10.8
CiteScore
 
5.3
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Corrigendum
Current Issue
Editorial
Erratum
Full Length Article
Full lenth article
Letter to Editor
Original Article
Research article
Retraction notice
Review
Review Article
SPECIAL ISSUE: ENVIRONMENTAL CHEMISTRY
10.8
CiteScore
5.3
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Corrigendum
Current Issue
Editorial
Erratum
Full Length Article
Full lenth article
Letter to Editor
Original Article
Research article
Retraction notice
Review
Review Article
SPECIAL ISSUE: ENVIRONMENTAL CHEMISTRY
View/Download PDF

Translate this page into:

Original article
9 (
2_suppl
); S1357-S1367
doi:
10.1016/j.arabjc.2012.02.013

Density, refractive index and molar refractivity of binary liquid mixture at 293.15, 298.15, 303.15, 308.15 and 313.15 K

Department of Chemistry, V.S.S.D. College, Nawabgang, Kanpur 208002, India
Department of Chemistry, P.S.I.T., Kanpur, India
Department of Physics, P.S.A.T., Kanpur, India

⁎Corresponding author. Tel.: +91 0512 2560070, mobile: +91 9838516217; fax: +91 2563842. rajeevshukla47@rediffmail.com (R.K. Shukla)

Disclaimer:
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.
Present address.

Abstract

Densities and refractive indices were measured for the binary liquid mixtures formed by formamide, N-methylacetamide, di-methylformamide and di-methylacetamide with acetonitrile at T = 293.15, 298.15, 303.15, 308.15 and 313.15 K and atmospheric pressure over the whole concentration range. Lorentz–Lorentz mixing rule, Ramaswamy and Anbananthan model and model devised by Glinski were used to study the refractive index and molar refractivity. These results have been discussed to study the type of mixing behavior between the mixing molecules. The measured data were fitted to the Redlich–Kister polynomial relation to estimate the binary coefficients and standard errors. Furthermore, McAllister multibody interaction model is used to correlate the binary refractive index with the experimental findings. It is observed that molar refractivity, molecular interaction and association constant can be better understood from these models.

Keywords

Binary liquid
Refractive index
Lorentz
Refractivity
Association constant
Ramaswamy and Anbananthan
Redlich
McAllister
1

1 Introduction

The knowledge of refractive index property at different temperatures of liquid mixtures is an important step for their structure and characterization. Along with other thermodynamic data, refractive index values are also useful for practical purposes in engineering calculations. Refractive index is useful to assess purity of substances, to calculate the molecular electronic polarizability (Kier and Hall, 1976) to estimate the boiling point with Meissner’s method (Rechsteiner, 1990) or to estimate the other thermodynamic properties. In recent past, several workers (Sharma et al., 2007; Mehra, 2003; Fermeglia and Torriano, 1999; Nayak et al., 2003; Pandey et al., 1992) have applied various mixing rules in binary and ternary liquid mixtures to calculate the refractive index and to check the validity of these mixing rules. The mixing behavior of such liquid mixtures containing acetonitrile is interesting due to the presence of cyano group coupled with amide linkage resulting interactions in the liquid mixtures. In this work, we present the experimental data on density and refractive index of binary liquid mixtures of formamide, N-methyl acetamide (NMA), di-methylformamide (DMF) and di-methylacetamide (DMA) with acetonitrile at T = 293.15, 298.15, 303.15, 308.15 and 313.15 K and atmospheric pressure over the whole concentration range. These data were analyzed in terms of Lorentz–Lorentz mixing rule (Tasic et al., 1992) model of Ramaswamy and Anbananthan (1981) and Shukla et al. (2011) and model suggested by Glinski (2003). Models (Ramaswamy and Anbananthan, 1981; Shukla et al., 2011; Glinski, 2003), associated, are based on the association constant as an adjustable parameter whereas model (Tasic et al., 1992), non-associated is based on the additivity of liquids. For that purpose, we have selected the liquids having weak interacting ability but immense sense of technological significance in chemical industries. Using these experimental data, deviation in molar refraction (ΔR) has been studied and fitted to a Redlich–Kister type polynomial equation (Redlich and Kister, 1948) to derive binary coefficients and estimated standard errors. An attempt has also been made to correlate the experimental properties with the McAllister (1960) equation which is based on Eyring theory of absolute reaction rates and for liquids, the free energy of activation is additive on a number fraction.

The association phenomenon has been related usually to the deviation of different quantities from additivity and the model (Ramaswamy and Anbananthan, 1981; Shukla et al., 2011) is simple averaged geometrical derivations in terms of equilibrium. The mixing behavior of liquids and their correlation with molecular interaction have also been made using different liquid models. It is our first attempt to correlate all the models (associated and non-associated) to predict the mixing behavior of binary liquid mixtures from refractive index data.

2

2 Experimental section

2.1

2.1 Materials

High purity and AR grade samples of formamide, N-methyl acetamide (NMA), di-methylformamide (DMF) and di-methylacetamide (DMA) and acetonitrile used in this experiment were obtained from Merck Co. Inc., Germany, and purified by distillation in which the middle fraction was collected. The liquids were stored in dark bottles over 0.4 mm molecular sieves to reduce water content and were partially degassed with a vacuum pump. The purity of each compound was checked by gas chromatography and the results indicated that the mole fraction purity was higher than 0.99. All the materials were used without further purification. The purity of chemicals used was confirmed by comparing the densities and refractive indices with those reported in the literature as shown in Table 1.

Table 1 Comparison of density and refractive index with literature data for pure components at 293.15, 298.15, 303.15, 308.15 and 313.15 K.
Compound T V (cm3 mole−1) ρexp (g cm−3) ρlit (g cm−3)a nexp nlita
Acetonitrile 293.15 51.5379 0.7865 0.7822 1.3409 1.34411
298.15 52.5540 0.7811 0.77649 1.3402 1.34163
303.15 53.0841 0.7733 0.77125 1.3392
308.15 53.5551 0.7665 1.3283
313.15 53.9776 0.7605 1.3260
Formamide 293.15 39.7879 1.1320 1.1339 1.4409 1.44754
298.15 39.8937 1.1290 1.12915 1.4370 1.44682
303.15 40.0355 1.1250 1.4359
308.15 40.1784 1.1210 1.4280
313.15 40.5145 1.1117 1.4250
NMA 293.15 76.4404 0.9563 1.4279
298.15 76.8502 0.9512 1.4270
303.15 76.9311 0.9502 0.9520 1.4261
308.15 77.2074 0.9468 0.94604 1.4250 1.4253
313.15 77.7246 0.9405 1.4230
N,N-DMF 293.15 76.5260 0.9551 0.94873 1.4285 1.43047
298.15 76.9287 0.9501 0.94387 1.4267 1.42817
303.15 77.5984 0.9419 0.9412 1.4240
308.15 78.1126 0.9357 1.4221
313.15 78.3807 0.9325 0.9310 1.4205
N,N-DMA 293.15 90.5331 0.9623 0.9615 1.4361
298.15 91.6859 0.9502 0.97633 1.4342 1.4384
303.15 93.0769 0.9360 0.93169 1.4320 1.4356
308.15 94.0008 0.9268 1.4300
313.15 94.4799 0.9221 0.9232 1.4285

2.2

2.2 Apparatus and procedure

Before each series of experiments, we calibrated the instrument at atmospheric pressure with doubly distilled water. The densities of the pure components and their mixtures were measured with the bi capillary pyknometer with an accuracy of ±5.0 × 10−4 kg m−3. The liquid mixtures were prepared by mass in an air tight stopped bottle using an electronic balance model SHIMADZUAX-200 accurate to within ±0.1 mg. The average uncertainty in the composition of the mixtures was estimated to be less than ±0.0001. All molar quantities were based on the IUPAC relative atomic mass table.

