Translate this page into:
Coordination chemistry of pyrazolone based Schiff bases relevant to uranyl sequestering agents: Synthesis, characterization and 3D molecular modeling of some octa-coordinate mono- and binuclear-dioxouranium(VI) complexes
⁎Corresponding author. Tel.: +91 761 2601303; fax: +91 761 2603752. rcmaurya1@gmail.com (R.C. Maurya)
-
Received: ,
Accepted: ,
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.
Peer review under responsibility of King Saud University.
Abstract
Synthesis of two new series of octa-coordinate dioxouranum(VI) chelates: (i) mononuclear chelates of compositions, [UO2(L1)2(H2O)2] (where L1H = N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-p-anisidine (bumphp-paH, I), N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-m-phenetidine (bumphp-mpH, II) or N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-p-toluidine (bumphp-ptH, III), and [UO2(L2)(H2O)2] (where L2H2 = N,N′-bis(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazo-lin-5′-one)-o-phenylenediamine (bumphp-ophdH2, IV), and (ii) the ligand bridged binuclear chelate of composition [UO2(μ-L3)(H2O)2]2 (where L3H2 = N,N′-bis(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazo-lin-5′-one)-benzidine (bumphp-bzH2, V), are described. These complexes have been characterized by elemental analyses, uranium determination, molar conductance, decomposition temperature and magnetic measurements, thermogravimetric studies, 1H NMR, IR, and electronic spectral studies. The 3D molecular modeling and analysis for bond lengths and bond angles have also been carried out for the two representative compounds, [UO2(bumphp-pa)2(H2O)2] (1) and [UO2(bumphp-bz)(H2O)2]2 (5) to substantiate the proposed structures.
Keywords
Dioxouranium(VI) chelates
Mono- and binuclear
Pyrazolone based Schiff base ligands
3D Molecular modeling
1 Introduction
Uranium is the second and most commonly naturally occurring actinide (after thorium), and is more widely used than thorium. Uranium is most commonly used as nuclear fuel in fission reactors for civilian purpose. The hexavalent uranyl ion { , U(VI)} was proved to be the most stable form in aqueous solutions and in vivo at physiological pH (Hamilton, 1948).
With the commercial development of nuclear reactors, the actinides have become important industrial elements. A major concern of the nuclear industry is the biological hazard associated with nuclear fuels and their wastes. When actinides such as uranium are introduced in the body in the case of internal contamination or in the event of a nuclear accident by ingestion, inhalation or through wounds, they are chelated in the body by complexing agents such as proteins or carbonates. After chelation, toxic species are distributed and retained in target organs such as kidneys, liver and bones (Balman, 1980). This causes kidney damage from chemical toxicity/interactions (Raymond et al., 1984, 1999) and internally deposited high specific activity (alpha emission) of uranium isotopes can cause bone cancer (Finkel, 1953).
Increased handling of uranium in the nuclear fuel cycle worldwide and the threat of internal contamination of military personnel wounded with finely divided uranium shrapnel has stimulated interest in the development of uranium chelators suitable for human use. In fact, non-toxic chelators can form highly stable complexes so that the body can rapidly excrete the poison from blood and target organs. Furthermore, the uranyl chelates must be soluble and stable in physiological fluids in a pH range 2–9 to be subsequently eliminated from the body after crossing the renal and hepatic barriers (Leydier et al., 2008). Thus, uranyl concentrations and radiation doses, and subsequently tumor risks may be reduced.
During the past 30 years, several uranyl ligands were synthesized, based on different complexing functions. Phosphorous containing molecules, especially biophosphonates were found to be very effective uranyl Ligands (Sawicki et al., 2005; Bailly et al., 2002; Burgada et al., 2007; Xu et al., 2004), but few significant decorporation work has been reported so far concerning the decorporation efficacy of ethane-1-hydroxy-1,1-bisphosphonate (EHBP) (Martinez et al., 2000; Ubios et al., 1998, 1994; Fukuda et al., 2005). Bidentate methyl-terphthalimide (MeTAM)-based chelating ligands were also studied and found not to be suitable for biological decorporation due to their high toxicity (Durbin et al., 2000). A rational design of uranyl sequestering agents based on 3-hydroxy-2(1H)-pyridinone and sulfocatacholamide (CAMS) ligands resulted in the first effective agent for mammalian uranyl decorporation (Gorden et al., 2003). A new family of CAMS ligands as sequestering agents for uranyl chelation has been recently reported by Leydier et al. (2008).
Uranium(VI)-bearing inorganic–organic hybrid materials have been gaining considerable attention due to their interesting structural topologies and diverse physical–chemical properties for potential optical, magnetic, catalytic and ion-exchange applications as well as their ability for the binding and activation of N2 for nitrogen fixation (Krivovichev and Burns, 2002; Frisch and Cahill, 2005, 2006; Salmon et al., 2006; Fox et al., 2008; Hutchings et al., 1996; Evans et al., 2003; Fortiera and Hayton, 2010; Sun et al., 2010). Uranium prefers to bind two axial O atoms to form the linear uranyl species in its +6 oxidation state. The uranyl ion exhibits good stability and forms complexes with various O-, N- and S-donor ligands (Thuéry et al., 2004; Sarsfield and Helliwell, 2004; Sarsfield et al., 2003; Berthetm et al., 2004; Rowland et al., 2010; Pan et al., 2010; Back et al., 2010). Furthermore, the U(VI) takes on a variety of coordination environments ranging from tetragonal six-coordination, to pentagonal seven-coordination and to hexagonal bipyramidal eight-coordination (Cotton and Wilkinson, 1988). These features of U(VI) lead to a large structural diversity of uranyl complexes (Yu et al., 2003, 2005, 2004; Chen et al., 2003; Jiang et al., 2006a,b; Liao et al., 2008).
In continuation with our laboratory’s serialized studies on the interaction between the chelating Schiff bases of 4-acyl-3-methyl-1-phenyl-2-pyrazolin-5-one and transition/inner transition metal ions (Maurya et al., 1993, 1994, 1997a,b,c, 2002, 2006; Maurya and Rajput, 2006, 2007) in non-aqueous media, the entitled complexes were synthesized and characterized. Apart from the strong analgesic, antihistaminic and anti-fungal properties (Goodman and Gilman, 1970; Alaudeen et al., 2003) of pyrazolones, the 4-acyl derivatives have been shown to be very efficient extractants for (Zolotov and Kuzmin, 1977; Mirza, 1968; Karalova and Pyzhova, 1968) metal ions in various aqueous media. Attempts at using other derivatives of pyrazolones in constructing mixed-ligand resins for trapping toxic metals chromatographically (Chouhan and Rao, 1982; Korotkin, 1981) have been made.
Maurya and Maurya have recently reviewed coordination chemistry of Schiff base complexes of uranium (Maurya and Maurya, 1995). Previous reports (Maurya et al., 1998, 2007, 2008) from our laboratory describe the preparation and characterization of mononuclear, dinuclear and trinuclear complexes of dioxouranium(VI) with a series of multidentate chelating Schiff bases. A literature Survey on chelating Schiff base complexes of dioxouranium(VI) reveals that there is no report on such complexes involving chelating Schiff bases derived from 4-butryl-3-methyl-1-phenyl-2-pyrazolin-5-one. Owing to the lack of work on coordination complexes of dioxouranuim(VI) uranium with pyrazolone based Schiff bases and, obviously, the potential application of 4-acylpyrazolones in medicine and in the extraction and construction of ion exchange resins for metal ions, it was thought that it would be of interest to synthesize and characterize some dioxouranium(VI) complexes with chelating Schiff bases derived from 4-butryl-3-methyl-1-phenyl-2-pyrazolin-5-one and aromatic amines, such as, N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-p-anisidine (bumphp-paH, I), N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-m-phenetidine (bumphp-mpH, II) or N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-p-toluidine (bumphp-ptH, III), N,N′-bis(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazo-lin-5′-one)-o-phenylenediamine (bumphp-ophdH2, IV) and N,N′-bis(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazo-lin-5′-one)-benzidine (bumphp-bzH2, V). The designing of the Schiff base ligands (Fig. 1) in the present study is based on the consideration that the uranyl ion, a hard Lewis acid, has a high affinity for hard donor (O, N) groups in order to form stable complexes.Structures of the ligands.
2 Experimental
2.1 Materials
3-Methyl-1-phenyl-2-pyrazolin-5-one (Johnson Chemical Co., Bombay), benzidine (B.D.H. Chemicals, Bombay), p-anisidine, and m-phenetidine (Aldrich Chemical Co., USA), p-toluidine (Sarabhi M. Chemicals, Baroda), o and m-phenylenediamine (Fluka A.G., Switzerland), uranyl acetate dihydrate (B.D.H. Chemicals, Poole, English) and butyryl chloride (B.D.H. Chemicals, Bombay) were used as supplied. All other chemicals used were of an analytical reagent grade.
2.2 Preparation of 4-butyryl-3-methyl-1-phenyl-2-pyrazolin-5-one (bumphpH)
It was prepared by the interaction of 3-methyl-1-phenyl-2-pyrazolin-5-one in dioxane with calcium hydroxide and butyryl chloride by the procedure reported by Jensen (1959), and was recrystallized from ethanol, m.p. = 65 °C.
2.3 Synthesis of the Schiff bases
The Schiff bases used in the present investigation were synthesized by the usual condensation of bumphpH and aromatic amines, viz., p-anisidine, m-phenetidine, p-toluidine, o-phenylenediamine or benzidine as reported in our previous communication (Maurya et al., 2002).
2.4 Synthesis of complexes
The complexes were prepared by following general method. An ethanolic solution (∼15 mL) of the appropriate Schiff base, I (0.002 mol, 0.698 g)/II (0.002 mol, 0.726 g)/III (0.002 mol, o.666 g)/IV (0.002 mol, 1.120 g)/V (0.002 mol, 1.272 g) was added to an ethanolic solution (∼15 ml) of uranyl acetate dihydrate [(0.001 mol, 0.424 g) in case of the ligands I–III and (0.002 mol, 0.848 g) in case of the ligands IV and V] with a stirring and the resulting mixture was kept under reflux for 6–7 h. The reaction mixture was then concentrated to a small volume by direct heating and left overnight. The crystalline mass thus obtained was filtered by suction and washed several times with ethanol, and dried in vaco. The analytical data of complexes are given in Table 1.
