(17) 1.523 1.523 85 C(42)–H(95) 1.113 1.113
30 C(16)–H(70) 1.113 1.113 86 C(43)–C(44) 1.337 1.42
31 C(16)–H(71) 1.113 1.113 87 C(48)–C(43) 1.337 1.42
32 C(17)–C(18) 1.523 1.523 88 C(43)–H(96) 1.1 1.1
33 C(17)–H(72) 1.113 1.113 89 C(44)–C(45) 1.337 1.42
34 C(17)–H(73) 1.113 1.113 90 C(44)–H(97) 1.1 1.1
35 C(18)–H(74) 1.113 1.113 91 C(45)–C(46) 1.337 1.42
36 C(18)–H(75) 1.113 1.113 92 C(45)–O(54) 1.355 1.355
37 C(18)–H(76) 1.113 1.113 93 C(46)–C(47) 1.337 1.42
38 C(19)–C(20) 1.337 1.42 94 C(46)–H(98) 1.1 1.1
39 C(24)–C(19) 1.337 1.42 95 C(47)–C(48) 1.337 1.42
40 C(19)–H(77) 1.1 1.1 96 C(47)–H(99) 1.1 1.1
41 C(20)–C(21) 1.337 1.42 97 U(49)–O(50) 2.2659
42 C(20)–H(78) 1.1 1.1 98 U(49)–O(51) 1.6391
43 C(21)–C(22) 1.337 1.42 99 O(59)–U(49) 1.9972
44 C(21)–O(52) 1.355 1.355 100 O(56)–U(49) 2.0358
45 C(22)–C(23) 1.337 1.42 101 O(52)–C(53) 1.402 1.396
46 C(22)–H(79) 1.1 1.1 102 C(53)–H(100) 1.113 1.111
47 C(23)–C(24) 1.337 1.42 103 C(53)–H(101) 1.113 1.111
48 C(23)–H(80) 1.1 1.1 104 C(53)–H(102) 1.113 1.111
49 N(25)–N(26) 1.23 1.426 105 O(54)–C(55) 1.402 1.396
50 N(25)–C(29) 1.266 1.462 106 C(55)–H(103) 1.113 1.111
51 N(25)–C(31) 1.266 1.462 107 C(55)–H(104) 1.113 1.111
52 N(26)–C(27) 1.5526 1.26 108 C(55)–H(105) 1.113 1.111
53 C(27)–C(28) 1.337 1.503 109 O(56)–H(57) 0.986
54 C(27)–C(37) 1.497 1.497 110 O(56)–H(58) 0.986
55 C(28)–C(29) 1.337 1.337 111 O(59)–H(60) 0.986
56 C(28)–C(38) 1.337 1.503 112 O(59)–H(61) 0.986
Table 4a2 Various bond angles of compound (1).
S. No. Atoms Actual bond angles Optimal bond angles S. No. Atoms Actual bond angles Optimal bond angles
1 O(54)–C(55)–H(103) 109.5002 106.7 105 C(23)–C(22)–H(79) 120.0003 120
2 O(54)–C(55)–H(104) 109.4417 106.7 106 C(20)–C(21)–C(22) 120.0003 120
3 O(54)–C(55)–H(105) 109.4616 106.7 107 C(20)–C(21)–O(52) 119.9998 124.3
4 H(103)–C(55)–H(104) 109.4419 109 108 C(22)–C(21)–O(52) 120 124.3
5 H(103)–C(55)–H(105) 109.4621 109 109 C(19)–C(20)–C(21) 119.9996
6 H(104)–C(55)–H(105) 109.5199 109 110 C(19)–C(20)–H(78) 120.0002 120
7 O(52)–C(53)–H(100) 109.4999 106.7 111 C(21)–C(20)–H(78) 120.0002 120
8 O(52)–C(53)–H(101) 109.4419 106.7 112 C(22)–C(23)–C(24) 120.0005
9 O(52)–C(53)–H(102) 109.462 106.7 113 C(22)–C(23)–H(80) 119.9997 120
10 H(100)–C(53)–H(101) 109.4417 109 114 C(24)–C(23)–H(80) 119.9999 120
11 H(100)–C(53)–H(102) 109.4618 109 115 C(20)–C(19)–C(24) 120.0005
12 H(101)–C(53)–H(102) 109.5201 109 116 C(20)–C(19)–H(77) 119.9995 120
13 C(41)–C(42)–H(93) 109.5002 110 117 C(24)–C(19)–H(77) 120 120
14 C(41)–C(42)–H(94) 109.4417 110 118 U(49)–O(59)–H(60) 128.2036
15 C(41)–C(42)–H(95) 109.4618 110 119 U(49)–O(59)–H(61) 72.307
16 H(93)–C(42)–H(94) 109.4415 109 120 H(60)–O(59)–H(61) 120
17 H(93)–C(42)–H(95) 109.4621 109 121 U(49)–O(56)–H(57) 129.351
18 H(94)–C(42)–H(95) 109.5199 109 122 U(49)–O(56)–H(58) 74.6503
19 C(40)–C(41)–C(42) 109.5002 109.5 123 H(57)–O(56)–H(58) 120.0001
20 C(40)–C(41)–H(91) 109.442 109.41 124 C(38)–N(39)–C(48) 120.001 120
21 C(40)–C(41)–H(92) 109.4617 109.41 125 C(38)–N(39)–U(49) 119.9983
22 C(42)–C(41)–H(91) 109.4417 109.41 126 C(48)–N(39)–U(49) 120.0007
23 C(42)–C(41)–H(92) 109.4619 109.41 127 C(29)–O(30)–U(49) 109.4998
24 H(91)–C(41)–H(92) 109.52 109.4 128 O(6)–U(49)–N(15) 71.7457
25 C(17)–C(18)–H(74) 109.5002 110 129 O(6)–U(49)–O(30) 109.5
26 C(17)–C(18)–H(75) 109.442 110 130 O(6)–U(49)–N(39) 38.2999
27 C(17)–C(18)–H(76) 109.4618 110 131 O(6)–U(49)–O(50) 78.5201
28 H(74)–C(18)–H(75) 109.4414 109 132 O(6)–U(49)–O(51) 30.7545
29 H(74)–C(18)–H(76) 109.4619 109 133 O(6)–U(49)–O(59) 78.0668
30 H(75)–C(18)–H(76) 109.5201 109 134 O(6)–U(49)–O(56) 44.1709
31 C(16)–C(17)–C(18) 109.4998 109.5 135 N(15)–U(49)–O(30) 109.5
32 C(16)–C(17)–H(72) 109.4421 109.41 136 N(15)–U(49)–N(39) 90.0729
33 C(16)–C(17)–H(73) 109.4624 109.41 137 N(15)–U(49)–O(50) 15.4074
34 C(18)–C(17)–H(72) 109.4419 109.41 137 N(15)–U(49)–O(51) 64.078
35 C(18)–C(17)–H(73) 109.4615 109.41 139 N(15)–U(49)–O(59) 55.5905
36 H(72)–C(17)–H(73) 109.5197 109.4 140 N(15)–U(49)–O(56) 29.672
37 C(45)–O(54)–C(55) 120.0001 110.8 141 O(30)–U(49)–N(39) 71.7348
38 C(45)–C(46)–C(47) 120 142 O(30)–U(49)–O(50) 121.1086
39 C(45)–C(46)–H(98) 120 120 143 O(30)–U(49)–O(51) 140.0634
40 C(47)–C(46)–H(98) 120 120 144 O(30)–U(49)–O(59) 161.338
41 C(44)–C(45)–C(46) 120.0002 120 145 O(30)–U(49)–O(56) 104.9506