Refractive index for sodium D-line was measured using a thermostatically controlled Abbe refractometer (Agato 3T, Japan). Calibration of the instrument was performed with double distilled water. A minimum of three readings were taken for each composition and the average value was considered in all calculations. Refractive index data are accurate to ±0.0001 units.

3

3 Theoretical

Ramaswamy and Anbananthan (1981) and Shukla et al. (2011) proposed the model based on the assumption of linearity of acoustic impedance with the mole fraction of components. Further Glinski (2003) assumed that when solute is added to solvent, the molecules interact according to the equilibrium as

(1)
A + B = AB and the association constant Kas can be defined as
(2)
K as = [ AB ] [ A ] [ B ]
where A is the amount of solvent and B is the amount of solute in the liquid mixture.

By applying the condition of linearity with composition

(3)
Δ n obs = x A n A + x AB n AB where xA, xAB, nA and nAB are the mole fraction of A, mole fraction of associate AB, refractive index of A and refractive index of associate AB, respectively. The component AB cannot be obtained in its pure form. Following simplifications have been made, firstly, concentration term should be replaced by activities for concentrated solution and second, there are also molecules of non-associated components in the liquid mixture. Eq. (3) takes the form,
(4)
n obs = [ x A n A + x B n B + x AB n AB ] θ
where θ is a temperature dependent adjustable parameter which changes with the changing temperature conditions.

The general idea of this model can be, however, exploited as

(5)
K as = [ AB ] ( C A - [ AB ] ) ( C B - [ AB ] ) where CA and CB are the initial molar concentrations of the components. One can take any value of Kas and calculate the equilibrium value of [AB] for every composition of the mixture as well as [A] = CA−[AB] and [B] = CB−[AB]. Replacing molar concentration by activities for concentrated solution, Eq. (5) becomes,
(6)
K as = a AB ( a A - a AB ) ( a B - a AB )
where aA, aB and aAB are the activities of components A, B and associate AB, respectively. Taking equimolar activities which are equal to a A = a A - a AB and a B = a B - a AB where a A and a B are the activities of [A] and [B] in equimolar quantities, respectively.

From Eq. (6) one can obtain the value of Kas as

(7)
K as = a AB a A a B - a A a AB - a B a AB + a AB 2 = a AB a A · a B Now, assuming any value of refractive index in the pure component, it is possible to compare the refractive indices calculated using Eq. (4) with the experimental values. On changing both the adjustable parameters Kas and nAB gradually, one can get different values of the sum of squares of deviations,
(8)
S = ( n obs - n cal ) 2
The minimum value of S can be obtained theoretically by a pair of the fitted parameters. But we found that for some Kas and nas, the value of S is high and changes rapidly, and for others, it is low and changes slowly when changing the fitted parameters. In such cases, the value of nAB should not be much lower than the lowest observed refractive index of the system or much higher than the highest one. Quantitatively, it should be reasonable to accept the pair of adjustable parameters Kas and nAB which have the physical sense and which reproduce the experimental refractive indices satisfactorily.

Glinski (2003) suggested that experimental results with significantly well accuracy can be produced from the following equation as

(9)
n cal = n 1 n 2 ϕ 1 n 2 + ϕ 2 n 1 where ncal is the calculated refractive index, ϕ 1 , ϕ 2 are the volume fractions of components 1 and 2 and n1, n2 are the refractive indices of pure components.

Lorentz–Lorentz (L–L) relation (Tasic et al., 1992) has a widest application during the evaluation of refractive indices of mixture and density of pure components as well as density of the mixture and represented in terms of specific refraction as

(10)
n m 2 - 1 n m 2 + 2 = n 1 2 - 1 n 1 2 + 2 ϕ 1 + n 2 2 - 1 n 2 2 + 2 ϕ 2 here nm, n1, n2 are the refractive indices of mixture and pure components, 1 and 2, respectively, and ϕ 1 , ϕ 2 are the volume fractions of pure components.

4

4 Results and discussion

Table 1 presents the comparison of experimental densities and refractive indices of acetonitrile, formamide, NMA, DMF and DMA with literature values (Timmermans, 1950; Riddick et al., 1986) at 293.15, 298.15, 303.15, 308.15 and 313.15 K. Coefficients of the Redlich–Kister polynomials and their standard deviations (σ) are presented in Table 2. Parameters of McAllister three body and four body interaction models and standard deviations for refractive indices are presented in Table 3. Table 4 presents the comparison of average percent molar refractivity deviation (%ΔR), average molar refractivity deviation (ΔR), average refractive index deviation (Δn) obtained from Lorentz–Lorentz mixing rule, Ramaswamy and Anbananthan model, model devised by Glinski and MacAllister three body and four body models. Values of volume fraction ( Φ 1 ), density of the mixture (ρ), experimental refractive index (nexp), experimental molar refractivity (Rexp), theoretical molar refractivity (Rtheo), percent deviation in molar refractivity values (%ΔR) and theoretical refractive index (ntheo) obtained from various models (Eqs. (4), (9), and (10)) for acetonitrile + formamide, acetonitrile + NMA, acetonitrile + DMF and acetonitrile + DMA over the whole composition range at five temperatures were recorded in Table 5.