S. No.
Complexa (empirical formula)(F.W.)
Analyses, found/(calc.), %
Color
Deco. temp.(°C)
Yield (%)
AM (ohm−1 cm2 mol−1)
C
H
N
U
1
[UO2(bumphp-pa)2(H2O)2]
50.74
4.48
8.15
23.38
Raw silk
180
55
18.7
(C42H48N6O8U) (1002.02)
(50.30)
(4.79)
(8.38)
(23.75)
2
[UO2(bumphp-mp)2(H2O)2]
51.67
4.82
8.48
23.50
Mid cream
185
55
16.5
(C44H52N6O8U) (1030.02)
(51.26)
(5.05)
(8.16)
(23.11)
3
[UO2(bumphp-pt)2(H2O)2]
51.48
5.15
8.85
24.25
Cream
205
58
17.1
(C42H48N6O8U)(790.02)
(51.96)
(4.95)
(8.66)
(24.54)
4
[UO2(bumphp-ophd)(H2O)2]
47.64
4.22
9.50
27.32
Pepper-mint
190
60
25.4
(C34H38N6O8U) (864.02)
(47.22)
(4.40)
(9.72)
(27.55)
5
[UO2(bumphp-bz)(H2O)2]2
51.42
4.20
8.53
25.67
White
220
52
20.5
(C80H84N12O12U) (1880.04)
(51.06)
(4.47)
(8.94)
(25.32)
2.5 Analyses
Carbon, hydrogen and nitrogen were determined micro-analytically at the Central Drug Research Institute, Lucknow. The uranium contents of all the synthesized complexes were determined gravimetrically (Vogel, 1961) as U3O8 after decomposing the complexes with concentrated nitric acid and igniting the residue.
3 Physical methods
The room temperature magnetic susceptibilities of the complexes were measured with a PAR VSM 155 vibrating sample magnetometer at the Regional Sophisticated Instrumentation Centre, Indian Institutes of Technology, Chennai. Electronic Spectra of complexes were recorded on ATI Unicam UV-2-100 UV/visible Spectrophotometer in our department. Solid-state infrared spectra were recorded in Nujol mulls at Central Drug Research Institute, Lucknow. Conductance measurements were performed at room temperature in dimethylformamide using a Toshniwal conductivity bridge and dip type cell with a smooth platinum electrode of cell constant 1.02. Thermogravimetric curves were recorded by heating the sample at the rate of 20 °C min−1 up to 740 °C on a thermal analyzer, Mettler Toledo Stare system at the Regional Sophisticated Instrumentation Centre, Nagpur.
4 Results and discussion
The dioxouranium(VI) complexes with chelating Schiff bases were prepared according to the following Eqs. (1)–(3).
The synthesized complexes are colored, non-hygroscopic and air-stable solids. They are soluble in dimethylformamide, dimethylsulfoxide and insoluble in all other common organic solvent. The resulting complexes were characterized using the following physical studies.
4.1 Infrared spectra
The infrared spectra of all the five Schiff bases display (Maurya et al., 2002) a medium broad band (except the ligands IV and V which exhibits two bands at 3480–3490 and 3200–3300 cm−1) with fine structure in the region 3500–3150 cm−1. This indicates that all the ligands exist in the enol form (Fig. 1) in solid state. Hence, the ligands bumphp-paH, bumphp-mpH and bumphp-ptH contain four potential donor sites: (i) the enolic oxygen, (ii) the azomethine nitrogen, (iii) the cyclic nitrogen N1 and (iv) the cyclic nitrogen N2 of the pyrazolon skeleton. On the other hand the rest of the Schiff bases, such as, bumphp-ophdH2 and bumphp-bzH2 have eight potential donor sites: (i) the two enolic oxygen, (ii) the two azomethine nitrogens, (iii) the two cyclic nitrogens N1 and (iv) the two cyclic nitrogens N2 of the pyrazolon skeleton.
The IR spectra of all the ligands display (Maurya et al., 2002) a strong band at 1616–1635 cm−1, which is assigned to ν(C⚌N) of azomethine group. In the spectra of all the six complexes, this band is shifted to lower frequency side and is observed at 1605–1620 cm−1 suggesting coordination of the azomethine nitrogen to the moiety (Maurya et al., 2002).
All the complexes exhibit a medium-intensity band at 901–932 cm−1 and a strong band at 817–858 cm−1 assignable to νas(O⚌U⚌O) and νs(O⚌U⚌O) modes, respectively. This observation indicates that the UO2 moiety is virtually linear (Maurya and Maurya, 1995).
The force constants [f(U–O)] for all the complexes were calculated by the method of McGlynn et al. (1961) and bonds lengths of the U–O bond for all the complexes were calculated using the Jones equation (Jones, 1958, 1959). The values of f (6.74–7.21 mdyne/Å) and RU–O (1.72–1.74Å) (Table 2) are found in the usual range observed for other dioxouranuim(VI) complexes (Maurya and Maurya, 1995). For the sake of convenience, the remaining interpretation of infrared spectra is divided into three parts.
S. No.
Compound
ν(C⚌N) (Azometh.)
ν(C–O) (Enolic)
νas(O⚌U⚌O)
νs(O⚌U⚌O)
ν(OH) (H2O)
FU–O mdyne (Å)
U–O (bond dist.) (Å)
1
[UO2(bumphp-pa)2(H2O)2]
1620
1205
901
839
3470
6.74
1.74
2
[UO2(bumphp-mp)2(H2O)2]
1620
1232
910
817
3480
6.87
1.73
3
[UO2(bumphp-pt)2(H2O)2]
1610
1225
930
840
3500
7.18
1.72
4
[UO2(bumphp-ophd)(H2O)2]
1608
1360
925
850
3470
7.10
1.73
5
[UO2(bumphp-bz)(H2O)2]2
1605
1340
920
840
3580–3300
7.03
1.71
4.1.1 Complexes with bumphp-paH (I), bumphp-mpH (II) or bumphp-ptH (III)
The coordination of ring nitrogen N1 in these Schiff base ligands is unlikely due to the presence of bulky phenyl group attached to it. Considering the planarity of the ligands, the coordination of ring nitrogens, N2 is also unlikely due to being back side of the suitable donor sites: (i), (ii), with reference to the details of donor sites given above. In fact, the coordination of the ring nitrogen N2 in these ligands is found to be inert to the metal center as revealed by the almost unaltered positions of the ν(C⚌N2) (cyclic) (1592–1594 cm−1) (Maurya et al., 2002) mode of the respective ligands after complexation. The interaction of these enolic ligands with the moiety with elimination of a proton is revealed by the presence of a new band in the complexes at 1205–1232 cm−1 due to the ν(C–O) enol (Ledon et al., 1979) mode. The appearance of two medium broad bands in 3470–3500 and 3360–3410 cm−1 regions due to ν(OH) indicates that these complexes contain at least one coordinated water molecule.
4.1.2 Complex with bumphp-ophdH2 (IV)
The coordination of the two ring nitrogens N1 and two ring nitrogens N2 in this ligand is not taking place to the uranyl center by the same reasoning already given in case of ligands I–III. However, the coordination of the two enolic oxygens, after deprotonation, to the uranyl center in these complexes is indicated by the appearance of a new band at 1330–1360 cm−1 due to ν(C–O) (enolic) (Maurya et al., 1998). The overall IR results conclude that the ligand under discussion is chelating dibasic tetradentate.
4.1.3 Complex bumphp-bzH2 (V)
The analytical data suggest that this complex is a binuclear involving ligand bridging. The significant absorption band due to coordinated enolic oxygens in this complex is ν(C–O) (enol). This band is observed at 1340 cm−1 in this complex, similar to the complex (4). Again the overall IR results conclude that ligand under discussion is also behaving as a chelating dibasic tetradentate. The appearance of a broad band at 3580–3500 cm−1 may be due to coordinated water in the complex. The formation of a binuclear complex may be attributed due the presence of two azomethine nitrogens at 1,6-positions in the ligand, wherein coordination of both the azomethine nitriogens to the same metal center is difficult. The above-mentioned observations suggest that compound (5) is a ligand bridged binuclear dioxouranium(VI) complex. Such a result has already been reported elsewhere (Maurya et al., 2008).
4.2 Conductance measurements
The observed molar conductances of these complexes measured in 10−3 M dimethylformamide solutions are in the range 16.5–25.4 ohm−1 cm2 mol−1, and thereby indicate their non-electrolytic (Geary, 1971) nature.
4.3 Magnetic measurements
The magnetic measurements of these complexes indicate that they are diamagnetic, as expected for the dioxouranium(IV) complexes.
4.4 Electronic spectra
Electronic Spectra compounds were recorded in 10−3 M dimethylformamide solution. The electronic spectral peaks observed along with their molar extinction coefficient are given in Table 3. In view of the high intensity of the first four peaks in each of the complexes analyzed, they appear to be due to intra-ligand transitions. The fifth peak of lower intensity (ε = 2368–2538 L mol−1 cm−1) in each of the complex may be due to
transition (Maurya and Maurya, 1995).
Compound No.
Compound
λmax (nm)
ε (L mol−1 cm−1)
Peak assignment
1
[UO2(bumphp-pa)2(H2O)2]
305
4230
335
4145
Intra-ligand
360
4245
transitions
370
4085
445
2538
1Eg → 3πu
2
[UO2(bumphp-mp)2(H2O)2]
315
4378
345
4162
Intra-ligand
357
4342
transitions
368
4000
450
2445
1Eg → 3πu
3
[UO2(bumphp-pt)2(H2O)2]
310
4250
350
4160
Intra-ligand
362
4260
transitions
372
4065
440
2530
1Eg → 3πu
4
[UO2(bumphp-ophd)(H2O)2]
305
4280
335
4090
Intra-ligand
345
4550
transitions
365
4845
410
2460
1Eg → 3πu
5
[UO2(bumphp-bz)(H2O)2]2
297
4378
326
4000
Intra-ligand
340
5297
transitions
359
5297
396
2368
1Eg → 3πu
4.5 1H NMR spectra
The proton NMR spectrum of a representative compound [UO2(bumphp-pa)2(H2O)2] was recorded in DMSO-d6. The proton signals observed at δ 7.05–8.03 ppm are assigned for the aromatic protons present in the ligand. The appearance of a proton signal at δ 12.65 ppm may be due to the presence of coordinated water molecule in the complex. Other significant proton signals were also observed in the lower ppm range in the complex as δ 3.85 (singlet)-OCH3 (a), δ 3.39 (singlet)-solvent/CH3 (b), δ 2.29–2.66 (multiplet)-CH2 (d), δ 1.43–1.55 (triplett)-CH3 (e) and δ 0.78–0.85 (triplet)-CH2 (c). The indexing of various protons is given in Fig. 2.Indexing of various protons in [UO2 (bumphp-pa)2(H2O)2].