42 C(44)–C(45)–O(54) 119.9997 124.3 146 N(39)–U(49)–O(50) 103.1382
43 C(46)–C(45)–O(54) 120.0001 124.3 147 N(39)–U(49)–O(51) 68.9921
44 C(43)–C(44)–C(45) 120.0002 148 N(39)–U(49)–O(59) 116.0123
45 C(43)–C(44)–H(97) 119.9996 120 149 N(39)–U(49)–O(56) 61.5736
46 C(45)–C(44)–H(97) 120.0003 120 150 O(50)–U(49)–O(51) 62.9126
47 C(46)–C(47)–C(48) 119.9997 151 O(50)–U(49)–O(59) 42.1519
48 C(46)–C(47)–H(99) 119.9996 120 152 O(50)–U(49)–O(56) 41.5663
49 C(48)–C(47)–H(99) 120.0006 120 153 O(51)–U(49)–O(59) 48.2077
50 C(44)–C(43)–C(48) 119.9996 154 O(51)–U(49)–O(56) 48.7064
51 C(44)–C(43)–H(96) 120.0006 120 155 O(59)–U(49)–O(56) 68.0171
52 C(48)–C(43)–H(96) 119.9998 120 156 N(15)–C(24)–C(19) 119.9999 120
53 C(34)–C(35)–C(36) 120.0003 157 N(15)–C(24)–C(23) 120.0006 120
54 C(34)–C(35)–H(84) 119.9999 120 158 C(19)–C(24)–C(23) 119.9995 120
55 C(36)–C(35)–H(84) 119.9998 120 159 C(14)–C(16)–C(17) 109.4996 109.5
56 C(33)–C(34)–C(35) 120 160 C(14)–C(16)–H(70) 109.4416 109.41
57 C(33)–C(34)–H(83) 119.9997 120 161 C(14)–C(16)–H(71) 109.462 109.41
58 C(35)–C(34)–H(83) 120.0003 120 162 C(17)–C(16)–H(70) 109.4417 109.41
59 C(32)–C(33)–C(34) 120.0001 163 C(17)–C(16)–H(71) 109.462 109.41
60 C(32)–C(33)–H(82) 119.9996 120 164 H(70)–C(16)–H(71) 109.5205 109.4
61 C(34)–C(33)–H(82) 120.0004 120 165 C(14)–N(15)–C(24) 119.9997 124
62 C(31)–C(36)–C(35) 119.9997 166 C(14)–N(15)–U(49) 120.001
63 C(31)–C(36)–H(85) 120.0004 120 167 C(24)–N(15)–U(49) 119.9993
64 C(35)–C(36)–H(85) 119.9999 120 168 C(10)–C(11)–C(12) 120.0003
65 C(31)–C(32)–C(33) 119.9996 169 C(10)–C(11)–H(65) 120.0003 120
66 C(31)–C(32)–H(81) 120 120 170 C(12)–C(11)–H(65) 119.9994 120
67 C(33)–C(32)–H(81) 120.0003 120 171 C(9)–C(10)–C(11) 120.0001
68 N(25)–C(31)–C(32) 119.9998 120 172 C(9)–C(10)–H(64) 120 120
69 N(25)–C(31)–C(36) 119.9999 120 173 C(11)–C(10)–H(64) 119.9999 120
70 C(32)–C(31)–C(36) 120.0003 120 174 C(8)–C(9)–C(10) 120.0001
71 C(27)–C(37)–H(86) 109.5 110 175 C(8)–C(9)–H(63) 120 120
72 C(27)–C(37)–H(87) 109.442 110 176 C(10)–C(9)–H(63) 120 120
73 C(27)–C(37)–H(88) 109.4623 110 177 C(7)–C(12)–C(11) 119.9996
74 H(86)–C(37)–H(87) 109.4415 109 178 C(7)–C(12)–H(66) 119.9997 120
75 H(86)–C(37)–H(88) 109.4614 109 179 C(11)–C(12)–H(66) 120.0006 120
76 H(87)–C(37)–H(88) 109.5203 109 180 C(7)–C(8)–C(9) 120.0001
77 N(25)–N(26)–C(27) 108.8315 115 181 C(7)–C(8)–H(62) 120.0001 120
78 N(39)–C(48)–C(43) 119.9999 120 182 C(9)–C(8)–H(62) 119.9998 120
79 N(39)–C(48)–C(47) 119.9998 120 183 N(1)–C(7)–C(8) 119.9998 120
80 C(43)–C(48)–C(47) 120.0003 120 184 N(1)–C(7)–C(12) 120.0003 120
81 C(38)–C(40)–C(41) 109.5 109.5 185 C(8)–C(7)–C(12) 119.9999 120
82 C(38)–C(40)–H(89) 109.4423 109.41 186 C(4)–C(14)–N(15) 119.9999 120
83 C(38)–C(40)–H(90) 109.4619 109.41 187 C(4)–C(14)–C(16) 120.0004 121.4
84 C(41)–C(40)–H(89) 109.4414 109.41 188 N(15)–C(14)–C(16) 119.9997 125.3
85 C(41)–C(40)–H(90) 109.4618 109.41 189 C(5)–O(6)–U(49) 109.4999
86 H(89)–C(40)–H(90) 109.5199 109.4 190 N(1)–C(5)–C(4) 111.0005 120
87 C(28)–C(38)–N(39) 120.0002 120 191 N(1)–C(5)–O(6) 124.6978
88 C(28)–C(38)–C(40) 119.9999 121.4 192 C(4)–C(5)–O(6) 124.2983 124.3
89 N(39)–C(38)–C(40) 119.9999 125.3 193 C(3)–C(13)–H(67) 109.5 110
90 N(26)–C(27)–C(28) 98.1693 120 194 C(3)–C(13)–H(68) 109.4422 110
91 N(26)–C(27)–C(37) 130.9157 115.1 195 C(3)–C(13)–H(69) 109.4618 110
92 C(28)–C(27)–C(37) 130.915 121.4 196 H(67)–C(13)–H(68) 109.4419 109
93 N(26)–N(25)–C(29) 111.0003 124 197 H(67)–C(13)–H(69) 109.4618 109
94 N(26)–N(25)–C(31) 124.4998 124 198 H(68)–C(13)–H(69) 109.5197 109
95 C(29)–N(25)–C(31) 124.4999 124 199 C(3)–C(4)–C(5) 110.9999 120
96 C(27)–C(28)–C(29) 111.0001 120 200 C(3)–C(4)–C(14) 128.9978 120
97 C(27)–C(28)–C(38) 128.9982 120 201 C(5)–C(4)–C(14) 119.9989 120
98 C(29)–C(28)–C(38) 119.9982 120 202 N(2)–N(1)–C(5) 103.2925 124
99 N(25)–C(29)–C(28) 110.9989 120 203 N(2)–N(1)–C(7) 128.3533 124
100 N(25)–C(29)–O(30) 124.6986 204 C(5)–N(1)–C(7) 128.3542 124
101 C(28)–C(29)–O(30) 124.3004 124.3 205 N(2)–C(3)–C(4) 111 120
102 C(21)–O(52)–C(53) 119.9999 110.8 206 N(2)–C(3)–C(13) 124.5 115.1
103 C(21)–C(22)–C(23) 119.9996 207 C(4)–C(3)–C(13) 124.5 121.4
104 C(21)–C(22)–H(79) 120.0001 120 208 N(1)–N(2)–C(3) 103.7071 105
Table 4b1 Various bond length of compound (5).