Table 2 Coefficients of the Redlich–Kister equation and standard deviations (σ) for molar refractivity of binary liquid mixtures at various temperatures.
T A0 A1 A2 A3 σ
Acetonitrile + formamide
ΔR 293.15 −2.0315 −0.1889 −0.9531 −2.8605 0.0904
298.15 −1.9217 0.3225 0.0652 −7.7578 0.0981
303.15 −1.6476 −0.1599 −0.5022 −6.6511 0.1121
308.15 −0.8264 −1.3079 2.7451 4.8070 0.0903
313.15 −0.4447 1.9884 −2.7031 −4.8913 0.0705
Acetonitrile + NMA
ΔR 293.15 1.2501 −0.4386 −2.3835 5.4272 0.1704
298.15 0.7610 1.5891 −4.3049 −1.8726 0.1178
303.15 1.5405 −0.9992 −4.7506 −0.2562 0.1422
308.15 1.7268 −2.6296 −6.4052 3.2337 0.1500
313.15 2.2992 −7.9806 −5.3893 17.5480 0.1800
Acetonitrile + DMF
ΔR 293.15 0.4292 −4.0572 0.5360 13.8886 0.1243
298.15 0.5172 −1.3493 2.6418 3.3518 0.1205
303.15 −0.3637 −3.3653 −0.7733 5.8006 0.2001
308.15 −1.1838 −0.4123 −6.8095 2.7590 0.0882
313.15 −22.5512 21.7620 71.9787 −81.9660 4.2072
Acetonitrile + DMA
ΔR 293.15 −0.7744 0.8444 2.0731 0.0058 0.0775
298.15 −1.3985 1.1097 7.6152 −6.6792 0.1061
303.15 0.0721 −6.2540 −0.9942 20.2712 0.1930
308.15 0.4789 −1.0475 4.0208 3.8755 0.0789
313.15 −1.0524 7.1479 1.5652 −11.4325 0.2420
Table 3 Parameters of McAllister three body and four body interaction models and standard deviations (σ) for refractive index of binary liquid mixtures at various temperatures.
Component Temperature McAllister three body (n) McAllister four body (n)
a b σ a b c σ
Acetonitrile + Formamide 293.15 1.3844 1.4289 0.0029 0.3515 3.1291 0.5709 0.0546
298.15 1.3829 1.4324 0.0032 1.3811 1.3899 1.4440 0.0028
303.15 1.3827 1.4326 0.0032 1.3814 1.3885 1.4448 0.0028
308.15 1.3889 1.4019 0.0048 1.3935 1.3577 1.4312 0.0037
313.15 1.3720 1.3980 0.0026 1.3510 1.4023 1.3941 0.0022
Acetonitrile + NMA 293.15 1.4300 1.4562 0.0473 1.3487 1.5770 1.3435 0.0447
298.15 1.4498 1.4261 0.0022 1.4050 1.4563 1.4040 0.0015
303.15 1.4364 1.4355 0.0042 1.3834 1.4847 1.3881 0.0025
308.15 1.4296 1.4300 0.0042 1.3805 1.4721 1.3884 0.0030
313.15 1.4281 1.4223 0.0008 1.3969 1.4160 1.4213 0.0008
Acetonitrile + DMF 293.15 1.4537 1.4300 0.0033 1.4301 1.4081 1.4456 0.0027
298.15 1.4661 1.4342 0.0023 1.4389 1.4166 1.4480 0.0013
303.15 1.4389 1.4405 0.0018 1.4066 1.4338 1.4326 0.0046
308.15 1.4242 1.4218 0.0045 1.3726 1.4710 1.3808 0.0026
313.15 1.4306 1.4257 0.0018 1.3994 1.4176 1.4240 0.0018
Acetonitrile + DMA 293.15 1.4634 1.4365 0.0021 1.4648 1.4366 1.4500 0.0020
298.15 1.4572 1.4264 0.0032 1.4714 1.3989 1.4662 0.0015
303.15 1.4868 1.3932 0.0496 1.5610 1.2492 1.5670 0.0479
308.15 1.4609 1.4318 0.0035 1.4778 1.3959 1.4743 0.0008
313.15 1.4452 1.4032 0.0039 1.4322 1.4451 1.3982 0.0035
Table 4 Comparison of average and average percent deviation values obtained from various liquid state models.
Temperature Kas × 104 RLL Eq. (10) RRS Eq. (4) RGLI Eq. (9) nLL Eq. (10) nRS Eq. (4) nGLI Eq. (9) nMcA Eq. (15) nMcA Eq. (16)
Acetonitrile + formamide
293.15 1.3000 2.97 1.79 3.11 0.0180 0.0081 0.0140 0.0021 0.3865
298.15 1.0000 3.41 2.20 3.54 0.0169 0.0099 0.0159 0.0023 0.0019
303.15 1.2000 3.57 2.34 3.70 0.0152 0.0105 0.0166 0.0024 0.0020
308.15 1.1200 3.71 8.72 3.86 0.0056 0.0370 0.0164 0.0042 0.0029
313.15 1.1100 2.44 1.24 2.58 0.0075 0.0051 0.0108 0.0020 0.0018
Acetonitrile + NMA
293.15 1.4000 2.91 3.20 3.02 0.0063 0.0137 0.0288 0.0212 0.0242
298.15 1.5000 2.14 2.42 2.24 0.0043 0.0105 0.0097 0.0018 0.0012
303.15 1.6000 1.90 2.18 1.96 0.0066 0.0095 0.0085 0.0036 0.0022
308.15 1.7000 1.37 1.69 1.43 0.0077 0.0073 0.0061 0.0032 0.0023
313.15 1.8000 1.61 2.03 1.74 0.0061 0.0084 0.0072 0.0006 0.0006
Acetonitrile + DMF
293.15 1.1800 2.68 3.95 2.79 0.0059 0.0172 0.0121 0.0028 0.0020
298.15 1.1900 3.81 5.00 3.92 0.0061 0.0221 0.0173 0.0020 0.0011
303.15 1.2100 2.41 3.59 2.51 0.0050 0.0157 0.0110 0.0017 0.0032
308.15 1.3200 1.24 1.94 1.30 0.0129 0.0083 0.0055 0.0036 0.0023
313.15 1.3300 2.07 3.32 2.19 0.0058 0.0141 0.0091 0.0016 0.0014
Acetonitrile + DMA
293.15 1.3400 3.03 4.98 3.16 0.0035 0.0220 0.0139 0.0019 0.0016
298.15 1.3500 2.42 4.33 2.55 0.0042 0.0189 0.0111 0.0025 0.0014
303.15 1.3600 2.23 4.14 2.36 0.0204 0.0333 0.0255 0.0240 0.0265
308.15 1.3700 3.28 5.16 3.40 0.0074 0.0226 0.0149 0.0030 0.0006
313.15 1.3800 1.80 3.46 1.92 0.0053 0.0145 0.0080 0.0033 0.0030
Table 5 Experimental densities (ρ), experimental refractive index (nexp), experimental molar refractivity (Rexp), theoretical molar refractivity from Ramaswamy and Anbananthan (Eq. (4)), Lorentz–Lorentz relation (Eq. (10)), model devised by Glinski (Eq. (9)), experimental refractive indices, theoretical refractive indices from Ramaswamy and Anbananthan (Eq. (4)), Lorenz–Lorenz relation (Eq. (10)), model devised by Glinski (Eq. (9)) of binary liquid mixtures at various temperatures.
Φ 1 ρmix (g cm3) RLL Eq. (10) Rexp RRS Eq. (4) RGLI Eq. (9) RLL RRS RGLI nexp nLL (Eq. (10)) nRS (Eq. (4)) nGLI (Eq. (9))
Acetonitrile + formamide
T = 293.15 K
0.1531 1.1258 10.1213 10.4027 10.1943 10.1116 2.70 2.00 2.80 1.4387 1.4455 1.4286 1.4246
0.2892 1.0992 9.9640 10.3566 10.0854 9.9483 3.79 2.62 3.94 1.4298 1.4405 1.4169 1.4105
0.4108 1.0835 9.7429 9.9907 9.8913 9.7243 2.48 0.99 2.67 1.4105 1.4401 1.4058 1.3981
0.5203 1.0405 9.8022 10.1990 9.9651 9.7824 3.89 2.29 4.08 1.4058 1.4264 1.3952 1.3871
0.6193 1.0102 9.7758 10.2255 9.9374 9.7568 4.40 2.82 4.58 1.3978 1.4181 1.3851 1.3773