4.6 Thermogravimetric analysis
The thermograms of two compounds [UO2(bumphp-pa)2(H2O)2] (1) and [UO2(bumphp-mp)2(H2O)2] (2) were recorded in the temperature range 30–850 °C at the heating rate of 20 °C min−1. Observations of thermograms of these two compounds indicate that they are stable up to 250 and 300 °C, respectively. Thereafter, they start decomposing and their weights became constant beyond 400 °C. In case of the compound (1), the weight loss observed in the temperature range 250–400 °C roughly corresponds to elimination of two coordinated water molecules and two ligand moieties (bumphp-pa). Similar to compound (1), the observed weight loss in the temperature range 300–400 °C for the compound (2) also roughly matches with the elimination of two coordinated water molecules and two ligand moieties (bumphp-mp). The thermograms of these two compounds, therefore, corroborate some of the observations made by IR spectral studies for these complexes (vide supra).
4.7 3D Molecular modeling and analysis
Based on the proposed structures (Fig. 4), the 3D molecular modeling of one of the representative compounds, viz., [UO2(bumphp-pa)2(H2O)2] (1) and [UO2(bumphp-bz)(H2O)2]2 (5), were carried out with the CS Chem 3D Ultra Molecular Modeling and Analysis Program. The details of bond lengths, bond angles as per the 3D structures (Figs. 3 and 4) are given in Tables 4a1, 4a2, 4b1, and 4b2, respectively. For convenience of looking over the different bond lengths and bond angles, the various atoms in the compound in question are numbered in Arabic numerals. Compound (1) displays a total of 320 measurements of the bond lengths (112 in number), plus the bond angles (208 in number, while compound (5) displays a total of 594 measurements of the bond lengths (206 in number), plus the bond angles (388 in number). Except few cases, optimal values of both the bond lengths and the bond angles are given in the Tables along with the actual ones. The actual bond lengths/bond angles given in Tables are calculated values as a result of energy optimization in CHEM 3D Ultra (www.cambridgesoft.com), while the optimal bond length/optimal bond angle values are the most desirable/favorable (standard) bond lengths/bond angles established by the builder unit of the CHEM 3D. The missing of some values of standard bond lengths/bond angles may be due to the limitations of the software, which we had already noticed in modeling of other systems (Maurya et al., 2006, 2007, 2008, 2010, 2011). In most of the cases, the observed bond lengths and bond angles are close to the optimal values, and thus the proposed structures of compound (1) and (4) (and also others) are acceptable (Maurya et al., 2006, 2007, 2008, 2010, 2015).3D structure of compound (5).
3D structure of compound (1).
S. No.
Atoms
Actual bond length
Optimal bond length
S. No.
Atoms
Actual bond length
Optimal bond length
1
N(1)–N(2)
1.614
1.426
57
C(29)–O(30)
1.355
1.355
2
N(1)–C(5)
1.266
1.462
58
O(30)–U(49)
2.06
–
3
N(1)–C(7)
1.266
1.462
59
C(31)–C(32)
1.337
1.42
4
N(2)–C(3)
1.26
1.26
60
C(31)–C(36)
1.337
1.42
5
C(3)–C(4)
1.337
1.503
61
C(32)–C(33)
1.337
1.42
6
C(3)–C(13)
1.497
1.497
62
C(32)–H(81)
1.1
1.1
7
C(4)–C(5)
1.337
1.337
63
C(33)–C(34)
1.337
1.42
8
C(4)–C(14)
1.337
1.503
64
C(33)–H(82)
1.1
1.1
9
C(5)–O(6)
1.355
1.355
65
C(34)–C(35)
1.337
1.42
10
O(6)–U(49)
2.06
–
66
C(34)–H(83)
1.1
1.1
11
C(7)–C(8)
1.337
1.42
67
C(35)–C(36)
1.337
1.42
12
C(7)–C(12)
1.337
1.42
68
C(35)–H(84)
1.1
1.1
13
C(8)–C(9)
1.337
1.42
69
C(36)–H(85)
1.1
1.1
14
C(8)–H(62)
1.1
1.1
70
C(37)–H(86)
1.113
1.113
15
C(9)–C(10)
1.337
1.42
71
C(37)–H(87)
1.113
1.113
16
C(9)–H(63)
1.1
1.1
72
C(37)–H(88)
1.113
1.113
17
C(10)–C(11)
1.337
1.42
73
C(38)–N(39)
1.266
1.266
18
C(10)–H(64)
1.1
1.1
74
C(38)–C(40)
1.497
1.497
19
C(11)–C(12)
1.337
1.42
75
C(48)–N(39)
1.266
1.462
20
C(11)–H(65)
1.1
1.1
76
N(39)–U(49)
2.0961
–
21
C(12)–H(66)
1.1
1.1
77
C(40)–C(41)
1.523
1.523
22
C(13)–H(67)
1.113
1.113
78
C(40)–H(89)
1.113
1.113
23
C(13)–H(68)
1.113
1.113
79
C(40)–H(90)
1.113
1.113
24
C(13)–H(69)
1.113
1.113
80
C(41)–C(42)
1.523
1.523
25
C(14)–N(15)
1.266
1.266
81
C(41)–H(91)
1.113
1.113
26
C(14)–C(16)
1.497
1.497
82
C(41)–H(92)
1.113
1.113
27
C(24)–N(15)
1.266
1.462
83
C(42)–H(93)
1.113
1.113
28
N(15)–U(49)
2.096
–
84
C(42)–H(94)
1.113
1.113
29
C(16)–C(17)
1.523
1.523
85
C(42)–H(95)
1.113
1.113
30
C(16)–H(70)
1.113
1.113
86
C(43)–C(44)
1.337
1.42
31
C(16)–H(71)
1.113
1.113
87
C(48)–C(43)
1.337
1.42
32
C(17)–C(18)
1.523
1.523
88
C(43)–H(96)
1.1
1.1
33
C(17)–H(72)
1.113
1.113
89
C(44)–C(45)
1.337
1.42
34
C(17)–H(73)
1.113
1.113
90
C(44)–H(97)
1.1
1.1
35
C(18)–H(74)
1.113
1.113
91
C(45)–C(46)
1.337
1.42
36
C(18)–H(75)
1.113
1.113
92
C(45)–O(54)
1.355
1.355
37
C(18)–H(76)
1.113
1.113
93
C(46)–C(47)
1.337
1.42
38
C(19)–C(20)
1.337
1.42
94
C(46)–H(98)
1.1
1.1
39
C(24)–C(19)
1.337
1.42
95
C(47)–C(48)
1.337
1.42
40
C(19)–H(77)
1.1
1.1
96
C(47)–H(99)
1.1
1.1
41
C(20)–C(21)
1.337
1.42
97
U(49)–O(50)
2.2659
–
42
C(20)–H(78)
1.1
1.1
98
U(49)–O(51)
1.6391
–
43
C(21)–C(22)
1.337
1.42
99
O(59)–U(49)
1.9972
–
44
C(21)–O(52)
1.355
1.355
100
O(56)–U(49)
2.0358
–
45
C(22)–C(23)
1.337
1.42
101
O(52)–C(53)
1.402
1.396
46
C(22)–H(79)
1.1
1.1
102
C(53)–H(100)
1.113
1.111
47
C(23)–C(24)
1.337
1.42
103
C(53)–H(101)
1.113
1.111
48
C(23)–H(80)
1.1
1.1
104
C(53)–H(102)
1.113
1.111
49
N(25)–N(26)
1.23
1.426
105
O(54)–C(55)
1.402
1.396
50
N(25)–C(29)
1.266
1.462
106
C(55)–H(103)
1.113
1.111
51
N(25)–C(31)
1.266
1.462
107
C(55)–H(104)
1.113
1.111
52
N(26)–C(27)
1.5526
1.26
108
C(55)–H(105)
1.113
1.111
53
C(27)–C(28)
1.337
1.503
109
O(56)–H(57)
0.986
–
54
C(27)–C(37)
1.497
1.497
110
O(56)–H(58)
0.986
–
55
C(28)–C(29)
1.337
1.337
111
O(59)–H(60)
0.986
–
56
C(28)–C(38)
1.337
1.503
112
O(59)–H(61)