S. No. Atoms Actual bond length Optimal bond length S. No. Atoms Actual bond length Optimal bond length
1 O(112)–H(114) 0.942 0.942 104 U(52)–O(54) 2.4608
2 O(112)–H(113) 0.942 0.942 105 U(52)–O(53) 5.0866
3 O(109)–H(111) 0.942 0.942 106 N(61)–U(49) 2.096
4 O(109)–H(110) 0.942 0.942 107 U(49)–O(103) 2.8441
5 O(104)–H(106) 0.942 0.942 108 U(49)–O(104) 4.8259
6 O(104)–H(105) 0.942 0.942 109 O(74)–U(49) 2.06
7 O(103)–H(108) 0.942 0.942 110 U(49)–O(51) 4.5152
8 O(103)–H(107) 0.942 0.942 111 U(49)–O(50) 2.6457
9 C(102)–H(190) 1.113 1.113 112 C(48)–H(152) 1.113 1.113
10 C(102)–H(189) 1.113 1.113 113 C(48)–H(151) 1.113 1.113
11 C(102)–H(188) 1.113 1.113 114 C(48)–H(150) 1.113 1.113
12 C(101)–H(187) 1.113 1.113 115 C(47)–H(149) 1.113 1.113
13 C(101)–H(186) 1.113 1.113 116 C(47)–H(148) 1.113 1.113
14 C(101)–C(102) 1.523 1.523 117 C(47)–C(48) 1.523 1.523
15 C(100)–H(185) 1.113 1.113 118 C(46)–H(147) 1.113 1.113
16 C(100)–H(184) 1.113 1.113 119 C(46)–H(146) 1.113 1.113
17 C(100)–C(101) 1.523 1.523 120 C(46)–C(47) 1.523 1.523
18 C(99)–C(100) 1.497 1.497 121 C(45)–C(46) 1.497 1.497
19 C(98)–H(183) 1.113 1.113 122 C(44)–H(145) 1.113 1.113
20 C(98)–H(182) 1.113 1.113 123 C(44)–H(144) 1.113 1.113
21 C(98)–H(181) 1.113 1.113 124 C(44)–H(143) 1.113 1.113
22 C(97)–H(180) 1.1 1.1 125 C(43)–H(142) 1.1 1.1
23 C(96)–H(179) 1.1 1.1 126 C(42)–H(141) 1.1 1.1
24 C(96)–C(97) 1.3949 1.42 127 C(42)–C(43) 1.3949 1.42
25 C(95)–H(178) 1.1001 1.1 128 C(41)–H(140) 1.1 1.1
26 C(95)–C(96) 1.3948 1.42 129 C(41)–C(42) 1.3948 1.42
27 C(94)–H(177) 1.1 1.1 130 C(40)–H(139) 1.1 1.1
28 C(94)–C(95) 1.3948 1.42 131 C(40)–C(41) 1.3948 1.42
29 C(93)–H(176) 1.1 1.1 132 C(39)–H(138) 1.1 1.1
30 C(93)–C(94) 1.3948 1.42 133 C(39)–C(40) 1.3949 1.42
31 C(92)–C(97) 1.3948 1.42 134 C(38)–C(43) 1.3948 1.42
32 C(92)–C(93) 1.3948 1.42 135 C(38)–C(39) 1.3948 1.42
33 C(90)–O(91) 1.355 1.355 136 U(52)–O(37) 2.06
34 C(89)–C(99) 1.337 1.503 137 C(36)–O(37) 1.355 1.355
35 C(89)–C(90) 1.337 1.42 137 C(35)–C(45) 1.337 1.503
36 C(88)–C(98) 1.497 1.497 139 C(35)–C(36) 1.337 1.42
37 C(88)–C(89) 1.337 1.42 140 C(34)–C(44) 1.497 1.497
38 N(87)–C(88) 1.5526 1.358 141 C(34)–C(35) 1.337 1.42
39 N(86)–C(92) 1.266 1.462 142 N(33)–C(34) 1.5526 1.358
40 N(86)–C(90) 1.266 1.364 143 N(32)–C(38) 1.266 1.462
41 N(86)–N(87) 1.23 1.328 144 N(32)–C(36) 1.266 1.364
42 C(85)–H(175) 1.113 1.113 145 N(32)–N(33) 1.23 1.328
43 C(85)–H(174) 1.113 1.113 146 C(31)–H(137) 1.113 1.113
44 C(85)–H(173) 1.113 1.113 147 C(31)–H(136) 1.113 1.113
45 C(84)–H(172) 1.113 1.113 148 C(31)–H(135) 1.113 1.113
46 C(84)–H(171) 1.113 1.113 149 C(30)–H(134) 1.113 1.113
47 C(84)–C(85) 1.523 1.523 150 C(30)–H(133) 1.113 1.113
48 C(83)–H(170) 1.113 1.113 151 C(30)–C(31) 1.523 1.523
49 C(83)–H(169) 1.113 1.113 152 C(29)–H(132) 1.113 1.113
50 C(83)–C(84) 1.523 1.523 153 C(29)–H(131) 1.113 1.113
51 C(82)–C(83) 1.497 1.497 154 C(29)–C(30) 1.523 1.523
52 C(81)–H(168) 1.113 1.113 155 C(28)–C(29) 1.497 1.497
53 C(81)–H(167) 1.113 1.113 156 C(27)–H(130) 1.113 1.113
54 C(81)–H(166) 1.113 1.113 157 C(27)–H(129) 1.113 1.113
55 C(80)–H(165) 1.1 1.1 158 C(27)–H(128) 1.113 1.113
56 C(79)–H(164) 1.1 1.1 159 C(26)–H(127) 1.1 1.1
57 C(79)–C(80) 1.3949 1.42 160 C(25)–H(126) 1.1 1.1
58 C(78)–H(163) 1.1 1.1 161 C(25)–C(26) 1.3949 1.42
59 C(78)–C(79) 1.3948 1.42 162 C(24)–H(125) 1.1 1.1
60 C(77)–H(162) 1.1 1.1 163 C(24)–C(25) 1.3948 1.42
61 C(77)–C(78) 1.3948 1.42 164 C(23)–H(124) 1.1 1.1
62 C(76)–H(161) 1.1 1.1 165 C(23)–C(24) 1.3948 1.42
63 C(76)–C(77) 1.3949 1.42 166 C(22)–H(123) 1.1 1.1
64 C(75)–C(80) 1.3948 1.42 167 C(22)–C(23) 1.3949 1.42
65 C(75)–C(76) 1.3948 1.42 168 C(21)–C(26) 1.3948 1.42
66 C(73)–O(74) 1.355 1.355 169 C(21)–C(22) 1.3948 1.42
67 C(72)–C(82) 1.337 1.503 170 O(20)–U(49) 2.06
68 C(72)–C(73) 1.337 1.42 171 C(19)–O(20) 1.355 1.355
69 C(71)–C(81) 1.497 1.497 172 C(18)–C(28) 1.337 1.503
70 C(71)–C(72) 1.337 1.42 173 C(18)–C(19) 1.337 1.42
71 N(70)–C(71) 1.5526 1.358 174 C(17)–C(27) 1.497 1.497
72 N(69)–C(75) 1.266 1.462 175 C(17)–C(18) 1.337 1.42
73 N(69)–C(73) 1.266 1.364 176 N(16)–C(17) 1.5526 1.358
74 N(69)–N(70) 1.23 1.328 177 N(15)–C(21) 1.266 1.462