0.7094 0.9705 9.8718 10.2417 10.0215 9.8546 3.61 2.15 3.78 1.3848 1.4050 1.3755 1.3685
0.7915 0.9403 9.9024 10.2041 10.0281 9.8883 2.96 1.72 3.10 1.3735 1.3958 1.3663 1.3606
0.8668 0.9015 10.0541 10.2753 10.1473 10.0440 2.15 1.25 2.25 1.3625 1.3822 1.3574 1.3534
0.9361 0.8503 10.3916 10.4727 10.4435 10.3860 0.78 0.28 0.83 1.3501 1.3623 1.3490 1.3468
T = 298.15 K
0.1553 1.1015 10.2680 10.6322 10.3447 10.2583 3.43 2.70 3.52 1.4387 1.4334 1.4251 1.4210
0.2927 1.0825 10.0469 10.4993 10.1735 10.0316 4.31 3.10 4.45 1.4290 1.4331 1.4138 1.4072
0.4149 1.0657 9.8412 10.1554 9.9960 9.8232 3.09 1.57 3.27 1.4104 1.4333 1.4030 1.3952
0.5245 1.0345 9.8007 10.2492 9.9683 9.7818 4.38 2.74 4.56 1.4054 1.4262 1.3928 1.3845
0.6233 0.9985 9.8379 10.3384 10.0049 9.8197 4.84 3.23 5.02 1.3975 1.4163 1.3830 1.3751
0.7128 0.9624 9.9087 10.3231 10.0626 9.8923 4.01 2.52 4.17 1.3846 1.4057 1.3737 1.3666
0.7943 0.9351 9.9180 10.2511 10.0467 9.9046 3.25 1.99 3.38 1.3731 1.3988 1.3648 1.3590
0.8687 0.8792 10.2755 10.5281 10.3726 10.2656 2.40 1.48 2.49 1.3622 1.3775 1.3562 1.3521
0.9371 0.8492 10.3783 10.4809 10.4312 10.3731 0.98 0.47 1.03 1.3499 1.3683 1.3480 1.3459
T = 303.15 K
0.1562 1.0998 10.2589 10.6338 10.3374 10.2493 3.53 2.79 3.62 1.4380 1.4337 1.4240 1.4199
0.2940 1.0735 10.1048 10.5852 10.2353 10.0895 4.54 3.31 4.68 1.4289 1.4304 1.4127 1.4060
0.4164 1.0538 9.9254 10.2635 10.0851 9.9073 3.29 1.74 3.47 1.4101 1.4295 1.4020 1.3940
0.5261 1.0258 9.8564 10.3271 10.0287 9.8375 4.56 2.89 4.74 1.4050 1.4242 1.3917 1.3833
0.6248 0.9802 9.9935 10.5197 10.1668 9.9750 5.00 3.35 5.18 1.3970 1.4098 1.3820 1.3739
0.7142 0.9594 9.9117 10.3410 10.0690 9.8954 4.15 2.63 4.31 1.3840 1.4067 1.3726 1.3655
0.7953 0.9256 9.9917 10.3513 10.1241 9.9784 3.47 2.19 3.60 1.3729 1.3968 1.3637 1.3579
0.8695 0.8728 10.3222 10.5974 10.4217 10.3124 2.60 1.66 2.69 1.3619 1.3772 1.3552 1.3510
0.9374 0.8402 10.4610 10.5658 10.5153 10.4558 0.99 0.48 1.04 1.3489 1.3667 1.3470 1.3448
T = 308.15 K
0.1569 1.0856 10.2091 10.3831 9.9464 10.1983 1.68 4.21 1.78 1.4199 1.4208 1.3998 1.4114
0.2951 1.0568 10.0653 10.3470 9.6011 10.0481 2.72 7.21 2.89 1.4105 1.4158 1.3772 1.3970
0.4177 1.0215 10.0245 10.5834 9.4163 10.0039 5.28 11.03 5.48 1.4099 1.4073 1.3594 1.3846
0.5274 0.9856 10.0284 10.4048 9.3348 10.0067 3.62 10.28 3.83 1.3904 1.3979 1.3458 1.3736
0.6260 0.9508 10.0577 10.4341 9.3380 10.0368 3.61 10.50 3.81 1.3801 1.3883 1.3359 1.3639
0.7152 0.9256 10.0168 10.3693 9.3357 9.9983 3.40 9.97 3.58 1.3700 1.3827 1.3293 1.3552
0.7962 0.8809 10.2241 10.7356 9.6238 10.2088 4.76 10.36 4.91 1.3675 1.3675 1.3255 1.3474
0.8701 0.8405 10.4269 10.9501 9.9677 10.4158 4.78 8.97 4.88 1.3599 1.3538 1.3243 1.3404
0.9377 0.8028 10.6390 11.0323 10.3800 10.6330 3.57 5.91 3.62 1.3480 1.3409 1.3253 1.3341
T = 313.15 K
0.1568 1.0807 10.1923 10.2642 10.2764 10.1816 0.70 −0.12 0.81 1.4123 1.4196 1.4128 1.4085
0.2950 1.0559 10.0117 10.2513 10.1511 9.9946 2.34 0.98 2.50 1.4058 1.4163 1.4013 1.3943
0.4176 1.0158 10.0183 10.2889 10.1924 9.9978 2.63 0.94 2.83 1.3945 1.4056 1.3903 1.3819
0.5273 0.9758 10.0661 10.3897 10.2564 10.0444 3.11 1.28 3.32 1.3854 1.3942 1.3798 1.3710
0.6259 0.9365 10.1475 10.5636 10.3379 10.1265 3.94 2.14 4.14 1.3789 1.3825 1.3698 1.3614
0.7151 0.8905 10.3463 10.7441 10.5241 10.3272 3.70 2.05 3.88 1.3687 1.3672 1.3602 1.3528
0.7961 0.8726 10.2564 10.5195 10.4037 10.2410 2.50 1.10 2.65 1.3555 1.3643 1.3511 1.3450
0.8700 0.8405 10.3610 10.6291 10.4694 10.3499 2.52 1.50 2.63 1.3482 1.3545 1.3424 1.3380
0.9377 0.7992 10.6191 10.5675 10.6789 10.6131 0.49 -1.05 0.43 1.3302 1.3398 1.3340 1.3317
Acetonitrile + NMA
T = 303.15 K
0.2023 0.9357 17.0320 17.3975 17.0260 17.0160 2.10 2.14 2.19 1.4157 1.4199 1.4097 1.4094
0.3538 0.9235 15.3004 15.7587 15.2539 15.2795 2.91 3.20 3.04 1.4083 1.4100 1.3951 1.3959
0.4778 0.8895 14.4204 14.9367 14.3497 14.3984 3.46 3.93 3.60 1.3903 1.4013 1.3835 1.3850
0.5898 0.8764 13.4249 14.1096 13.3656 13.4045 4.85 5.27 5.00 1.3829 1.3976 1.3740 1.3753
0.6827 0.8658 12.6586 13.1657 12.6060 12.6411 3.85 4.25 3.98 1.3769 1.3845 1.3662 1.3673
0.7647 0.8465 12.1655 12.6080 12.1257 12.1513 3.51 3.82 3.62 1.3668 1.3756 1.3595 1.3604
0.8346 0.8351 11.6974 11.8827 11.6667 11.6867 1.56 1.82 1.65 1.3607 1.3612 1.3539 1.3545
0.8982 0.8252 11.2834 11.5844 11.2678 11.2765 2.60 2.73 2.66 1.3554 1.3599 1.3489 1.3492
0.9540 0.8051 11.0899 11.2439 11.0562 11.0866 1.37 1.67 1.40 1.3453 1.3501 1.3446 1.4974
T = 303.15 K
0.2046 0.9305 17.0905 17.2604 17.0659 17.0746 0.98 1.13 1.08 1.4160 1.4135 1.4082 1.4084
0.3570 0.9197 15.3294 15.7864 15.2734 15.3086 2.90 3.25 3.03 1.4102 1.4089 1.3938 1.3949
0.4813 0.8807 14.5323 15.0495 14.4567 14.5104 3.44 3.94 3.58 1.3903 1.4002 1.3824 1.3840
0.5933 0.8704 13.4888 14.0326 13.4279 13.4687 3.88 4.31 4.02 1.3850 1.3921 1.3731 1.3744
0.6858 0.8595 12.7262 13.1270 12.6733 12.7089 3.05 3.46 3.19 1.3794 1.3801 1.3654 1.3665
0.7673 0.8405 12.2301 12.5317 12.1910 12.2161 2.41 2.72 2.52 1.3698 1.3701 1.3588 1.3597
0.8365 0.8305 11.7430 11.8801 11.7132 11.7325 1.15 1.41 1.24 1.3648 1.3589 1.3532 1.3539
0.8995 0.8205 11.3317 11.3620 11.3169 11.3250 0.27 0.40 0.33 1.3598 1.3500 1.3484 1.3487
0.9546 0.8015 11.1259 11.2594 11.1232 11.1226 1.19 1.21 1.22 1.3504 1.3489 1.3442 1.3442
T = 303.15 K
0.2060 0.9108 17.4263 17.6150 17.3527 17.4103 1.07 1.49 1.16 1.4064 1.4130 1.4060 1.4075