0.986
–
S. No.
Atoms
Actual bond angles
Optimal bond angles
S. No.
Atoms
Actual bond angles
Optimal bond angles
1
O(54)–C(55)–H(103)
109.5002
106.7
105
C(23)–C(22)–H(79)
120.0003
120
2
O(54)–C(55)–H(104)
109.4417
106.7
106
C(20)–C(21)–C(22)
120.0003
120
3
O(54)–C(55)–H(105)
109.4616
106.7
107
C(20)–C(21)–O(52)
119.9998
124.3
4
H(103)–C(55)–H(104)
109.4419
109
108
C(22)–C(21)–O(52)
120
124.3
5
H(103)–C(55)–H(105)
109.4621
109
109
C(19)–C(20)–C(21)
119.9996
–
6
H(104)–C(55)–H(105)
109.5199
109
110
C(19)–C(20)–H(78)
120.0002
120
7
O(52)–C(53)–H(100)
109.4999
106.7
111
C(21)–C(20)–H(78)
120.0002
120
8
O(52)–C(53)–H(101)
109.4419
106.7
112
C(22)–C(23)–C(24)
120.0005
–
9
O(52)–C(53)–H(102)
109.462
106.7
113
C(22)–C(23)–H(80)
119.9997
120
10
H(100)–C(53)–H(101)
109.4417
109
114
C(24)–C(23)–H(80)
119.9999
120
11
H(100)–C(53)–H(102)
109.4618
109
115
C(20)–C(19)–C(24)
120.0005
–
12
H(101)–C(53)–H(102)
109.5201
109
116
C(20)–C(19)–H(77)
119.9995
120
13
C(41)–C(42)–H(93)
109.5002
110
117
C(24)–C(19)–H(77)
120
120
14
C(41)–C(42)–H(94)
109.4417
110
118
U(49)–O(59)–H(60)
128.2036
–
15
C(41)–C(42)–H(95)
109.4618
110
119
U(49)–O(59)–H(61)
72.307
–
16
H(93)–C(42)–H(94)
109.4415
109
120
H(60)–O(59)–H(61)
120
–
17
H(93)–C(42)–H(95)
109.4621
109
121
U(49)–O(56)–H(57)
129.351
–
18
H(94)–C(42)–H(95)
109.5199
109
122
U(49)–O(56)–H(58)
74.6503
–
19
C(40)–C(41)–C(42)
109.5002
109.5
123
H(57)–O(56)–H(58)
120.0001
–
20
C(40)–C(41)–H(91)
109.442
109.41
124
C(38)–N(39)–C(48)
120.001
120
21
C(40)–C(41)–H(92)
109.4617
109.41
125
C(38)–N(39)–U(49)
119.9983
–
22
C(42)–C(41)–H(91)
109.4417
109.41
126
C(48)–N(39)–U(49)
120.0007
–
23
C(42)–C(41)–H(92)
109.4619
109.41
127
C(29)–O(30)–U(49)
109.4998
–
24
H(91)–C(41)–H(92)
109.52
109.4
128
O(6)–U(49)–N(15)
71.7457
–
25
C(17)–C(18)–H(74)
109.5002
110
129
O(6)–U(49)–O(30)
109.5
–
26
C(17)–C(18)–H(75)
109.442
110
130
O(6)–U(49)–N(39)
38.2999
–
27
C(17)–C(18)–H(76)
109.4618
110
131
O(6)–U(49)–O(50)
78.5201
–
28
H(74)–C(18)–H(75)
109.4414
109
132
O(6)–U(49)–O(51)
30.7545
–
29
H(74)–C(18)–H(76)
109.4619
109
133
O(6)–U(49)–O(59)
78.0668
–
30
H(75)–C(18)–H(76)
109.5201
109
134
O(6)–U(49)–O(56)
44.1709
–
31
C(16)–C(17)–C(18)
109.4998
109.5
135
N(15)–U(49)–O(30)
109.5
–
32
C(16)–C(17)–H(72)
109.4421
109.41
136
N(15)–U(49)–N(39)
90.0729
–
33
C(16)–C(17)–H(73)
109.4624
109.41
137
N(15)–U(49)–O(50)
15.4074
–
34
C(18)–C(17)–H(72)
109.4419
109.41
137
N(15)–U(49)–O(51)
64.078
–
35
C(18)–C(17)–H(73)
109.4615
109.41
139
N(15)–U(49)–O(59)
55.5905
–
36
H(72)–C(17)–H(73)
109.5197
109.4
140
N(15)–U(49)–O(56)
29.672
–
37
C(45)–O(54)–C(55)
120.0001
110.8
141
O(30)–U(49)–N(39)
71.7348
–
38
C(45)–C(46)–C(47)
120
–
142
O(30)–U(49)–O(50)
121.1086
–
39
C(45)–C(46)–H(98)
120
120
143
O(30)–U(49)–O(51)
140.0634
–
40
C(47)–C(46)–H(98)
120
120
144
O(30)–U(49)–O(59)
161.338
–
41
C(44)–C(45)–C(46)
120.0002
120
145
O(30)–U(49)–O(56)
104.9506
–
42
C(44)–C(45)–O(54)
119.9997
124.3
146
N(39)–U(49)–O(50)
103.1382
–
43
C(46)–C(45)–O(54)
120.0001
124.3
147
N(39)–U(49)–O(51)
68.9921
–
44
C(43)–C(44)–C(45)
120.0002
–
148
N(39)–U(49)–O(59)
116.0123
–
45
C(43)–C(44)–H(97)
119.9996
120
149
N(39)–U(49)–O(56)
61.5736
–
46
C(45)–C(44)–H(97)
120.0003
120
150
O(50)–U(49)–O(51)
62.9126
–
47
C(46)–C(47)–C(48)
119.9997
–
151
O(50)–U(49)–O(59)
42.1519
–
48
C(46)–C(47)–H(99)
119.9996
120
152
O(50)–U(49)–O(56)
41.5663
–
49
C(48)–C(47)–H(99)
120.0006
120
153
O(51)–U(49)–O(59)
48.2077
–
50
C(44)–C(43)–C(48)
119.9996
–
154
O(51)–U(49)–O(56)
48.7064
–
51
C(44)–C(43)–H(96)
120.0006
120
155
O(59)–U(49)–O(56)
68.0171
–
52
C(48)–C(43)–H(96)
119.9998
120
156
N(15)–C(24)–C(19)
119.9999
120
53
C(34)–C(35)–C(36)
120.0003
–
157
N(15)–C(24)–C(23)
120.0006
120
54
C(34)–C(35)–H(84)
119.9999
120
158
C(19)–C(24)–C(23)
119.9995
120
55
C(36)–C(35)–H(84)
119.9998
120
159
C(14)–C(16)–C(17)
109.4996
109.5
56
C(33)–C(34)–C(35)
120
–
160
C(14)–C(16)–H(70)
109.4416
109.41
57
C(33)–C(34)–H(83)
119.9997
120
161
C(14)–C(16)–H(71)
109.462
109.41
58
C(35)–C(34)–H(83)
120.0003
120
162
C(17)–C(16)–H(70)
109.4417
109.41
59
C(32)–C(33)–C(34)
120.0001
–
163
C(17)–C(16)–H(71)
109.462
109.41
60
C(32)–C(33)–H(82)
119.9996
120
164
H(70)–C(16)–H(71)
109.5205
109.4
61
C(34)–C(33)–H(82)
120.0004
120
165
C(14)–N(15)–C(24)
119.9997
124
62
C(31)–C(36)–C(35)
119.9997
–
166
C(14)–N(15)–U(49)
120.001
–
63
C(31)–C(36)–H(85)
120.0004
120
167
C(24)–N(15)–U(49)
119.9993
–
64
C(35)–C(36)–H(85)
119.9999
120
168
C(10)–C(11)–C(12)
120.0003
–
65
C(31)–C(32)–C(33)
119.9996
–
169
C(10)–C(11)–H(65)
120.0003
120
66
C(31)–C(32)–H(81)
120
120
170
C(12)–C(11)–H(65)
119.9994
120
67
C(33)–C(32)–H(81)
120.0003
120
171
C(9)–C(10)–C(11)
120.0001
–
68
N(25)–C(31)–C(32)
119.9998
120
172
C(9)–C(10)–H(64)
120
120
69
N(25)–C(31)–C(36)
119.9999
120
173
C(11)–C(10)–H(64)
119.9999
120
70
C(32)–C(31)–C(36)
120.0003
120
174
C(8)–C(9)–C(10)
120.0001
–
71
C(27)–C(37)–H(86)
109.5
110
175
C(8)–C(9)–H(63)
120
120
72
C(27)–C(37)–H(87)
109.442
110
176
C(10)–C(9)–H(63)
120
120
73
C(27)–C(37)–H(88)
109.4623
110
177
C(7)–C(12)–C(11)
119.9996
–
74
H(86)–C(37)–H(87)
109.4415
109
178
C(7)–C(12)–H(66)
119.9997
120
75
H(86)–C(37)–H(88)
109.4614
109
179
C(11)–C(12)–H(66)
120.0006
120
76
H(87)–C(37)–H(88)
109.5203
109
180
C(7)–C(8)–C(9)
120.0001
–
77
N(25)–N(26)–C(27)
108.8315
115
181
C(7)–C(8)–H(62)
120.0001
120
78
N(39)–C(48)–C(43)
119.9999
120
182
C(9)–C(8)–H(62)
119.9998
120
79
N(39)–C(48)–C(47)
119.9998
120
183
N(1)–C(7)–C(8)
119.9998
120
80
C(43)–C(48)–C(47)
120.0003
120
184
N(1)–C(7)–C(12)
120.0003
120
81
C(38)–C(40)–C(41)
109.5
109.5
185
C(8)–C(7)–C(12)
119.9999
120
82
C(38)–C(40)–H(89)
109.4423
109.41
186
C(4)–C(14)–N(15)
119.9999
120
83
C(38)–C(40)–H(90)
109.4619
109.41
187
C(4)–C(14)–C(16)
120.0004
121.4
84
C(41)–C(40)–H(89)
109.4414
109.41
188
N(15)–C(14)–C(16)
119.9997
125.3
85
C(41)–C(40)–H(90)
109.4618
109.41
189
C(5)–O(6)–U(49)
109.4999
–
86
H(89)–C(40)–H(90)
109.5199
109.4
190
N(1)–C(5)–C(4)
111.0005
120
87
C(28)–C(38)–N(39)
120.0002
120
191
N(1)–C(5)–O(6)
124.6978
–
88
C(28)–C(38)–C(40)
119.9999
121.4
192
C(4)–C(5)–O(6)
124.2983
124.3
89
N(39)–C(38)–C(40)
119.9999
125.3
193
C(3)–C(13)–H(67)
109.5
110
90
N(26)–C(27)–C(28)
98.1693
120
194
C(3)–C(13)–H(68)
109.4422
110
91
N(26)–C(27)–C(37)
130.9157
115.1
195
C(3)–C(13)–H(69)
109.4618
110
92
C(28)–C(27)–C(37)
130.915
121.4
196
H(67)–C(13)–H(68)
109.4419
109
93
N(26)–N(25)–C(29)
111.0003
124
197
H(67)–C(13)–H(69)
109.4618
109
94
N(26)–N(25)–C(31)
124.4998
124
198
H(68)–C(13)–H(69)
109.5197
109
95
C(29)–N(25)–C(31)
124.4999
124
199
C(3)–C(4)–C(5)
110.9999
120
96
C(27)–C(28)–C(29)
111.0001
120
200
C(3)–C(4)–C(14)
128.9978
120
97
C(27)–C(28)–C(38)
128.9982
120
201
C(5)–C(4)–C(14)
119.9989
120
98
C(29)–C(28)–C(38)
119.9982
120
202
N(2)–N(1)–C(5)
103.2925
124
99
N(25)–C(29)–C(28)
110.9989
120
203
N(2)–N(1)–C(7)
128.3533
124
100
N(25)–C(29)–O(30)
124.6986
–
204
C(5)–N(1)–C(7)
128.3542
124
101
C(28)–C(29)–O(30)
124.3004
124.3
205
N(2)–C(3)–C(4)
111
120
102
C(21)–O(52)–C(53)
119.9999
110.8
206
N(2)–C(3)–C(13)
124.5
115.1
103
C(21)–C(22)–C(23)
119.9996
–
207
C(4)–C(3)–C(13)
124.5
121.4
104
C(21)–C(22)–H(79)
120.0001
120
208
N(1)–N(2)–C(3)