75 C(99)–N(68) 1.5106 1.26 178 N(15)–C(19) 1.266 1.364
76 C(67)–H(160) 1.1 1.1 179 N(15)–N(16) 1.23 1.328
77 C(66)–N(68) 1.26 1.456 180 U(52)–N(14) 2.0961
78 C(66)–C(67) 1.337 1.42 181 C(45)–N(14) 1.451 1.26
79 C(65)–H(159) 1.1 1.1 182 C(13)–H(122) 1.1 1.1
80 C(65)–C(66) 1.337 1.42 183 C(12)–N(14) 1.2599 1.456
81 C(64)–H(158) 1.1 1.1 184 C(12)–C(13) 1.337 1.42
82 C(64)–C(65) 1.2955 1.42 185 C(11)–H(121) 1.1 1.1
83 C(63)–C(64) 1.337 1.42 186 C(11)–C(12) 1.337 1.42
84 C(62)–H(157) 1.1 1.1 187 C(10)–H(120) 1.1 1.1
85 C(67)–C(62) 1.363 1.42 188 C(10)–C(11) 1.3371 1.42
86 C(62)–C(63) 1.337 1.42 189 C(9)–C(10) 1.337 1.42
87 C(82)–N(61) 1.5186 1.26 190 C(8)–H(119) 1.1 1.1
88 C(60)–H(156) 1.1 1.1 191 C(13)–C(8) 1.337 1.42
89 C(59)–C(63) 1.337 1.503 192 C(8)–C(9) 1.337 1.42
90 C(59)–C(60) 1.337 1.42 193 N(7)–U(49) 2.096
91 C(58)–H(155) 1.1 1.1 194 C(28)–N(7) 1.4433 1.26
92 C(58)–C(59) 1.337 1.42 195 C(6)–H(118) 1.1 1.1
93 C(57)–H(154) 1.1 1.1 196 C(5)–C(9) 1.337 1.503
94 C(57)–C(58) 1.3371 1.42 197 C(5)–C(6) 1.337 1.42
95 C(56)–N(61) 1.26 1.456 198 C(4)–H(117) 1.1 1.1
96 C(56)–C(57) 1.337 1.42 199 C(4)–C(5) 1.337 1.42
97 C(55)–H(153) 1.1 1.1 200 C(3)–H(116) 1.1 1.1
98 C(60)–C(55) 1.337 1.42 201 C(3)–C(4) 1.3371 1.42
99 C(55)–C(56) 1.337 1.42 202 C(2)–N(7) 1.26 1.456
100 N(68)–U(52) 2.096 203 C(2)–C(3) 1.337 1.42
101 U(52)–O(112) 3.5907 204 C(1)–H(115) 1.1 1.1
102 U(52)–O(109) 4.6793 205 C(6)–C(1) 1.337 1.42
103 O(91)–U(52) 2.06 206 C(1)–C(2) 1.337 1.42
Table 4b2 Various bond angles of compound (5).
S. No. Atoms Actual bond angles Optimal bond angles S. No. Atoms Actual bond angles Optimal bond angles
1 H(190)–C(102)–H(189) 109.52 109 195 H(111)–O(109)–H(110) 120.0006
2 H(190)–C(102)–H(188) 109.462 109 196 H(111)–O(109)–U(52) 44.9277
3 H(190)–C(102)–C(101) 109.46 110 197 H(110)–O(109)–U(52) 155.2078
4 H(189)–C(102)–H(188) 109.4412 109 198 C(90)–O(91)–U(52) 109.5017
5 H(189)–C(102)–C(101) 109.4429 110 199 C(99)–N(68)–C(66) 142.1348
6 H(188)–C(102)–C(101) 109.5013 110 200 C(99)–N(68)–U(52) 88.3756
7 H(187)–C(101)–H(186) 109.52 109.4 201 C(66)–N(68)–U(52) 120.0002
8 H(187)–C(101)–C(102) 109.46 109.41 202 H(145)–C(44)–H(144) 109.5214 109
9 H(187)–C(101)–C(100) 109.4592 109.41 203 H(145)–C(44)–H(143) 109.4628 109
10 H(186)–C(101)–C(102) 109.4429 109.41 204 H(145)–C(44)–C(34) 109.4592 110
11 H(186)–C(101)–C(100) 109.4424 109.41 205 H(144)–C(44)–H(143) 109.4439 109
12 C(102)–C(101)–C(100) 109.5028 109.5 206 H(144)–C(44)–C(34) 109.4407 110
13 H(175)–C(85)–H(174) 109.5202 109 207 H(143)–C(44)–C(34) 109.4994 110
14 H(175)–C(85)–H(173) 109.4617 109 208 C(43)–C(38)–C(39) 120.0016 120
15 H(175)–C(85)–C(84) 109.4622 110 209 C(43)–C(38)–N(32) 120.0004 120
16 H(174)–C(85)–H(173) 109.4416 109 210 C(39)–C(38)–N(32) 119.9979 120
17 H(174)–C(85)–C(84) 109.4417 110 211 C(34)–N(33)–N(32) 108.8333 115
18 H(173)–C(85)–C(84) 109.5 110 212 U(52)–O(37)–C(36) 109.5002
19 H(172)–C(84)–H(171) 109.5202 109.4 213 C(38)–N(32)–C(36) 124.4989 124
20 H(172)–C(84)–C(85) 109.4621 109.41 214 C(38)–N(32)–N(33) 124.4995 124
21 H(172)–C(84)–C(83) 109.4619 109.41 215 C(36)–N(32)–N(33) 111.0016 124
22 H(171)–C(84)–C(85) 109.4418 109.41 216 O(37)–C(36)–C(35) 124.3013 124.3
23 H(171)–C(84)–C(83) 109.4415 109.41 217 O(37)–C(36)–N(32) 124.7002
24 C(85)–C(84)–C(83) 109.4998 109.5 218 C(35)–C(36)–N(32) 110.9964 120
25 H(152)–C(48)–H(151) 109.5198 109 219 C(44)–C(34)–C(35) 130.916 121.4
26 H(152)–C(48)–H(150) 109.4634 109 220 C(44)–C(34)–N(33) 130.9171 115.1
27 H(152)–C(48)–C(47) 109.4633 110 221 C(35)–C(34)–N(33) 98.1669 120
28 H(151)–C(48)–H(150) 109.4378 109 222 H(147)–C(46)–H(146) 109.5191 109.4
29 H(151)–C(48)–C(47) 109.4404 110 223 H(147)–C(46)–C(47) 109.4614 109.41
30 H(150)–C(48)–C(47) 109.5027 110 224 H(147)–C(46)–C(45) 109.4622 109.41
31 H(149)–C(47)–H(148) 109.5196 109.4 225 H(146)–C(46)–C(47) 109.4432 109.41
32 H(149)–C(47)–C(48) 109.4635 109.41 226 H(146)–C(46)–C(45) 109.4421 109.41
33 H(149)–C(47)–C(46) 109.4615 109.41 227 C(47)–C(46)–C(45) 109.4994 109.5
34 H(148)–C(47)–C(48) 109.4404 109.41 228 C(45)–C(35)–C(36) 119.9963 120