0.3591 0.8998 15.6384 16.0869 15.5483 15.6175 2.79 3.35 2.92 1.4012 1.4075 1.3921 1.3940
0.4835 0.8712 14.6638 15.1900 14.5643 14.6420 3.46 4.12 3.61 1.3871 1.3995 1.3810 1.3832
0.5954 0.8652 13.5466 14.0467 13.4694 13.5268 3.56 4.11 3.70 1.3844 1.3899 1.3719 1.3737
0.6877 0.8501 12.8466 13.2317 12.7821 12.8295 2.91 3.40 3.04 1.3771 1.3788 1.3644 1.3659
0.7689 0.8357 12.2830 12.4633 12.2360 12.2692 1.45 1.82 1.56 1.3702 1.3655 1.3580 1.3591
0.8377 0.8256 11.7978 11.6866 11.7630 11.7875 −0.95 −0.65 −0.86 1.3654 1.3501 1.3526 1.3534
0.9003 0.7958 11.6706 11.6179 11.6523 11.6638 −0.45 −0.30 −0.39 1.3509 1.3468 1.3479 1.3483
0.9550 0.7853 11.3447 11.2952 11.3406 11.3415 −0.44 −0.40 −0.41 1.3459 1.3423 1.3438 1.3438
T = 308.15 K
0.2069 0.9007 17.5779 17.6987 17.4821 17.5617 0.68 1.22 0.77 1.4023 1.4100 1.4043 1.4063
0.3603 0.8795 15.9574 16.2728 15.8510 15.9361 1.94 2.59 2.07 1.3923 1.4023 1.3905 1.3929
0.4848 0.8654 14.7223 15.0544 14.6124 14.7005 2.21 2.94 2.35 1.3857 1.3925 1.3795 1.3821
0.5967 0.8556 13.6611 14.2043 13.5764 13.6412 3.82 4.42 3.96 1.3813 1.3899 1.3706 1.3725
0.6888 0.8456 12.8795 13.1076 12.8102 12.8624 1.74 2.27 1.87 1.3768 1.3726 1.3631 1.3648
0.7698 0.8298 12.3363 12.3823 12.2860 12.3225 0.37 0.78 0.48 1.3693 1.3600 1.3568 1.3580
0.8384 0.8198 11.8487 11.7359 11.8118 11.8385 −0.96 −0.65 −0.87 1.3646 1.3490 1.3515 1.3523
0.9008 0.7902 11.7214 11.6759 11.7019 11.7146 −0.39 −0.22 −0.33 1.3503 1.3460 1.3468 1.3472
0.9552 0.7805 11.3838 11.3616 11.3791 11.3806 −0.19 −0.15 −0.17 1.3458 1.3422 1.3427 1.3428
T = 313.15 K
0.2071 0.8798 17.8412 18.0763 17.7570 17.8203 1.30 1.77 1.42 1.3910 1.4089 1.4007 1.4023
0.3606 0.8697 15.9421 16.3079 15.8422 15.9150 2.24 2.86 2.41 1.3851 1.3982 1.3854 1.3873
0.4851 0.8556 14.6661 15.0200 14.5584 14.6383 2.36 3.07 2.54 1.3774 1.3865 1.3731 1.3754
0.5970 0.8425 13.6249 13.9268 13.5416 13.5994 2.17 2.77 2.35 1.3703 1.3748 1.3632 1.3649
0.6891 0.8346 12.7838 13.0216 12.7152 12.7621 1.83 2.35 1.99 1.3659 1.3645 1.3549 1.3564
0.7700 0.8194 12.2113 12.4016 12.1617 12.1938 1.53 1.93 1.68 1.3580 1.3556 1.3479 1.3489
0.8386 0.8008 11.8332 12.0112 11.7961 11.8200 1.48 1.79 1.59 1.3485 1.3489 1.3419 1.3427
0.9009 0.7824 11.5275 11.6073 11.5087 11.5189 0.69 0.85 0.76 1.3393 1.3400 1.3368 1.3371
0.9553 0.7615 11.3428 11.4415 11.3389 11.3387 0.86 0.90 0.90 1.3290 1.3356 1.3322 1.3322
Acetonitrile + DMF
T = 293.15 K
0.1551 0.9391 17.6433 17.8874 17.4617 17.6297 1.36 2.38 1.44 1.4189 1.4211 1.4097 1.4141
0.2923 0.9297 15.9640 16.5653 15.7119 15.9441 3.63 5.15 3.75 1.4128 1.4196 1.3951 1.4017
0.4146 0.9158 14.7188 15.1063 14.4522 14.6967 2.56 4.33 2.71 1.4047 1.4032 1.3835 1.3908
0.5242 0.8957 13.8215 14.2602 13.5687 13.7996 3.08 4.85 3.23 1.3936 1.3956 1.3740 1.3812
0.6229 0.8748 13.1170 13.4980 12.8943 13.0971 2.82 4.47 2.97 1.3823 1.3855 1.3662 1.3726
0.7125 0.8569 12.5066 12.9444 12.3235 12.4897 3.38 4.80 3.51 1.3727 1.3799 1.3595 1.3649
0.7941 0.8354 12.0585 12.4043 11.9190 12.0453 2.79 3.91 2.89 1.3615 1.3700 1.3539 1.3580
0.8685 0.8253 11.5379 11.9253 11.4454 11.5289 3.25 4.02 3.32 1.3559 1.3653 1.3489 1.3518
0.9370 0.7902 11.4444 11.5915 11.3973 11.4397 1.27 1.68 1.31 1.3385 1.3512 1.3446 1.3461
T = 298.15 K
0.1570 0.9342 17.6705 18.1493 17.4967 17.6571 2.64 3.60 2.71 1.4182 1.4256 1.4082 1.4124
0.2953 0.9272 15.9498 16.6204 15.7095 15.9302 4.03 5.48 4.15 1.4143 1.4199 1.3938 1.4001
0.4181 0.9215 14.5781 15.2423 14.3267 14.5567 4.36 6.01 4.50 1.4112 1.4102 1.3824 1.3893
0.5277 0.8901 13.8646 14.6061 13.6237 13.8433 5.08 6.73 5.22 1.3951 1.4036 1.3731 1.3799
0.6263 0.8721 13.1200 13.7547 12.9087 13.1007 4.61 6.15 4.75 1.3859 1.3924 1.3654 1.3715
0.7154 0.8504 12.5702 13.1198 12.3960 12.5539 4.19 5.52 4.31 1.3749 1.3824 1.3588 1.3639
0.7964 0.8344 12.0466 12.5870 11.9148 12.0338 4.29 5.34 4.39 1.3668 1.3756 1.3532 1.3572
0.8702 0.8248 11.5239 11.9355 11.4367 11.5153 3.45 4.18 3.52 1.3620 1.3654 1.3484 1.3511
0.9379 0.7899 11.4322 11.6256 11.3879 11.4278 1.66 2.05 1.70 1.3448 1.3522 1.3442 1.3455
T = 303.15 K
0.1572 0.9304 17.6550 18.0095 17.4852 17.6423 1.97 2.91 2.04 1.4181 1.4199 1.4060 1.4101
0.2956 0.9255 15.9091 16.5326 15.6750 15.8906 3.77 5.19 3.88 1.4157 1.4165 1.3921 1.3981
0.4184 0.9192 14.5584 15.0537 14.3133 14.5381 3.29 4.92 3.42 1.4125 1.4033 1.3810 1.3877
0.5281 0.8892 13.8323 14.3290 13.5979 13.8122 3.47 5.10 3.61 1.3973 1.3945 1.3719 1.3785
0.6266 0.8706 13.1050 13.4597 12.8994 13.0867 2.64 4.16 2.77 1.3880 1.3822 1.3644 1.3703
0.7157 0.8584 12.4231 12.7882 12.2555 12.4078 2.85 4.17 2.97 1.3819 1.3755 1.3580 1.3630
0.7966 0.8261 12.1436 12.4042 12.0143 12.1315 2.10 3.14 2.20 1.3659 1.3654 1.3526 1.3564
0.8703 0.8259 11.4906 11.5378 11.4060 11.4825 0.41 1.14 0.48 1.3659 1.3524 1.3479 1.3505
0.9379 0.7853 11.4858 11.6249 11.4424 11.4815 1.20 1.57 1.23 1.3460 1.3499 1.3438 1.3451
T = 308.15 K
0.1575 0.9280 17.6332 17.3847 17.4653 17.6207 −1.43 −0.46 −1.36 1.4184 1.4022 1.4043 1.4083
0.2961 0.9234 15.8865 16.2197 15.6552 15.8684 2.05 3.48 2.17 1.4163 1.4065 1.3905 1.3965
0.4190 0.9065 14.7098 15.0335 14.4649 14.6897 2.15 3.78 2.29 1.4079 1.3964 1.3795 1.3861
0.5286 0.8801 13.9274 14.0855 13.6941 13.9076 1.12 2.78 1.26 1.3947 1.3825 1.3706 1.3770
0.6271 0.8647 13.1509 13.3713 12.9470 13.1330 1.65 3.17 1.78 1.3871 1.3765 1.3631 1.3689