103.7071
105
S. No.
Atoms
Actual bond length
Optimal bond length
S. No.
Atoms
Actual bond length
Optimal bond length
1
O(112)–H(114)
0.942
0.942
104
U(52)–O(54)
2.4608
–
2
O(112)–H(113)
0.942
0.942
105
U(52)–O(53)
5.0866
–
3
O(109)–H(111)
0.942
0.942
106
N(61)–U(49)
2.096
–
4
O(109)–H(110)
0.942
0.942
107
U(49)–O(103)
2.8441
5
O(104)–H(106)
0.942
0.942
108
U(49)–O(104)
4.8259
6
O(104)–H(105)
0.942
0.942
109
O(74)–U(49)
2.06
–
7
O(103)–H(108)
0.942
0.942
110
U(49)–O(51)
4.5152
–
8
O(103)–H(107)
0.942
0.942
111
U(49)–O(50)
2.6457
–
9
C(102)–H(190)
1.113
1.113
112
C(48)–H(152)
1.113
1.113
10
C(102)–H(189)
1.113
1.113
113
C(48)–H(151)
1.113
1.113
11
C(102)–H(188)
1.113
1.113
114
C(48)–H(150)
1.113
1.113
12
C(101)–H(187)
1.113
1.113
115
C(47)–H(149)
1.113
1.113
13
C(101)–H(186)
1.113
1.113
116
C(47)–H(148)
1.113
1.113
14
C(101)–C(102)
1.523
1.523
117
C(47)–C(48)
1.523
1.523
15
C(100)–H(185)
1.113
1.113
118
C(46)–H(147)
1.113
1.113
16
C(100)–H(184)
1.113
1.113
119
C(46)–H(146)
1.113
1.113
17
C(100)–C(101)
1.523
1.523
120
C(46)–C(47)
1.523
1.523
18
C(99)–C(100)
1.497
1.497
121
C(45)–C(46)
1.497
1.497
19
C(98)–H(183)
1.113
1.113
122
C(44)–H(145)
1.113
1.113
20
C(98)–H(182)
1.113
1.113
123
C(44)–H(144)
1.113
1.113
21
C(98)–H(181)
1.113
1.113
124
C(44)–H(143)
1.113
1.113
22
C(97)–H(180)
1.1
1.1
125
C(43)–H(142)
1.1
1.1
23
C(96)–H(179)
1.1
1.1
126
C(42)–H(141)
1.1
1.1
24
C(96)–C(97)
1.3949
1.42
127
C(42)–C(43)
1.3949
1.42
25
C(95)–H(178)
1.1001
1.1
128
C(41)–H(140)
1.1
1.1
26
C(95)–C(96)
1.3948
1.42
129
C(41)–C(42)
1.3948
1.42
27
C(94)–H(177)
1.1
1.1
130
C(40)–H(139)
1.1
1.1
28
C(94)–C(95)
1.3948
1.42
131
C(40)–C(41)
1.3948
1.42
29
C(93)–H(176)
1.1
1.1
132
C(39)–H(138)
1.1
1.1
30
C(93)–C(94)
1.3948
1.42
133
C(39)–C(40)
1.3949
1.42
31
C(92)–C(97)
1.3948
1.42
134
C(38)–C(43)
1.3948
1.42
32
C(92)–C(93)
1.3948
1.42
135
C(38)–C(39)
1.3948
1.42
33
C(90)–O(91)
1.355
1.355
136
U(52)–O(37)
2.06
–
34
C(89)–C(99)
1.337
1.503
137
C(36)–O(37)
1.355
1.355
35
C(89)–C(90)
1.337
1.42
137
C(35)–C(45)
1.337
1.503
36
C(88)–C(98)
1.497
1.497
139
C(35)–C(36)
1.337
1.42
37
C(88)–C(89)
1.337
1.42
140
C(34)–C(44)
1.497
1.497
38
N(87)–C(88)
1.5526
1.358
141
C(34)–C(35)
1.337
1.42
39
N(86)–C(92)
1.266
1.462
142
N(33)–C(34)
1.5526
1.358
40
N(86)–C(90)
1.266
1.364
143
N(32)–C(38)
1.266
1.462
41
N(86)–N(87)
1.23
1.328
144
N(32)–C(36)
1.266
1.364
42
C(85)–H(175)
1.113
1.113
145
N(32)–N(33)
1.23
1.328
43
C(85)–H(174)
1.113
1.113
146
C(31)–H(137)
1.113
1.113
44
C(85)–H(173)
1.113
1.113
147
C(31)–H(136)
1.113
1.113
45
C(84)–H(172)
1.113
1.113
148
C(31)–H(135)
1.113
1.113
46
C(84)–H(171)
1.113
1.113
149
C(30)–H(134)
1.113
1.113
47
C(84)–C(85)
1.523
1.523
150
C(30)–H(133)
1.113
1.113
48
C(83)–H(170)
1.113
1.113
151
C(30)–C(31)
1.523
1.523
49
C(83)–H(169)
1.113
1.113
152
C(29)–H(132)
1.113
1.113
50
C(83)–C(84)
1.523
1.523
153
C(29)–H(131)
1.113
1.113
51
C(82)–C(83)
1.497
1.497
154
C(29)–C(30)
1.523
1.523
52
C(81)–H(168)
1.113
1.113
155
C(28)–C(29)
1.497
1.497
53
C(81)–H(167)
1.113
1.113
156
C(27)–H(130)
1.113
1.113
54
C(81)–H(166)
1.113
1.113
157
C(27)–H(129)
1.113
1.113
55
C(80)–H(165)
1.1
1.1
158
C(27)–H(128)
1.113
1.113
56
C(79)–H(164)
1.1
1.1
159
C(26)–H(127)
1.1
1.1
57
C(79)–C(80)
1.3949
1.42
160
C(25)–H(126)
1.1
1.1
58
C(78)–H(163)
1.1
1.1
161
C(25)–C(26)
1.3949
1.42
59
C(78)–C(79)
1.3948
1.42
162
C(24)–H(125)
1.1
1.1
60
C(77)–H(162)
1.1
1.1
163
C(24)–C(25)
1.3948
1.42
61
C(77)–C(78)
1.3948
1.42
164
C(23)–H(124)
1.1
1.1
62
C(76)–H(161)
1.1
1.1
165
C(23)–C(24)
1.3948
1.42
63
C(76)–C(77)
1.3949
1.42
166
C(22)–H(123)
1.1
1.1
64
C(75)–C(80)
1.3948
1.42
167
C(22)–C(23)
1.3949
1.42
65
C(75)–C(76)
1.3948
1.42
168
C(21)–C(26)
1.3948
1.42
66
C(73)–O(74)
1.355
1.355
169
C(21)–C(22)
1.3948
1.42
67
C(72)–C(82)
1.337
1.503
170
O(20)–U(49)
2.06
–
68
C(72)–C(73)
1.337
1.42
171
C(19)–O(20)
1.355
1.355
69
C(71)–C(81)
1.497
1.497
172
C(18)–C(28)
1.337
1.503
70
C(71)–C(72)
1.337
1.42
173
C(18)–C(19)
1.337
1.42
71
N(70)–C(71)
1.5526
1.358
174
C(17)–C(27)
1.497
1.497
72
N(69)–C(75)
1.266
1.462
175
C(17)–C(18)
1.337
1.42
73
N(69)–C(73)
1.266
1.364
176
N(16)–C(17)
1.5526
1.358
74
N(69)–N(70)
1.23
1.328
177
N(15)–C(21)
1.266
1.462
75
C(99)–N(68)
1.5106
1.26
178
N(15)–C(19)
1.266
1.364
76
C(67)–H(160)
1.1
1.1
179
N(15)–N(16)
1.23
1.328
77
C(66)–N(68)
1.26
1.456
180
U(52)–N(14)
2.0961
–
78
C(66)–C(67)
1.337
1.42
181
C(45)–N(14)
1.451
1.26
79
C(65)–H(159)
1.1
1.1
182
C(13)–H(122)
1.1
1.1
80
C(65)–C(66)
1.337
1.42
183
C(12)–N(14)
1.2599
1.456
81
C(64)–H(158)
1.1
1.1
184
C(12)–C(13)
1.337
1.42
82
C(64)–C(65)
1.2955
1.42
185
C(11)–H(121)
1.1
1.1
83
C(63)–C(64)
1.337
1.42
186
C(11)–C(12)
1.337
1.42
84
C(62)–H(157)
1.1
1.1
187
C(10)–H(120)
1.1
1.1
85
C(67)–C(62)
1.363
1.42
188
C(10)–C(11)
1.3371
1.42
86
C(62)–C(63)
1.337
1.42
189
C(9)–C(10)
1.337
1.42
87
C(82)–N(61)
1.5186
1.26
190
C(8)–H(119)
1.1
1.1
88
C(60)–H(156)
1.1
1.1
191
C(13)–C(8)
1.337
1.42
89
C(59)–C(63)
1.337
1.503
192
C(8)–C(9)
1.337
1.42
90
C(59)–C(60)
1.337
1.42
193
N(7)–U(49)
2.096
–
91
C(58)–H(155)
1.1
1.1
194
C(28)–N(7)
1.4433
1.26
92
C(58)–C(59)
1.337
1.42
195
C(6)–H(118)
1.1
1.1
93
C(57)–H(154)
1.1
1.1
196
C(5)–C(9)
1.337
1.503
94
C(57)–C(58)
1.3371
1.42
197
C(5)–C(6)
1.337
1.42
95
C(56)–N(61)
1.26
1.456
198
C(4)–H(117)
1.1
1.1
96
C(56)–C(57)
1.337
1.42
199
C(4)–C(5)
1.337
1.42
97
C(55)–H(153)
1.1
1.1
200
C(3)–H(116)
1.1
1.1
98
C(60)–C(55)
1.337
1.42
201
C(3)–C(4)
1.3371
1.42
99
C(55)–C(56)
1.337
1.42
202
C(2)–N(7)
1.26
1.456
100
N(68)–U(52)
2.096
–
203
C(2)–C(3)
1.337
1.42
101
U(52)–O(112)
3.5907
–
204
C(1)–H(115)
1.1
1.1
102
U(52)–O(109)
4.6793
–
205
C(6)–C(1)
1.337
1.42
103
O(91)–U(52)
2.06
–
206
C(1)–C(2)