35 H(148)–C(47)–C(46) 109.4428 109.41 229 C(45)–C(35)–C(34) 128.9985 120
36 C(48)–C(47)–C(46) 109.4995 109.5 230 C(36)–C(35)–C(34) 111.0018 120
37 H(137)–C(31)–H(136) 109.5199 109 231 O(112)–U(52)–O(109) 51.6495
38 H(137)–C(31)–H(135) 109.4613 109 232 O(112)–U(52)–O(91) 42.0125
39 H(137)–C(31)–C(30) 109.4618 110 233 O(112)–U(52)–N(68) 147.4002
40 H(136)–C(31)–H(135) 109.4421 109 234 O(112)–U(52)–O(54) 38.054
41 H(136)–C(31)–C(30) 109.4421 110 235 O(112)–U(52)–O(53) 22.6309
42 H(135)–C(31)–C(30) 109.5 110 236 O(112)–U(52)–O(37) 76.7568
43 H(134)–C(30)–H(133) 109.5199 109.4 237 O(112)–U(52)–N(14) 97.4632
44 H(134)–C(30)–C(31) 109.4618 109.41 237 O(109)–U(52)–O(91) 79.6415
45 H(134)–C(30)–C(29) 109.4616 109.41 239 O(109)–U(52)–N(68) 120.1793
46 H(133)–C(30)–C(31) 109.4422 109.41 240 O(109)–U(52)–O(54) 20.9895
47 H(133)–C(30)–C(29) 109.4418 109.41 241 O(109)–U(52)–O(53) 30.7916
48 C(31)–C(30)–C(29) 109.5 109.5 242 O(109)–U(52)–O(37) 29.8936
49 H(179)–C(96)–C(97) 119.9991 120 243 O(109)–U(52)–N(14) 123.009
50 H(179)–C(96)–C(95) 120.0055 120 244 O(91)–U(52)–N(68) 109.3268
51 C(97)–C(96)–C(95) 119.9954 245 O(91)–U(52)–O(54) 75.782
52 H(178)–C(95)–C(96) 119.9972 120 246 O(91)–U(52)–O(53) 51.4273
53 H(178)–C(95)–C(94) 119.9978 120 247 O(91)–U(52)–O(37) 109.5011
54 C(96)–C(95)–C(94) 120.0049 248 O(91)–U(52)–N(14) 109.5014
55 H(177)–C(94)–C(95) 119.9988 120 249 N(68)–U(52)–O(54) 141.1103
56 H(177)–C(94)–C(93) 120.0009 120 250 N(68)–U(52)–O(53) 134.6609
57 C(95)–C(94)–C(93) 120.0003 251 N(68)–U(52)–O(37) 109.4998
58 H(180)–C(97)–C(96) 120.002 120 252 N(68)–U(52)–N(14) 109.4981
59 H(180)–C(97)–C(92) 119.998 120 253 O(54)–U(52)–O(53) 25.2039
60 C(96)–C(97)–C(92) 120 254 O(54)–U(52)–O(37) 38.8859
61 H(176)–C(93)–C(94) 120.0044 120 255 O(54)–U(52)–N(14) 104.2898
62 H(176)–C(93)–C(92) 119.9985 120 256 O(53)–U(52)–O(37) 59.216
63 C(94)–C(93)–C(92) 119.9972 257 O(53)–U(52)–N(14) 115.6337
64 H(183)–C(98)–H(182) 109.5203 109 258 O(37)–U(52)–N(14) 109.4999
65 H(183)–C(98)–H(181) 109.4624 109 259 C(46)–C(45)–C(35) 112.9853 121.4
66 H(183)–C(98)–C(88) 109.4598 110 260 C(46)–C(45)–N(14) 112.9863 115.1
67 H(182)–C(98)–H(181) 109.444 109 261 C(35)–C(45)–N(14) 134.0284 120
68 H(182)–C(98)–C(88) 109.4413 110 262 H(126)–C(25)–C(26) 120.0012 120
69 H(181)–C(98)–C(88) 109.4995 110 263 H(126)–C(25)–C(24) 120.0009 120
70 C(97)–C(92)–C(93) 120.0021 120 264 C(26)–C(25)–C(24) 119.9979
71 C(97)–C(92)–N(86) 119.999 120 265 H(125)–C(24)–C(25) 119.999 120
72 C(93)–C(92)–N(86) 119.9989 120 266 H(125)–C(24)–C(23) 119.9993 120
73 C(88)–N(87)–N(86) 108.8333 115 267 C(25)–C(24)–C(23) 120.0017
74 C(92)–N(86)–C(90) 124.5007 124 268 H(124)–C(23)–C(24) 119.9993 120
75 C(92)–N(86)–N(87) 124.5019 124 269 H(124)–C(23)–C(22) 119.9994 120
76 C(90)–N(86)–N(87) 110.9975 124 270 C(24)–C(23)–C(22) 120.0013
77 O(91)–C(90)–C(89) 124.2987 124.3 271 H(127)–C(26)–C(25) 120.0005 120
78 O(91)–C(90)–N(86) 124.6986 272 H(127)–C(26)–C(21) 120.0002 120
79 C(89)–C(90)–N(86) 111.0006 120 273 C(25)–C(26)–C(21) 119.9994
80 C(98)–C(88)–C(89) 130.913 121.4 274 H(123)–C(22)–C(23) 120.0015 120
81 C(98)–C(88)–N(87) 130.9156 115.1 275 H(123)–C(22)–C(21) 120.0015 120
82 C(89)–C(88)–N(87) 98.1714 120 276 C(23)–C(22)–C(21) 119.997
83 H(164)–C(79)–C(80) 120.0009 120 277 H(106)–O(104)–H(105) 120.0002
84 H(164)–C(79)–C(78) 120.0013 120 278 H(106)–O(104)–U(49) 38.7833
85 C(80)–C(79)–C(78) 119.9977 279 H(105)–O(104)–U(49) 87.3774
86 H(163)–C(78)–C(79) 119.9991 120 280 H(108)–O(103)–H(107) 119.9999
87 H(163)–C(78)–C(77) 119.9989 120 281 H(108)–O(103)–U(49) 54.1558
88 C(79)–C(78)–C(77) 120.002 282 H(107)–O(103)–U(49) 136.9383
89 H(162)–C(77)–C(78) 119.9997 120 283 C(73)–O(74)–U(49) 109.5
90 H(162)–C(77)–C(76) 119.9992 120 284 C(82)–N(61)–C(56) 137.9429
91 C(78)–C(77)–C(76) 120.0011 285 C(82)–N(61)–U(49) 88.4062
92 H(165)–C(80)–C(79) 120 120 286 C(56)–N(61)–U(49) 120.0004
93 H(165)–C(80)–C(75) 120.0005 120 287 H(130)–C(27)–H(129) 109.5204 109
94 C(79)–C(80)–C(75) 119.9994 288 H(130)–C(27)–H(128) 109.4621 109
95 H(161)–C(76)–C(77) 120.002 120 289 H(130)–C(27)–C(17) 109.4618 110