0.7161 0.8561 12.4171 12.5136 12.2515 12.4021 0.77 2.09 0.89 1.3830 1.3654 1.3568 1.3617
0.7970 0.8248 12.1258 12.0259 11.9983 12.1140 −0.83 0.23 −0.73 1.3675 1.3524 1.3515 1.3552
0.8706 0.8234 11.4920 11.4988 11.4084 11.4840 0.06 0.79 0.13 1.3669 1.3499 1.3468 1.3494
0.9381 0.7805 11.5242 11.4000 11.4813 11.5201 −1.09 −0.71 −1.05 1.3459 1.3401 1.3427 1.3440
T = 313.15 K
0.1581 0.9255 17.5590 17.8738 17.3750 17.5430 1.76 2.79 1.85 1.4158 1.4138 1.4007 1.4051
0.2970 0.9199 15.7847 16.1754 15.5310 15.7615 2.41 3.98 2.56 1.4119 1.4035 1.3854 1.3918
0.4200 0.9002 14.6181 15.0482 14.3487 14.5923 2.86 4.65 3.03 1.4010 1.3937 1.3731 1.3803
0.5297 0.8751 13.7831 14.1264 13.5267 13.7576 2.43 4.24 2.61 1.3876 1.3813 1.3632 1.3701
0.6282 0.8615 12.9546 13.4178 12.7309 12.9316 3.45 5.12 3.62 1.3801 1.3764 1.3549 1.3611
0.7170 0.8502 12.2408 12.5634 12.0587 12.2215 2.57 4.02 2.72 1.3738 1.3642 1.3479 1.3531
0.7977 0.8227 11.8741 12.0473 11.7345 11.8590 1.44 2.60 1.56 1.3597 1.3521 1.3419 1.3460
0.8711 0.8207 11.2374 11.4086 11.1459 11.2272 1.50 2.30 1.59 1.3582 1.3456 1.3368 1.3395
0.9383 0.7798 11.2192 11.1941 11.1723 11.2139 −0.22 0.19 −0.18 1.3379 1.3330 1.3322 1.3336
Acetonitrile + DMA
T = 293.15 K
0.1561 0.9591 20.0390 20.4129 19.7001 20.0211 1.83 3.49 1.92 1.4324 1.4298 1.4127 1.4203
0.2939 0.9512 17.5288 18.0019 17.0868 17.5033 2.63 5.08 2.77 1.4266 1.4200 1.3958 1.4067
0.4164 0.9421 15.6735 16.3668 15.2301 15.6461 4.24 6.95 4.40 1.4203 1.4156 1.3831 1.3949
0.5261 0.9159 14.5072 15.0818 14.1002 14.4806 3.81 6.51 3.99 1.4055 1.4025 1.3731 1.3844
0.6248 0.8856 13.6742 14.2744 13.3232 13.6500 4.21 6.66 4.37 1.3891 1.3945 1.3651 1.3751
0.7141 0.8653 12.8865 13.2809 12.6048 12.8662 2.97 5.09 3.12 1.3779 1.3801 1.3585 1.3668
0.7953 0.8529 12.1423 12.5919 11.9345 12.1268 3.57 5.22 3.69 1.3707 1.3748 1.3530 1.3593
0.8694 0.8355 11.5954 11.8436 11.4591 11.5849 2.10 3.25 2.18 1.3613 1.3614 1.3483 1.3526
0.9374 0.8159 11.1740 11.3953 11.1070 11.1687 1.94 2.53 1.99 1.3509 1.3543 1.3443 1.3464
T = 298.15 K
0.1570 0.9358 20.4636 20.8744 20.1247 20.4456 1.97 3.59 2.05 1.4253 1.4287 1.4111 1.4186
0.2953 0.9256 17.9523 18.2016 17.5096 17.9268 1.37 3.80 1.51 1.4189 1.4123 1.3945 1.4052
0.4181 0.9145 16.0956 16.5355 15.6509 16.0682 2.66 5.35 2.83 1.4121 1.4065 1.3820 1.3935
0.5278 0.8995 14.7292 15.0866 14.3260 14.7029 2.37 5.04 2.54 1.4034 1.3945 1.3722 1.3832
0.6264 0.8755 13.7961 14.2897 13.4510 13.7725 3.45 5.87 3.62 1.3904 1.3899 1.3643 1.3740
0.7155 0.8504 13.0823 13.5105 12.8038 13.0624 3.17 5.23 3.32 1.3770 1.3800 1.3578 1.3659
0.7964 0.8348 12.3810 12.8466 12.1748 12.3657 3.62 5.23 3.74 1.3685 1.3742 1.3524 1.3585
0.8701 0.8119 11.9125 12.1818 11.7764 11.9021 2.21 3.33 2.30 1.3566 1.3612 1.3478 1.3519
0.9378 0.7999 11.3821 11.4962 11.3158 11.3769 0.99 1.57 1.04 1.3501 1.3500 1.3439 1.3459
T = 303.15 K
0.1564 0.9248 20.6280 21.0667 20.2885 20.6106 2.08 3.69 2.17 1.4247 1.4274 1.4094 1.4168
0.2942 0.9016 18.3694 18.6463 17.9193 18.3444 1.48 3.90 1.62 1.4113 1.4113 1.3931 1.4037
0.4168 0.8908 16.4770 16.7356 16.0244 16.4500 1.55 4.25 1.71 1.4046 1.4000 1.3808 1.3922
0.5265 0.8705 15.1828 15.5576 14.7697 15.1567 2.41 5.06 2.58 1.3931 1.3936 1.3712 1.3821
0.6252 0.8559 14.0827 14.4035 13.7324 14.0594 2.23 4.66 2.39 1.3848 1.3835 1.3635 1.3732
0.7145 0.8391 13.2350 13.5058 12.9549 13.2156 2.01 4.08 2.15 1.3754 1.3742 1.3572 1.3652
0.7956 0.8069 12.7900 13.1542 12.5783 12.7748 2.77 4.38 2.88 1.3586 1.3699 1.3519 1.3580
0.8696 0.7909 12.2137 12.4679 12.0749 12.2034 2.04 3.15 2.12 1.3500 1.3600 1.3474 1.3515
0.9375 0.7854 11.5804 12.0059 11.5134 11.5753 3.54 4.10 3.59 1.3467 1.4990 1.3435 1.3455
T = 308.15 K
0.1562 0.9158 20.7508 21.3781 20.4105 20.7336 2.93 4.53 3.01 1.4228 1.4298 1.4076 1.4150
0.2940 0.9016 18.3024 18.8255 17.8555 18.2778 2.78 5.15 2.91 1.4141 1.4158 1.3916 1.4020
0.4166 0.8759 16.6989 17.2305 16.2419 16.6719 3.09 5.74 3.24 1.3996 1.4056 1.3794 1.3907
0.5263 0.8669 15.1951 15.8398 14.7832 15.1694 4.07 6.67 4.23 1.3939 1.3998 1.3699 1.3807
0.6249 0.8498 14.1384 14.7286 13.7882 14.1154 4.01 6.38 4.16 1.3843 1.3901 1.3623 1.3719
0.7143 0.8257 13.4085 13.9863 13.1259 13.3891 4.13 6.15 4.27 1.3712 1.3822 1.3560 1.3639
0.7954 0.8067 12.7554 13.2274 12.5451 12.7404 3.57 5.16 3.68 1.3610 1.3721 1.3507 1.3568
0.8695 0.7895 12.2005 12.6176 12.0624 12.1903 3.31 4.40 3.39 1.3517 1.3641 1.3463 1.3504
0.9375 0.7759 11.6899 11.8883 11.6226 11.6848 1.67 2.23 1.71 1.3444 1.3512 1.3425 1.3445
T = 313.15 K
0.1566 0.9098 20.7511 20.4521 20.3759 20.7293 −1.46 0.37 −1.36 1.4191 1.4056 1.4038 1.4118
0.2946 0.8890 18.3804 18.5576 17.8839 18.3491 0.95 3.63 1.12 1.4057 1.4026 1.3861 1.3974
0.4173 0.8654 16.4854 16.6883 15.9847 16.4516 1.22 4.22 1.42 1.3966 1.3912 1.3727 1.3849
0.5270 0.8566 15.1380 15.5174 14.6811 15.1053 2.45 5.39 2.66 1.3847 1.3854 1.3622 1.3739
0.6256 0.8442 13.9728 14.4572 13.5864 13.9438 3.35 6.02 3.55 1.3765 1.3792 1.3537 1.3641
0.7148 0.8198 13.2255 13.6420 12.9136 13.2011 3.05 5.34 3.23 1.3626 1.3687 1.3468 1.3554
0.7959 0.7908 12.7124 12.7749 12.4773 12.6933 0.49 2.33 0.64 1.3468 1.3501 1.3410 1.3476
0.8698 0.7828 11.9949 12.2468 11.8423 11.9821 2.06 3.30 2.16 1.3415 1.3489 1.3361 1.3405
0.9376 0.7742 11.3963 11.2615 11.3223 11.3899 −1.20 −0.54 −1.14 1.3360 1.3300 1.3319 1.3341