1.337
1.42
S. No.
Atoms
Actual bond angles
Optimal bond angles
S. No.
Atoms
Actual bond angles
Optimal bond angles
1
H(190)–C(102)–H(189)
109.52
109
195
H(111)–O(109)–H(110)
120.0006
–
2
H(190)–C(102)–H(188)
109.462
109
196
H(111)–O(109)–U(52)
44.9277
–
3
H(190)–C(102)–C(101)
109.46
110
197
H(110)–O(109)–U(52)
155.2078
–
4
H(189)–C(102)–H(188)
109.4412
109
198
C(90)–O(91)–U(52)
109.5017
–
5
H(189)–C(102)–C(101)
109.4429
110
199
C(99)–N(68)–C(66)
142.1348
–
6
H(188)–C(102)–C(101)
109.5013
110
200
C(99)–N(68)–U(52)
88.3756
–
7
H(187)–C(101)–H(186)
109.52
109.4
201
C(66)–N(68)–U(52)
120.0002
–
8
H(187)–C(101)–C(102)
109.46
109.41
202
H(145)–C(44)–H(144)
109.5214
109
9
H(187)–C(101)–C(100)
109.4592
109.41
203
H(145)–C(44)–H(143)
109.4628
109
10
H(186)–C(101)–C(102)
109.4429
109.41
204
H(145)–C(44)–C(34)
109.4592
110
11
H(186)–C(101)–C(100)
109.4424
109.41
205
H(144)–C(44)–H(143)
109.4439
109
12
C(102)–C(101)–C(100)
109.5028
109.5
206
H(144)–C(44)–C(34)
109.4407
110
13
H(175)–C(85)–H(174)
109.5202
109
207
H(143)–C(44)–C(34)
109.4994
110
14
H(175)–C(85)–H(173)
109.4617
109
208
C(43)–C(38)–C(39)
120.0016
120
15
H(175)–C(85)–C(84)
109.4622
110
209
C(43)–C(38)–N(32)
120.0004
120
16
H(174)–C(85)–H(173)
109.4416
109
210
C(39)–C(38)–N(32)
119.9979
120
17
H(174)–C(85)–C(84)
109.4417
110
211
C(34)–N(33)–N(32)
108.8333
115
18
H(173)–C(85)–C(84)
109.5
110
212
U(52)–O(37)–C(36)
109.5002
–
19
H(172)–C(84)–H(171)
109.5202
109.4
213
C(38)–N(32)–C(36)
124.4989
124
20
H(172)–C(84)–C(85)
109.4621
109.41
214
C(38)–N(32)–N(33)
124.4995
124
21
H(172)–C(84)–C(83)
109.4619
109.41
215
C(36)–N(32)–N(33)
111.0016
124
22
H(171)–C(84)–C(85)
109.4418
109.41
216
O(37)–C(36)–C(35)
124.3013
124.3
23
H(171)–C(84)–C(83)
109.4415
109.41
217
O(37)–C(36)–N(32)
124.7002
–
24
C(85)–C(84)–C(83)
109.4998
109.5
218
C(35)–C(36)–N(32)
110.9964
120
25
H(152)–C(48)–H(151)
109.5198
109
219
C(44)–C(34)–C(35)
130.916
121.4
26
H(152)–C(48)–H(150)
109.4634
109
220
C(44)–C(34)–N(33)
130.9171
115.1
27
H(152)–C(48)–C(47)
109.4633
110
221
C(35)–C(34)–N(33)
98.1669
120
28
H(151)–C(48)–H(150)
109.4378
109
222
H(147)–C(46)–H(146)
109.5191
109.4
29
H(151)–C(48)–C(47)
109.4404
110
223
H(147)–C(46)–C(47)
109.4614
109.41
30
H(150)–C(48)–C(47)
109.5027
110
224
H(147)–C(46)–C(45)
109.4622
109.41
31
H(149)–C(47)–H(148)
109.5196
109.4
225
H(146)–C(46)–C(47)
109.4432
109.41
32
H(149)–C(47)–C(48)
109.4635
109.41
226
H(146)–C(46)–C(45)
109.4421
109.41
33
H(149)–C(47)–C(46)
109.4615
109.41
227
C(47)–C(46)–C(45)
109.4994
109.5
34
H(148)–C(47)–C(48)
109.4404
109.41
228
C(45)–C(35)–C(36)
119.9963
120
35
H(148)–C(47)–C(46)
109.4428
109.41
229
C(45)–C(35)–C(34)
128.9985
120
36
C(48)–C(47)–C(46)
109.4995
109.5
230
C(36)–C(35)–C(34)
111.0018
120
37
H(137)–C(31)–H(136)
109.5199
109
231
O(112)–U(52)–O(109)
51.6495
–
38
H(137)–C(31)–H(135)
109.4613
109
232
O(112)–U(52)–O(91)
42.0125
–
39
H(137)–C(31)–C(30)
109.4618
110
233
O(112)–U(52)–N(68)
147.4002
–
40
H(136)–C(31)–H(135)
109.4421
109
234
O(112)–U(52)–O(54)
38.054
–
41
H(136)–C(31)–C(30)
109.4421
110
235
O(112)–U(52)–O(53)
22.6309
–
42
H(135)–C(31)–C(30)
109.5
110
236
O(112)–U(52)–O(37)
76.7568
–
43
H(134)–C(30)–H(133)
109.5199
109.4
237
O(112)–U(52)–N(14)
97.4632
–
44
H(134)–C(30)–C(31)
109.4618
109.41
237
O(109)–U(52)–O(91)
79.6415
–
45
H(134)–C(30)–C(29)
109.4616
109.41
239
O(109)–U(52)–N(68)
120.1793
–
46
H(133)–C(30)–C(31)
109.4422
109.41
240
O(109)–U(52)–O(54)
20.9895
–
47
H(133)–C(30)–C(29)
109.4418
109.41
241
O(109)–U(52)–O(53)
30.7916
–
48
C(31)–C(30)–C(29)
109.5
109.5
242
O(109)–U(52)–O(37)
29.8936
–
49
H(179)–C(96)–C(97)
119.9991
120
243
O(109)–U(52)–N(14)
123.009
–
50
H(179)–C(96)–C(95)
120.0055
120
244
O(91)–U(52)–N(68)
109.3268
–
51
C(97)–C(96)–C(95)
119.9954
–
245
O(91)–U(52)–O(54)
75.782
–
52
H(178)–C(95)–C(96)
119.9972
120
246
O(91)–U(52)–O(53)
51.4273
–
53
H(178)–C(95)–C(94)
119.9978
120
247
O(91)–U(52)–O(37)
109.5011
–
54
C(96)–C(95)–C(94)
120.0049
–
248
O(91)–U(52)–N(14)
109.5014
–
55
H(177)–C(94)–C(95)
119.9988
120
249
N(68)–U(52)–O(54)
141.1103
–
56
H(177)–C(94)–C(93)
120.0009
120
250
N(68)–U(52)–O(53)
134.6609
–
57
C(95)–C(94)–C(93)
120.0003
–
251
N(68)–U(52)–O(37)
109.4998
–
58
H(180)–C(97)–C(96)
120.002
120
252
N(68)–U(52)–N(14)
109.4981
–
59
H(180)–C(97)–C(92)
119.998
120
253
O(54)–U(52)–O(53)
25.2039
–
60
C(96)–C(97)–C(92)
120
–
254
O(54)–U(52)–O(37)
38.8859
–
61
H(176)–C(93)–C(94)
120.0044
120
255
O(54)–U(52)–N(14)
104.2898
–
62
H(176)–C(93)–C(92)
119.9985
120
256
O(53)–U(52)–O(37)
59.216
–
63
C(94)–C(93)–C(92)
119.9972
–
257
O(53)–U(52)–N(14)
115.6337
–
64
H(183)–C(98)–H(182)
109.5203
109
258
O(37)–U(52)–N(14)
109.4999
–
65
H(183)–C(98)–H(181)
109.4624
109
259
C(46)–C(45)–C(35)
112.9853
121.4
66
H(183)–C(98)–C(88)
109.4598
110
260
C(46)–C(45)–N(14)
112.9863
115.1
67
H(182)–C(98)–H(181)
109.444
109
261
C(35)–C(45)–N(14)
134.0284
120
68
H(182)–C(98)–C(88)
109.4413
110
262
H(126)–C(25)–C(26)
120.0012
120
69
H(181)–C(98)–C(88)
109.4995
110
263
H(126)–C(25)–C(24)
120.0009
120
70
C(97)–C(92)–C(93)
120.0021
120
264
C(26)–C(25)–C(24)
119.9979
–
71
C(97)–C(92)–N(86)
119.999
120
265
H(125)–C(24)–C(25)
119.999
120
72
C(93)–C(92)–N(86)
119.9989
120
266
H(125)–C(24)–C(23)
119.9993
120
73
C(88)–N(87)–N(86)
108.8333
115
267
C(25)–C(24)–C(23)
120.0017
–
74
C(92)–N(86)–C(90)
124.5007
124
268
H(124)–C(23)–C(24)
119.9993
120
75
C(92)–N(86)–N(87)
124.5019
124
269
H(124)–C(23)–C(22)
119.9994
120
76
C(90)–N(86)–N(87)
110.9975
124
270
C(24)–C(23)–C(22)
120.0013
–
77
O(91)–C(90)–C(89)
124.2987
124.3
271
H(127)–C(26)–C(25)
120.0005
120
78
O(91)–C(90)–N(86)
124.6986
272
H(127)–C(26)–C(21)
120.0002
120
79
C(89)–C(90)–N(86)
111.0006
120
273
C(25)–C(26)–C(21)
119.9994
–
80
C(98)–C(88)–C(89)
130.913
121.4
274
H(123)–C(22)–C(23)
120.0015
120
81
C(98)–C(88)–N(87)
130.9156
115.1
275
H(123)–C(22)–C(21)
120.0015
120
82
C(89)–C(88)–N(87)
98.1714
120
276
C(23)–C(22)–C(21)
119.997
–
83
H(164)–C(79)–C(80)
120.0009
120
277
H(106)–O(104)–H(105)
120.0002
–
84
H(164)–C(79)–C(78)
120.0013
120
278
H(106)–O(104)–U(49)
38.7833
–
85
C(80)–C(79)–C(78)
119.9977
–
279
H(105)–O(104)–U(49)
87.3774
–
86