96 H(161)–C(76)–C(75) 120.0011 120 290 H(129)–C(27)–H(128) 109.4423 109
97 C(77)–C(76)–C(75) 119.9969 291 H(129)–C(27)–C(17) 109.4414 110
98 H(168)–C(81)–H(167) 109.5199 109 292 H(128)–C(27)–C(17) 109.4993 110
99 H(168)–C(81)–H(166) 109.4623 109 293 C(26)–C(21)–C(22) 120.0027 120
100 H(168)–C(81)–C(71) 109.4615 110 294 C(26)–C(21)–N(15) 119.9989 120
101 H(167)–C(81)–H(166) 109.4422 109 295 C(22)–C(21)–N(15) 119.9983 120
102 H(167)–C(81)–C(71) 109.4417 110 296 C(17)–N(16)–N(15) 108.8313 115
103 H(166)–C(81)–C(71) 109.4997 110 297 U(49)–O(20)–C(19) 109.5
104 C(80)–C(75)–C(76) 120.0028 120 298 C(21)–N(15)–C(19) 124.5003 124
105 C(80)–C(75)–N(69) 119.9985 120 299 C(21)–N(15)–N(16) 124.4995 124
106 C(76)–C(75)–N(69) 119.9986 120 300 C(19)–N(15)–N(16) 111.0001 124
107 C(71)–N(70)–N(69) 108.8317 115 301 O(20)–C(19)–C(18) 124.2997 124.3
108 C(75)–N(69)–C(73) 124.5001 124 302 O(20)–C(19)–N(15) 124.6987
109 C(75)–N(69)–N(70) 124.5001 124 303 C(18)–C(19)–N(15) 110.9995 120
110 C(73)–N(69)–N(70) 110.9998 124 304 C(27)–C(17)–C(18) 130.9158 121.4
111 O(74)–C(73)–C(72) 124.2999 124.3 305 C(27)–C(17)–N(16) 130.9152 115.1
112 O(74)–C(73)–N(69) 124.6986 306 C(18)–C(17)–N(16) 98.169 120
113 C(72)–C(73)–N(69) 110.9995 120 307 H(132)–C(29)–H(131) 109.5202 109.4
114 C(81)–C(71)–C(72) 130.9157 121.4 308 H(132)–C(29)–C(30) 109.4614 109.41
115 C(81)–C(71)–N(70) 130.9154 115.1 309 H(132)–C(29)–C(28) 109.4621 109.41
116 C(72)–C(71)–N(70) 98.1689 120 310 H(131)–C(29)–C(30) 109.4416 109.41
117 H(185)–C(100)–H(184) 109.5198 109.4 311 H(131)–C(29)–C(28) 109.4419 109.41
118 H(185)–C(100)–C(101) 109.4597 109.41 312 C(30)–C(29)–C(28) 109.5002 109.5
119 H(185)–C(100)–C(99) 109.4592 109.41 313 C(28)–C(18)–C(19) 119.9988 120
120 H(184)–C(100)–C(101) 109.4426 109.41 314 C(28)–C(18)–C(17) 128.9977 120
121 H(184)–C(100)–C(99) 109.4428 109.41 315 C(19)–C(18)–C(17) 111 120
122 C(101)–C(100)–C(99) 109.5033 109.5 316 O(104)–U(49)–O(103) 53.8556
123 C(99)–C(89)–C(90) 119.9972 120 317 O(104)–U(49)–O(74) 37.1357
124 C(99)–C(89)–C(88) 129.002 120 318 O(104)–U(49)–N(61) 98.1849
125 C(90)–C(89)–C(88) 110.9972 120 319 O(104)–U(49)–O(51) 31.8285
126 C(100)–C(99)–C(89) 109.1842 121.4 320 O(104)–U(49)–O(50) 22.3214
127 C(100)–C(99)–N(68) 109.1789 115.1 321 O(104)–U(49)–O(20) 143.9394
128 C(89)–C(99)–N(68) 141.6369 120 322 O(104)–U(49)–N(7) 81.0862
129 H(160)–C(67)–C(66) 121.2629 120 323 O(103)–U(49)–O(74) 41.1877
130 H(160)–C(67)–C(62) 121.2633 120 324 O(103)–U(49)–N(61) 149.2458
131 C(66)–C(67)–C(62) 117.4738 325 O(103)–U(49)–O(51) 27.0507
132 N(68)–C(66)–C(67) 119.9999 120 326 O(103)–U(49)–O(50) 51.007
133 N(68)–C(66)–C(65) 119.999 120 327 O(103)–U(49)–O(20) 92.7494
134 C(67)–C(66)–C(65) 119.9987 120 328 O(103)–U(49)–N(7) 81.1091
135 H(159)–C(65)–C(66) 121.3739 120 329 O(74)–U(49)–N(61) 109.3273
136 H(159)–C(65)–C(64) 121.3743 120 330 O(74)–U(49)–O(51) 18.0181
137 C(66)–C(65)–C(64) 117.2517 331 O(74)–U(49)–O(50) 53.571
137 H(158)–C(64)–C(65) 120.9014 120 332 O(74)–U(49)–O(20) 109.5
139 H(158)–C(64)–C(63) 120.902 120 333 O(74)–U(49)–N(7) 109.5
140 C(65)–C(64)–C(63) 118.1965 334 N(61)–U(49)–O(51) 122.1951
141 H(157)–C(62)–C(67) 120.4759 120 335 N(61)–U(49)–O(50) 108.5971
142 H(157)–C(62)–C(63) 120.4761 120 336 N(61)–U(49)–O(20) 109.5
143 C(67)–C(62)–C(63) 119.048 337 N(61)–U(49)–N(7) 109.4999
144 C(64)–C(63)–C(62) 119.9993 120 337 O(51)–U(49)–O(50) 40.7173
145 C(64)–C(63)–C(59) 119.9985 120 339 O(51)–U(49)–O(20) 112.1193
146 C(62)–C(63)–C(59) 119.9997 120 340 O(51)–U(49)–N(7) 92.3342
147 H(156)–C(60)–C(59) 119.9998 120 341 O(50)–U(49)–O(20) 141.7797
148 H(156)–C(60)–C(55) 120.0004 120 342 O(50)–U(49)–N(7) 59.2489
149 C(59)–C(60)–C(55) 119.9999 343 O(20)–U(49)–N(7) 109.5
150 C(63)–C(59)–C(60) 119.9999 120 344 C(29)–C(28)–C(18) 113.4969 121.4
151 C(63)–C(59)–C(58) 119.9986 120 345 C(29)–C(28)–N(7) 113.4966 115.1
152 C(60)–C(59)–C(58) 119.999 120 346 C(18)–C(28)–N(7) 133.0065 120
153 H(155)–C(58)–C(59) 120.0034 120 347 U(52)–N(14)–C(45) 85.6895
154 H(155)–C(58)–C(57) 120.0029 120 348 U(52)–N(14)–C(12) 120.002
155 C(59)–C(58)–C(57) 119.9937 349 C(45)–N(14)–C(12) 108.3424