Ramaswamy and Anbananthan model has been extended and corrected for the prediction of refractive index and molar refractivity of binary mixtures which was originally derived for the prediction of acoustical impedance. The results of fittings obtained from the model were utilized properly. The basic doubt regarding this model except the assumption of linearity of refractive index with mole fraction is that these liquids have poor tendency to form dimmers. Calculations were performed using a computer program which allows easily both the adjustable parameters simultaneously or the parameters were changed, manually.

We constructed the data sheet in a computer program, with association constant Kas and CAB as the fitted parameters (CAB is the refractive index in the pure component AB means a hypothetical liquid having only the associate AB. On changing these parameters, the equilibrium concentrations of species [A], [B] and [AB] will change and the refractive index can be computed. The difference between experimental and theoretical refractive indices is used to obtain the sum of squares of deviations. It is assumed that in solution three associates are formed instead of two (pure A, pure B and AB). The values of refractive index in pure associate can be treated as a fitted one with the value of Kas. The mixing function, ΔR was represented mathematically by the Redlich–Kister equation (Redlich and Kister, 1948) for correlating the experimental data as

(11)
y = x 1 ( 1 - x 1 ) i = 0 p A i ( 2 x 1 - 1 ) i where y refers to ΔR, x1 is the mole fraction and Ai is the coefficient. The values of coefficients Ai were determined by a multiple regression analysis based on the least squares method and are summarized along with the standard deviations between the experimental and fitted values of the respective function in Table 2. The standard deviation is defined by
(12)
σ = i = 1 m ( y exp i - y cal i ) 2 / ( m - p ) 1 / 2
where m is the number of experimental points and p is the number of adjustable parameters. For the case the σ values lie between 0.07 and 4.20 and the largest σ value corresponds to acetonitrile + DMF mixture at 313.15 K.