H(163)–C(78)–C(79)
119.9991
120
280
H(108)–O(103)–H(107)
119.9999
–
87
H(163)–C(78)–C(77)
119.9989
120
281
H(108)–O(103)–U(49)
54.1558
–
88
C(79)–C(78)–C(77)
120.002
–
282
H(107)–O(103)–U(49)
136.9383
–
89
H(162)–C(77)–C(78)
119.9997
120
283
C(73)–O(74)–U(49)
109.5
–
90
H(162)–C(77)–C(76)
119.9992
120
284
C(82)–N(61)–C(56)
137.9429
–
91
C(78)–C(77)–C(76)
120.0011
–
285
C(82)–N(61)–U(49)
88.4062
–
92
H(165)–C(80)–C(79)
120
120
286
C(56)–N(61)–U(49)
120.0004
–
93
H(165)–C(80)–C(75)
120.0005
120
287
H(130)–C(27)–H(129)
109.5204
109
94
C(79)–C(80)–C(75)
119.9994
–
288
H(130)–C(27)–H(128)
109.4621
109
95
H(161)–C(76)–C(77)
120.002
120
289
H(130)–C(27)–C(17)
109.4618
110
96
H(161)–C(76)–C(75)
120.0011
120
290
H(129)–C(27)–H(128)
109.4423
109
97
C(77)–C(76)–C(75)
119.9969
–
291
H(129)–C(27)–C(17)
109.4414
110
98
H(168)–C(81)–H(167)
109.5199
109
292
H(128)–C(27)–C(17)
109.4993
110
99
H(168)–C(81)–H(166)
109.4623
109
293
C(26)–C(21)–C(22)
120.0027
120
100
H(168)–C(81)–C(71)
109.4615
110
294
C(26)–C(21)–N(15)
119.9989
120
101
H(167)–C(81)–H(166)
109.4422
109
295
C(22)–C(21)–N(15)
119.9983
120
102
H(167)–C(81)–C(71)
109.4417
110
296
C(17)–N(16)–N(15)
108.8313
115
103
H(166)–C(81)–C(71)
109.4997
110
297
U(49)–O(20)–C(19)
109.5
–
104
C(80)–C(75)–C(76)
120.0028
120
298
C(21)–N(15)–C(19)
124.5003
124
105
C(80)–C(75)–N(69)
119.9985
120
299
C(21)–N(15)–N(16)
124.4995
124
106
C(76)–C(75)–N(69)
119.9986
120
300
C(19)–N(15)–N(16)
111.0001
124
107
C(71)–N(70)–N(69)
108.8317
115
301
O(20)–C(19)–C(18)
124.2997
124.3
108
C(75)–N(69)–C(73)
124.5001
124
302
O(20)–C(19)–N(15)
124.6987
–
109
C(75)–N(69)–N(70)
124.5001
124
303
C(18)–C(19)–N(15)
110.9995
120
110
C(73)–N(69)–N(70)
110.9998
124
304
C(27)–C(17)–C(18)
130.9158
121.4
111
O(74)–C(73)–C(72)
124.2999
124.3
305
C(27)–C(17)–N(16)
130.9152
115.1
112
O(74)–C(73)–N(69)
124.6986
306
C(18)–C(17)–N(16)
98.169
120
113
C(72)–C(73)–N(69)
110.9995
120
307
H(132)–C(29)–H(131)
109.5202
109.4
114
C(81)–C(71)–C(72)
130.9157
121.4
308
H(132)–C(29)–C(30)
109.4614
109.41
115
C(81)–C(71)–N(70)
130.9154
115.1
309
H(132)–C(29)–C(28)
109.4621
109.41
116
C(72)–C(71)–N(70)
98.1689
120
310
H(131)–C(29)–C(30)
109.4416
109.41
117
H(185)–C(100)–H(184)
109.5198
109.4
311
H(131)–C(29)–C(28)
109.4419
109.41
118
H(185)–C(100)–C(101)
109.4597
109.41
312
C(30)–C(29)–C(28)
109.5002
109.5
119
H(185)–C(100)–C(99)
109.4592
109.41
313
C(28)–C(18)–C(19)
119.9988
120
120
H(184)–C(100)–C(101)
109.4426
109.41
314
C(28)–C(18)–C(17)
128.9977
120
121
H(184)–C(100)–C(99)
109.4428
109.41
315
C(19)–C(18)–C(17)
111
120
122
C(101)–C(100)–C(99)
109.5033
109.5
316
O(104)–U(49)–O(103)
53.8556
–
123
C(99)–C(89)–C(90)
119.9972
120
317
O(104)–U(49)–O(74)
37.1357
–
124
C(99)–C(89)–C(88)
129.002
120
318
O(104)–U(49)–N(61)
98.1849
–
125
C(90)–C(89)–C(88)
110.9972
120
319
O(104)–U(49)–O(51)
31.8285
–
126
C(100)–C(99)–C(89)
109.1842
121.4
320
O(104)–U(49)–O(50)
22.3214
–
127
C(100)–C(99)–N(68)
109.1789
115.1
321
O(104)–U(49)–O(20)
143.9394
–
128
C(89)–C(99)–N(68)
141.6369
120
322
O(104)–U(49)–N(7)
81.0862
–
129
H(160)–C(67)–C(66)
121.2629
120
323
O(103)–U(49)–O(74)
41.1877
–
130
H(160)–C(67)–C(62)
121.2633
120
324
O(103)–U(49)–N(61)
149.2458
–
131
C(66)–C(67)–C(62)
117.4738
325
O(103)–U(49)–O(51)
27.0507
–
132
N(68)–C(66)–C(67)
119.9999
120
326
O(103)–U(49)–O(50)
51.007
–
133
N(68)–C(66)–C(65)
119.999
120
327
O(103)–U(49)–O(20)
92.7494
–
134
C(67)–C(66)–C(65)
119.9987
120
328
O(103)–U(49)–N(7)
81.1091
–
135
H(159)–C(65)–C(66)
121.3739
120
329
O(74)–U(49)–N(61)
109.3273
–
136
H(159)–C(65)–C(64)
121.3743
120
330
O(74)–U(49)–O(51)
18.0181
–
137
C(66)–C(65)–C(64)
117.2517
–
331
O(74)–U(49)–O(50)
53.571
–
137
H(158)–C(64)–C(65)
120.9014
120
332
O(74)–U(49)–O(20)
109.5
–
139
H(158)–C(64)–C(63)
120.902
120
333
O(74)–U(49)–N(7)
109.5
–
140
C(65)–C(64)–C(63)
118.1965
–
334
N(61)–U(49)–O(51)
122.1951
–
141
H(157)–C(62)–C(67)
120.4759
120
335
N(61)–U(49)–O(50)
108.5971
–
142
H(157)–C(62)–C(63)
120.4761
120
336
N(61)–U(49)–O(20)
109.5
–
143
C(67)–C(62)–C(63)
119.048
–
337
N(61)–U(49)–N(7)
109.4999
–
144
C(64)–C(63)–C(62)
119.9993
120
337
O(51)–U(49)–O(50)
40.7173
–
145
C(64)–C(63)–C(59)
119.9985
120
339
O(51)–U(49)–O(20)
112.1193
–
146
C(62)–C(63)–C(59)
119.9997
120
340
O(51)–U(49)–N(7)
92.3342
–
147
H(156)–C(60)–C(59)
119.9998
120
341
O(50)–U(49)–O(20)
141.7797
–
148
H(156)–C(60)–C(55)
120.0004
120
342
O(50)–U(49)–N(7)
59.2489
–
149
C(59)–C(60)–C(55)
119.9999
–
343
O(20)–U(49)–N(7)
109.5
–
150
C(63)–C(59)–C(60)
119.9999
120
344
C(29)–C(28)–C(18)
113.4969
121.4
151
C(63)–C(59)–C(58)
119.9986
120
345
C(29)–C(28)–N(7)
113.4966
115.1
152
C(60)–C(59)–C(58)
119.999
120
346
C(18)–C(28)–N(7)
133.0065
120
153
H(155)–C(58)–C(59)
120.0034
120
347
U(52)–N(14)–C(45)
85.6895
–
154
H(155)–C(58)–C(57)
120.0029
120
348
U(52)–N(14)–C(12)
120.002
–
155
C(59)–C(58)–C(57)
119.9937
–
349
C(45)–N(14)–C(12)
108.3424
–
156
H(154)–C(57)–C(58)
120.0003
120
350
H(122)–C(13)–C(12)
119.9996
120
157
H(154)–C(57)–C(56)
120.0011
120
351
H(122)–C(13)–C(8)
120.0001
120
158
C(58)–C(57)–C(56)
119.9986
–
352
C(12)–C(13)–C(8)
120.0003
–
159
H(153)–C(55)–C(60)
120.0002
120
353
N(14)–C(12)–C(13)
120.0004
120
160
H(153)–C(55)–C(56)
120
120
354
N(14)–C(12)–C(11)
119.9986
120
161
C(60)–C(55)–C(56)
119.9998
355
C(13)–C(12)–C(11)
119.9985
120
162
H(170)–C(83)–H(169)
109.5195
109.4
356
H(121)–C(11)–C(12)
120.0006
120
163
H(170)–C(83)–C(84)
109.4622
109.41
357
H(121)–C(11)–C(10)
120.0008
120
164
H(170)–C(83)–C(82)
109.4621
109.41
358
C(12)–C(11)–C(10)
119.9986
–
165
H(169)–C(83)–C(84)
109.4418
109.41
359
H(120)–C(10)–C(11)
120.0003
120
166
H(169)–C(83)–C(82)
109.4415
109.41
360
H(120)–C(10)–C(9)
120.0007
120
167
C(84)–C(83)–C(82)
109.5001
109.5
361
C(11)–C(10)–C(9)
119.999
–
168
C(82)–C(72)–C(73)
119.9987
120
362
H(119)–C(8)–C(13)
120.0001
120
169
C(82)–C(72)–C(71)
128.9977
120
363
H(119)–C(8)–C(9)
119.9998
120
170
C(73)–C(72)–C(71)
111.0001
120
364
C(13)–C(8)–C(9)
120.0002
–
171
C(83)–C(82)–C(72)
108.9982
121.4
365
C(10)–C(9)–C(8)
119.9985
120
172
C(83)–C(82)–N(61)
108.998
115.1
366
C(10)–C(9)–C(5)
119.9988
120
173
C(72)–C(82)–N(61)
142.0038
120