156 H(154)–C(57)–C(58) 120.0003 120 350 H(122)–C(13)–C(12) 119.9996 120
157 H(154)–C(57)–C(56) 120.0011 120 351 H(122)–C(13)–C(8) 120.0001 120
158 C(58)–C(57)–C(56) 119.9986 352 C(12)–C(13)–C(8) 120.0003
159 H(153)–C(55)–C(60) 120.0002 120 353 N(14)–C(12)–C(13) 120.0004 120
160 H(153)–C(55)–C(56) 120 120 354 N(14)–C(12)–C(11) 119.9986 120
161 C(60)–C(55)–C(56) 119.9998 355 C(13)–C(12)–C(11) 119.9985 120
162 H(170)–C(83)–H(169) 109.5195 109.4 356 H(121)–C(11)–C(12) 120.0006 120
163 H(170)–C(83)–C(84) 109.4622 109.41 357 H(121)–C(11)–C(10) 120.0008 120
164 H(170)–C(83)–C(82) 109.4621 109.41 358 C(12)–C(11)–C(10) 119.9986
165 H(169)–C(83)–C(84) 109.4418 109.41 359 H(120)–C(10)–C(11) 120.0003 120
166 H(169)–C(83)–C(82) 109.4415 109.41 360 H(120)–C(10)–C(9) 120.0007 120
167 C(84)–C(83)–C(82) 109.5001 109.5 361 C(11)–C(10)–C(9) 119.999
168 C(82)–C(72)–C(73) 119.9987 120 362 H(119)–C(8)–C(13) 120.0001 120
169 C(82)–C(72)–C(71) 128.9977 120 363 H(119)–C(8)–C(9) 119.9998 120
170 C(73)–C(72)–C(71) 111.0001 120 364 C(13)–C(8)–C(9) 120.0002
171 C(83)–C(82)–C(72) 108.9982 121.4 365 C(10)–C(9)–C(8) 119.9985 120
172 C(83)–C(82)–N(61) 108.998 115.1 366 C(10)–C(9)–C(5) 119.9988 120
173 C(72)–C(82)–N(61) 142.0038 120 367 C(8)–C(9)–C(5) 120.0002 120
174 N(61)–C(56)–C(57) 119.999 120 368 H(118)–C(6)–C(5) 120.0003 120
175 N(61)–C(56)–C(55) 119.9995 120 369 H(118)–C(6)–C(1) 120.0001 120
176 C(57)–C(56)–C(55) 119.999 120 370 C(5)–C(6)–C(1) 119.9997
177 H(141)–C(42)–C(43) 120.0002 120 371 C(9)–C(5)–C(6) 119.9997 120
178 H(141)–C(42)–C(41) 120.002 120 372 C(9)–C(5)–C(4) 119.9985 120
179 C(43)–C(42)–C(41) 119.9978 373 C(6)–C(5)–C(4) 119.9993 120
180 H(140)–C(41)–C(42) 119.9998 120 374 H(117)–C(4)–C(5) 120.0033 120
181 H(140)–C(41)–C(40) 119.9978 120 375 H(117)–C(4)–C(3) 120.0033 120
182 C(42)–C(41)–C(40) 120.0024 376 C(5)–C(4)–C(3) 119.9934
183 H(139)–C(40)–C(41) 120.0002 120 377 U(49)–N(7)–C(28) 84.7503
184 H(139)–C(40)–C(39) 119.9993 120 378 U(49)–N(7)–C(2) 120
185 C(41)–C(40)–C(39) 120.0005 379 C(28)–N(7)–C(2) 105.6275
186 H(142)–C(43)–C(42) 120 120 380 H(116)–C(3)–C(4) 120.0001 120
187 H(142)–C(43)–C(38) 119.9993 120 381 H(116)–C(3)–C(2) 120.0012 120
188 C(42)–C(43)–C(38) 120.0006 382 C(4)–C(3)–C(2) 119.9987
189 H(138)–C(39)–C(40) 120.002 120 383 N(7)–C(2)–C(3) 119.9986 120
190 H(138)–C(39)–C(38) 120.001 120 384 N(7)–C(2)–C(1) 120 120
191 C(40)–C(39)–C(38) 119.9971 385 C(3)–C(2)–C(1) 119.9989 120
192 H(114)–O(112)–H(113) 119.9989 386 H(115)–C(1)–C(6) 119.9999 120
193 H(114)–O(112)–U(52) 48.4389 387 H(115)–C(1)–C(2) 120 120
194 H(113)–O(112)–U(52) 152.1891 388 C(6)–C(1)–C(2) 120.0001

5

5 Conclusions

The satisfactory analytical data and all the studies presented above suggest that the complexes are of the compositions, [(UO2)(L1)2(H2O)2], L1H = N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-p-anisidine (bumphp-paH), N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-m-phenetidine (bumphp-mpH) or N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-p-toluidine (bumphp-ptH), [UO2(L2)(H2O)2] (where L2H2 = N,N′-bis(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazo-lin-5′-one)-o-phenylenediamine (bumphp-ophdH2), and [UO2(μ-L3)(H2O)2]2 (where L3H2 = N,N′-bis(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazo-lin-5′-one)-benzidine (bumphp-bzH2, V). The designing of the Schiff base ligands for the present study is based on the consideration that the uranyl ion, a hard Lewis acid, has a high affinity for hard donor (O, N) groups in order to form stable complexes. From the analytical data and the physical studies discussed above, the ligands L1H, L2H and L3H have been shown to act as monobasic bidentate (N,O), dibasic tetradentate (N2O2) and ligand bridging dibasic tetradentate (N2O2), respectively. The coordination numbers of the complexes are 8 (Maurya and Maurya, 1995; Maurya et al., 1998), and based on these coordination numbers, the structures proposed for the complexes are shown in Fig. 5. X-ray crystallographic studies, which might confirm the proposed structures, could not be carried out as we failed to grow crystals of any of these complexes.