Molar refractivity was obtained from refractive index data according to the following expression:

(13)
R = [ n 2 - 1 / n 2 + 2 ] M / ρ where M is the mean molecular weight of the mixture and ρ is the mixture density.

The molar refractivity deviation function shown in Figs. 1 and 2 has been calculated by the following expression:

(14)
Δ R = R - Φ 1 R 1 - Φ 2 R 2 where Φ 1 and Φ 2 are volume fractions which are obtained by the relation (Araguppi et al., 1999; Aralaguppi et al., 1990; Aralaguppi et al., 1999) as Φ i = ( x i v i / 2 x i v i ) . There is no general rule that states how to calculate a refractivity function. Konti et al. (1997) reported deviations in molar refractivity with volume fraction referring to the Lorentz–Lorentz mixing rules.
Plot of molar refractivity deviation, ΔR, with volume fraction, Φ 1 , for Φ acetonitrile + (1− Φ ) DMA at 293.15, 298.15, 303.15 and 313.15 K: ♦, Lorenz–Lorenz mixing rule (Eq. (10)), ■, Ramaswamy and Anbananthan model (Eq. (4)), ▴, model devised by Glinski (Eq. (9)).
Figure 1
Plot of molar refractivity deviation, ΔR, with volume fraction, Φ 1 , for Φ acetonitrile + (1− Φ ) DMA at 293.15, 298.15, 303.15 and 313.15 K: ♦, Lorenz–Lorenz mixing rule (Eq. (10)), ■, Ramaswamy and Anbananthan model (Eq. (4)), ▴, model devised by Glinski (Eq. (9)).
Plot of molar refractivity deviation, ΔR, with volume fraction, Φ 1 , for Φ acetonitrile + (1− Φ ) DMF at 293.15, 298.15, 303.15 and 308.15 K: ♦, Lorenz–Lorenz mixing rule (Eq. (10)), ■, Ramaswamy and Anbananthan model (Eq. (4)), ▴, model devised by Glinski (Eq. (9)).
Figure 2
Plot of molar refractivity deviation, ΔR, with volume fraction, Φ 1 , for Φ acetonitrile + (1− Φ ) DMF at 293.15, 298.15, 303.15 and 308.15 K: ♦, Lorenz–Lorenz mixing rule (Eq. (10)), ■, Ramaswamy and Anbananthan model (Eq. (4)), ▴, model devised by Glinski (Eq. (9)).

McAllister (1960) multibody interaction model which is based on the Eyring’s theory of absolute reaction rates and for liquids the free energy of activation for viscosity is additive on a number fractions and that interactions of like and unlike molecules must be considered hence it can be applied to refractive index data. The three body model is defined as

(15)
ln n = x 1 3 ln n 1 + 3 x 1 2 x 2 ln a + 3 x 1 x 2 2 ln b + x 2 3 ln n 2 - ln ( x 1 + x 2 M 2 / M 1 ) + 3 x 1 2 x 2 ln ( 2 + M 2 / M 1 ) / 3 ] + 3 x 1 x 2 2 ln [ ( 1 + 2 M 2 / M 1 ) / 3 ] + x 2 3 ln ( M 2 / M 1 ) ] and the four body model is given by
(16)
ln n = x 1 4 ln n 1 + 4 x 1 3 x 2 ln a + 6 x 1 2 x 2 2 ln b 4 x 1 x 2 3 ln c + x 2 4 ln η 2 - ln ( x 1 + x 2 M 2 / M 1 ) ] + 4 x 1 3 x 2 ln [ ( 3 + M 2 / M 1 ) / 4 ] + 6 x 1 2 x 2 2 ln ( 1 + M 2 / M 1 ) / 2 ] + 4 x 1 x 2 3 ln [ ( 1 + 3 M 2 / M 1 ) / 4 ] + x 2 4 ln ( M 2 / M 1 ) ]
where n is the refractive index of the mixture and x1, n1, M1, x2, n2 and M2 are the mole fractions, refractive indices, and molecular weights of pure components 1 and 2, respectively; a, b and c are adjustable parameters that are characteristic of the system. In the above Eqs. (15) and (16) the coefficients a, b and c have been calculated using the least squares procedure. The estimated parameters of the refractive index equations and the standard deviations, σ, between the calculated and experimental values are given in Table 3. It is observed that the four body model of the McAllister equation correlated the refractive index of the mixture to a significantly higher degree of accuracy for all of the systems than does the three body model. Furthermore, the values of the McAllister parameters have shown a decreasing tendency with rise in temperature. Generally, McAllister’s models are adequate in correlation for those systems as evidenced by small deviations.

The minimum and maximum average percent deviation (%ΔR) in molar refractivity and average deviation in refractive index for all the systems are found to be 1.24 & 8.72 and 0.0006 & 0.38 at 308.15 K, 313.15 & 293.15 K, respectively, as indicated in Table 4. With the increase of volume fraction ( Φ ), the values of refractive index obtained from all the models decrease at all temperatures except in few places. Results of molar refractivity computed from Eq. (13) for the entire systems show regular trend except in few places as shown in Table 5. The minimum and maximum percent deviation (%ΔR) in molar refractivity are 0.12 at 313.15 K for acetonitrile + formamide and 11.03 at 308.15 K for acetonitrile + formamide system, respectively.

The results of deviation in molar refraction, ΔR, plotted as a function of Φ i for acetonitrile + DMA mixtures at 298.15, 303.15, 308.15 and 313.15 K are displayed in the Figs. 1 and 2 which indicate negative values for all the mixtures. In all the cases, theoretical molar refractivity computed from all the models agree well within the experimental precision. The trend in all the figures is almost similar and negative. Molar refraction increases with molecular weight for all the systems. Density and refractive index depend on molecular weight and nature of solution and values decrease with the increase of temperature as evidenced in Table 5. Very close values of McAllister three and four body interaction models with the experimental data confirm the success of our experimental findings as evidenced in Table 4.

Finally, it can be concluded that the expressions used for interpolating the experimental data measured in this work provide good results as can be seen by inspecting the σ values obtained. All the models based on associated processes and non-associated processes give more reliable results and are helpful in deducing the internal structure of associates through the fitted values of refractive index in a hypothetical pure associate and observed dependence of concentration on the composition of a mixture.

Acknowledgments

Authors are extremely thankful to U.G.C., New Delhi, for financial support (Grant 34-332/2008) and Department of Chemistry, V.S.S.D. College for cooperation.

References

  1. , , , . J. Chem. Eng. Data. 1999;44:441-445.
  2. , , , . J. Chem. Eng. Data. 1990;44:435-440.
  3. , , , . J. Chem. Eng. Data. 1999;44(1999):446-450.
  4. , , . J. Chem. Eng. Data. 1999;44:965-969.
  5. , . J. Chem. Phys.. 2003;118:2301-2307.
  6. , , . Molecular Connectivity in Chemistry and Drug Research. Sand Diego: Academic Press; .
  7. , , , . J. Chem. Eng. Data. 1997;42:614-618.
  8. , . AIChE J.. 1960;6:427-431.
  9. , . Proc. Indian Acad. Sci.. 2003;115:47-1547.
  10. , , , , . J. Chem. Eng. Data. 2003;48:1483-1488.
  11. , , , , . Indian J. Pure Appl. Phys.. 1992;30:94-97.
  12. , , . Acustica. 1981;48:281-282.
  13. , . Boiling point. In: , , , eds. Hand Book of Chemical Property Estimation. Washington: American Chemical Society; .
    [Google Scholar]
  14. , , . Ind. Eng. Chem.. 1948;40(3):45-348.
  15. , , , . Techniques of Chemistry, Organic Solvents.Physical Properties and Methods of Purification. Vol vol. 2. New York: John Wiley & Sons; .
  16. , , , , . E.J. Chem.. 2007;4:343-349.
  17. , , , , , . J. Mol. Liq.. 2011;158:131-138.
  18. , , , , . J. Chem. Eng. Data. 1992;37:310-313.
  19. , . Physico-Chemical Constants of Pure Organic Compounds. New York: Elsevier; .
Show Sections