367
C(8)–C(9)–C(5)
120.0002
120
174
N(61)–C(56)–C(57)
119.999
120
368
H(118)–C(6)–C(5)
120.0003
120
175
N(61)–C(56)–C(55)
119.9995
120
369
H(118)–C(6)–C(1)
120.0001
120
176
C(57)–C(56)–C(55)
119.999
120
370
C(5)–C(6)–C(1)
119.9997
–
177
H(141)–C(42)–C(43)
120.0002
120
371
C(9)–C(5)–C(6)
119.9997
120
178
H(141)–C(42)–C(41)
120.002
120
372
C(9)–C(5)–C(4)
119.9985
120
179
C(43)–C(42)–C(41)
119.9978
373
C(6)–C(5)–C(4)
119.9993
120
180
H(140)–C(41)–C(42)
119.9998
120
374
H(117)–C(4)–C(5)
120.0033
120
181
H(140)–C(41)–C(40)
119.9978
120
375
H(117)–C(4)–C(3)
120.0033
120
182
C(42)–C(41)–C(40)
120.0024
–
376
C(5)–C(4)–C(3)
119.9934
–
183
H(139)–C(40)–C(41)
120.0002
120
377
U(49)–N(7)–C(28)
84.7503
–
184
H(139)–C(40)–C(39)
119.9993
120
378
U(49)–N(7)–C(2)
120
–
185
C(41)–C(40)–C(39)
120.0005
–
379
C(28)–N(7)–C(2)
105.6275
–
186
H(142)–C(43)–C(42)
120
120
380
H(116)–C(3)–C(4)
120.0001
120
187
H(142)–C(43)–C(38)
119.9993
120
381
H(116)–C(3)–C(2)
120.0012
120
188
C(42)–C(43)–C(38)
120.0006
–
382
C(4)–C(3)–C(2)
119.9987
–
189
H(138)–C(39)–C(40)
120.002
120
383
N(7)–C(2)–C(3)
119.9986
120
190
H(138)–C(39)–C(38)
120.001
120
384
N(7)–C(2)–C(1)
120
120
191
C(40)–C(39)–C(38)
119.9971
–
385
C(3)–C(2)–C(1)
119.9989
120
192
H(114)–O(112)–H(113)
119.9989
–
386
H(115)–C(1)–C(6)
119.9999
120
193
H(114)–O(112)–U(52)
48.4389
–
387
H(115)–C(1)–C(2)
120
120
194
H(113)–O(112)–U(52)
152.1891
–
388
C(6)–C(1)–C(2)
120.0001
–
5 Conclusions
The satisfactory analytical data and all the studies presented above suggest that the complexes are of the compositions, [(UO2)(L1)2(H2O)2], L1H = N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-p-anisidine (bumphp-paH), N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-m-phenetidine (bumphp-mpH) or N-(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one)-p-toluidine (bumphp-ptH), [UO2(L2)(H2O)2] (where L2H2 = N,N′-bis(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazo-lin-5′-one)-o-phenylenediamine (bumphp-ophdH2), and [UO2(μ-L3)(H2O)2]2 (where L3H2 = N,N′-bis(4′-butyrylidene-3′-methyl-1′-phenyl-2′-pyrazo-lin-5′-one)-benzidine (bumphp-bzH2, V). The designing of the Schiff base ligands for the present study is based on the consideration that the uranyl ion, a hard Lewis acid, has a high affinity for hard donor (O, N) groups in order to form stable complexes. From the analytical data and the physical studies discussed above, the ligands L1H, L2H and L3H have been shown to act as monobasic bidentate (N,O), dibasic tetradentate (N2O2) and ligand bridging dibasic tetradentate (N2O2), respectively. The coordination numbers of the complexes are 8 (Maurya and Maurya, 1995; Maurya et al., 1998), and based on these coordination numbers, the structures proposed for the complexes are shown in Fig. 5. X-ray crystallographic studies, which might confirm the proposed structures, could not be carried out as we failed to grow crystals of any of these complexes.Proposed structures of the complexes.
Acknowledgements
We are thankful to Prof. R. R. Miahra, Vice-Chancellor of this University, for encouragement. Analytical facilities provided by the Central Drug Research Institute, Lucknow, India, and the Regional Sophisticated Instrumentation Centre, Indian Institute of Technology, Chennai, India are gratefully acknowledged.
References
- Indian J. Chem.. 2003;42A:1617. and references therein
- Inorg. Chim. Acta. 2010;363:807.
- Tetrahedron Lett.. 2002;44:189.
- Coord. Chem. Rev.. 1980;31:221.
- J. Chem. Soc., Dalton Trans. 2004:2814.
- Tetrahedron Lett.. 2007;48:2315.
- J. Am. Chem. Soc.. 2003;125:9266.
- Bull. Chem. Soc. Japn.. 1982;55:301.
- Advanced Inorganic Chemistry (fifth ed.). New York: Wiley; 1988. p. 992
- CS Chem 3D Ultra, Molecular Modeling and Analysis, Cambridge. Available from: <www.cambridgesoft.com>.
- Health Phys.. 2000;78:511.
- J. Am. Chem. Soc.. 2003;125:14264.
- Proc. Soc. Exp. Bio. Med.. 1953;83:494.
- Coord. Chem. Rev.. 2010;254:197.
- Nature. 2008;455:341.
- Dalton Trans. 2005:1518.
- Dalton Trans. 2006:4679.
- Health Phys.. 2005;89:81.
- Coord. Chem. Rev.. 1971;7:81.
- The Pharmacological Basis of Therapeutics (fourth ed.). London: Macmillan; 1970.
- Chem. Rev.. 2003;103:4207.
- Rev. Mod. Phys.. 1948;20:718.
- Nature. 1996;384:341.
- Chem. Scand. Acta. 1959;13:1668.
- Inorg. Chem. Comm.. 2006;9:595.
- Polyhedron. 2006;25:1359.
- Specrochim. Acta.. 1958;10:359.
- Specrochim. Acta. 1959;11:409.
- Zh. Anal. Khim.. 1968;23:1564. Chem. Abstr. 69, 63899v
- Radiokhim.. 1981;23:186. Chem. Abstr. 95, 69620f
- Inorg. Chem.. 2002;41:4108.
- Chem. Soc., Chem. Commun. 1979:702.
- Tetrahedron. 2008;64:6662.
- Inorg. Chem.. 2008;47:4844.
- Health Phys.. 2000;78:668.
- Rev. Inorg. Chem.. 1995;15:1.
- J. Mol. Structure. 2006;794:24.
- J. Mol. Structure. 2007;833:133.
- Polyhedron. 1993;12:2045.
- Synth. React. Inorg. Met.-Org. Chem.. 1994;24:1013.
- Indian J. Chem.. 1997;36A:406.
- Synth. React. Inorg. Met.-Org. Chem.. 1997;27:77.
- Polyhedron. 1997;16:1825.
- Synth. React. Inorg. Met.-Org. Chem.. 1998;28:1265.
- Indian J. Chem.. 2002;41A:554.
- J. Mol. Structure. 2006;798:89.
- Indian J. Chem.. 2007;46A:1594.
- Indian J. Chem.. 2008;47A:517.
- Int. J. Curr. Chem.. 2010;1:309.
- Maurya, R. C., Sutradhar, D., Martin, M. H., Roy, S., Chourasia, J., Sharma, A. K., Vishwakarma, P. 2015. Arabian J. Chem. 8, 655–670.
- J. Chem. Phys.. 1961;35:105.
- Anal. Chim. Acta. 1968;40:229.
- Chem. Eur. J.. 2010;16:2282.
- Inorg. Chem.. 1999;38:308.
- Inorg. Chim. Acta. 1984;94:193.
- Cryst. Growth Des.. 2010;10:1390.
- Inorg. Chem.. 2006;45:83.
- J. Am. Chem. Soc.. 2004;126:1036.
- J. Chem. Soc., Dalton Trans. 2003:3443.
- Chem. Eur. J.. 2005;11:3689.
- Inorg. Chem. Commun.. 2010;13:859.
- J. Am. Chem. Soc.. 2004;126:6838.
- Health Phys.. 1994;66:540.
- Health Phys.. 1998;75:610.
- A Text Book of Quantitative Inorganic Analysis. London: Longmans Green and Co, Ltd.; 1961.
- Heteroat. Chem.. 2004;15:251.
- Dalton Trans.. 2003;4:4219.
- Chem. Commun. 2004:1814.
- Chem. Eur. J.. 2005;11:2642.
- Metal Extraction with Acylpyrazolone. Moscow: Izdat Nauka; 1977.