Proposed structures of the complexes.
Figure 5
Proposed structures of the complexes.

Acknowledgements

We are thankful to Prof. R. R. Miahra, Vice-Chancellor of this University, for encouragement. Analytical facilities provided by the Central Drug Research Institute, Lucknow, India, and the Regional Sophisticated Instrumentation Centre, Indian Institute of Technology, Chennai, India are gratefully acknowledged.

References

  1. , , , . Indian J. Chem.. 2003;42A:1617. and references therein
  2. , , , , . Inorg. Chim. Acta. 2010;363:807.
  3. , , , , . Tetrahedron Lett.. 2002;44:189.
  4. , . Coord. Chem. Rev.. 1980;31:221.
  5. , , , . J. Chem. Soc., Dalton Trans. 2004:2814.
  6. , , , , . Tetrahedron Lett.. 2007;48:2315.
  7. , , , , , , , . J. Am. Chem. Soc.. 2003;125:9266.
  8. , , . Bull. Chem. Soc. Japn.. 1982;55:301.
  9. , , . Advanced Inorganic Chemistry (fifth ed.). New York: Wiley; . p. 992
  10. CS Chem 3D Ultra, Molecular Modeling and Analysis, Cambridge. Available from: <www.cambridgesoft.com>.
  11. , , , , , . Health Phys.. 2000;78:511.
  12. , , , . J. Am. Chem. Soc.. 2003;125:14264.
  13. , . Proc. Soc. Exp. Bio. Med.. 1953;83:494.
  14. , , . Coord. Chem. Rev.. 2010;254:197.
  15. , , , , . Nature. 2008;455:341.
  16. , , . Dalton Trans. 2005:1518.
  17. , , . Dalton Trans. 2006:4679.
  18. , , , , , . Health Phys.. 2005;89:81.
  19. , . Coord. Chem. Rev.. 1971;7:81.
  20. , , . The Pharmacological Basis of Therapeutics (fourth ed.). London: Macmillan; .
  21. , , , , . Chem. Rev.. 2003;103:4207.
  22. , . Rev. Mod. Phys.. 1948;20:718.
  23. , , , , . Nature. 1996;384:341.
  24. , . Chem. Scand. Acta. 1959;13:1668.
  25. , , , , , . Inorg. Chem. Comm.. 2006;9:595.
  26. , , , , , . Polyhedron. 2006;25:1359.
  27. , . Specrochim. Acta.. 1958;10:359.
  28. , . Specrochim. Acta. 1959;11:409.
  29. , , . Zh. Anal. Khim.. 1968;23:1564. Chem. Abstr. 69, 63899v
  30. , . Radiokhim.. 1981;23:186. Chem. Abstr. 95, 69620f
  31. , , . Inorg. Chem.. 2002;41:4108.
  32. , , , . Chem. Soc., Chem. Commun. 1979:702.
  33. , , , , , , . Tetrahedron. 2008;64:6662.
  34. , , , , . Inorg. Chem.. 2008;47:4844.
  35. , , , . Health Phys.. 2000;78:668.
  36. , , . Rev. Inorg. Chem.. 1995;15:1.
  37. , , . J. Mol. Structure. 2006;794:24.
  38. , , . J. Mol. Structure. 2007;833:133.
  39. , , , , , . Polyhedron. 1993;12:2045.
  40. , , , , . Synth. React. Inorg. Met.-Org. Chem.. 1994;24:1013.
  41. , , , . Indian J. Chem.. 1997;36A:406.
  42. , , , , . Synth. React. Inorg. Met.-Org. Chem.. 1997;27:77.
  43. , , , , . Polyhedron. 1997;16:1825.
  44. , , , , . Synth. React. Inorg. Met.-Org. Chem.. 1998;28:1265.
  45. , , , . Indian J. Chem.. 2002;41A:554.
  46. , , , , . J. Mol. Structure. 2006;798:89.
  47. , , , . Indian J. Chem.. 2007;46A:1594.
  48. , , , . Indian J. Chem.. 2008;47A:517.
  49. , , , , . Int. J. Curr. Chem.. 2010;1:309.
  50. Maurya, R. C., Sutradhar, D., Martin, M. H., Roy, S., Chourasia, J., Sharma, A. K., Vishwakarma, P. 2015. Arabian J. Chem. 8, 655–670.
  51. , , , . J. Chem. Phys.. 1961;35:105.
  52. , . Anal. Chim. Acta. 1968;40:229.
  53. , , , . Chem. Eur. J.. 2010;16:2282.
  54. , , . Inorg. Chem.. 1999;38:308.
  55. , , , . Inorg. Chim. Acta. 1984;94:193.
  56. , , , , . Cryst. Growth Des.. 2010;10:1390.
  57. , , , , . Inorg. Chem.. 2006;45:83.
  58. , , . J. Am. Chem. Soc.. 2004;126:1036.
  59. , , , , . J. Chem. Soc., Dalton Trans. 2003:3443.
  60. , , , , , , , , , . Chem. Eur. J.. 2005;11:3689.
  61. , , , , , . Inorg. Chem. Commun.. 2010;13:859.
  62. , , , , , . J. Am. Chem. Soc.. 2004;126:6838.
  63. , , , . Health Phys.. 1994;66:540.
  64. , , , . Health Phys.. 1998;75:610.
  65. , . A Text Book of Quantitative Inorganic Analysis. London: Longmans Green and Co, Ltd.; .
  66. , , , , , . Heteroat. Chem.. 2004;15:251.
  67. , , , , , . Dalton Trans.. 2003;4:4219.
  68. , , , , , . Chem. Commun. 2004:1814.
  69. , , , , , . Chem. Eur. J.. 2005;11:2642.
  70. , , . Metal Extraction with Acylpyrazolone. Moscow: Izdat Nauka; .
Show Sections