Translate this page into:
Density, refractive index and molar refractivity of binary liquid mixture at 293.15, 298.15, 303.15, 308.15 and 313.15 K
⁎Corresponding author. Tel.: +91 0512 2560070, mobile: +91 9838516217; fax: +91 2563842. rajeevshukla47@rediffmail.com (R.K. Shukla)
-
Received: ,
Accepted: ,
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.
Abstract
Densities and refractive indices were measured for the binary liquid mixtures formed by formamide, N-methylacetamide, di-methylformamide and di-methylacetamide with acetonitrile at T = 293.15, 298.15, 303.15, 308.15 and 313.15 K and atmospheric pressure over the whole concentration range. Lorentz–Lorentz mixing rule, Ramaswamy and Anbananthan model and model devised by Glinski were used to study the refractive index and molar refractivity. These results have been discussed to study the type of mixing behavior between the mixing molecules. The measured data were fitted to the Redlich–Kister polynomial relation to estimate the binary coefficients and standard errors. Furthermore, McAllister multibody interaction model is used to correlate the binary refractive index with the experimental findings. It is observed that molar refractivity, molecular interaction and association constant can be better understood from these models.
Keywords
Binary liquid
Refractive index
Lorentz
Refractivity
Association constant
Ramaswamy and Anbananthan
Redlich
McAllister
1 Introduction
The knowledge of refractive index property at different temperatures of liquid mixtures is an important step for their structure and characterization. Along with other thermodynamic data, refractive index values are also useful for practical purposes in engineering calculations. Refractive index is useful to assess purity of substances, to calculate the molecular electronic polarizability (Kier and Hall, 1976) to estimate the boiling point with Meissner’s method (Rechsteiner, 1990) or to estimate the other thermodynamic properties. In recent past, several workers (Sharma et al., 2007; Mehra, 2003; Fermeglia and Torriano, 1999; Nayak et al., 2003; Pandey et al., 1992) have applied various mixing rules in binary and ternary liquid mixtures to calculate the refractive index and to check the validity of these mixing rules. The mixing behavior of such liquid mixtures containing acetonitrile is interesting due to the presence of cyano group coupled with amide linkage resulting interactions in the liquid mixtures. In this work, we present the experimental data on density and refractive index of binary liquid mixtures of formamide, N-methyl acetamide (NMA), di-methylformamide (DMF) and di-methylacetamide (DMA) with acetonitrile at T = 293.15, 298.15, 303.15, 308.15 and 313.15 K and atmospheric pressure over the whole concentration range. These data were analyzed in terms of Lorentz–Lorentz mixing rule (Tasic et al., 1992) model of Ramaswamy and Anbananthan (1981) and Shukla et al. (2011) and model suggested by Glinski (2003). Models (Ramaswamy and Anbananthan, 1981; Shukla et al., 2011; Glinski, 2003), associated, are based on the association constant as an adjustable parameter whereas model (Tasic et al., 1992), non-associated is based on the additivity of liquids. For that purpose, we have selected the liquids having weak interacting ability but immense sense of technological significance in chemical industries. Using these experimental data, deviation in molar refraction (ΔR) has been studied and fitted to a Redlich–Kister type polynomial equation (Redlich and Kister, 1948) to derive binary coefficients and estimated standard errors. An attempt has also been made to correlate the experimental properties with the McAllister (1960) equation which is based on Eyring theory of absolute reaction rates and for liquids, the free energy of activation is additive on a number fraction.
The association phenomenon has been related usually to the deviation of different quantities from additivity and the model (Ramaswamy and Anbananthan, 1981; Shukla et al., 2011) is simple averaged geometrical derivations in terms of equilibrium. The mixing behavior of liquids and their correlation with molecular interaction have also been made using different liquid models. It is our first attempt to correlate all the models (associated and non-associated) to predict the mixing behavior of binary liquid mixtures from refractive index data.
2 Experimental section
2.1 Materials
High purity and AR grade samples of formamide, N-methyl acetamide (NMA), di-methylformamide (DMF) and di-methylacetamide (DMA) and acetonitrile used in this experiment were obtained from Merck Co. Inc., Germany, and purified by distillation in which the middle fraction was collected. The liquids were stored in dark bottles over 0.4 mm molecular sieves to reduce water content and were partially degassed with a vacuum pump. The purity of each compound was checked by gas chromatography and the results indicated that the mole fraction purity was higher than 0.99. All the materials were used without further purification. The purity of chemicals used was confirmed by comparing the densities and refractive indices with those reported in the literature as shown in Table 1.
Compound
T
V (cm3 mole−1)
ρexp (g cm−3)
ρlit (g cm−3)a
nexp
nlita
Acetonitrile
293.15
51.5379
0.7865
0.7822
1.3409
1.34411
298.15
52.5540
0.7811
0.77649
1.3402
1.34163
303.15
53.0841
0.7733
0.77125
1.3392
–
308.15
53.5551
0.7665
–
1.3283
–
313.15
53.9776
0.7605
–
1.3260
–
Formamide
293.15
39.7879
1.1320
1.1339
1.4409
1.44754
298.15
39.8937
1.1290
1.12915
1.4370
1.44682
303.15
40.0355
1.1250
–
1.4359
–
308.15
40.1784
1.1210
–
1.4280
–
313.15
40.5145
1.1117
–
1.4250
–
NMA
293.15
76.4404
0.9563
–
1.4279
–
298.15
76.8502
0.9512
–
1.4270
–
303.15
76.9311
0.9502
0.9520
1.4261
–
308.15
77.2074
0.9468
0.94604
1.4250
1.4253
313.15
77.7246
0.9405
–
1.4230
–
N,N-DMF
293.15
76.5260
0.9551
0.94873
1.4285
1.43047
298.15
76.9287
0.9501
0.94387
1.4267
1.42817
303.15
77.5984
0.9419
0.9412
1.4240
–
308.15
78.1126
0.9357
–
1.4221
–
313.15
78.3807
0.9325
0.9310
1.4205
–
N,N-DMA
293.15
90.5331
0.9623
0.9615
1.4361
–
298.15
91.6859
0.9502
0.97633
1.4342
1.4384
303.15
93.0769
0.9360
0.93169
1.4320
1.4356
308.15
94.0008
0.9268
–
1.4300
–
313.15
94.4799
0.9221
0.9232
1.4285
–
2.2 Apparatus and procedure
Before each series of experiments, we calibrated the instrument at atmospheric pressure with doubly distilled water. The densities of the pure components and their mixtures were measured with the bi capillary pyknometer with an accuracy of ±5.0 × 10−4 kg m−3. The liquid mixtures were prepared by mass in an air tight stopped bottle using an electronic balance model SHIMADZUAX-200 accurate to within ±0.1 mg. The average uncertainty in the composition of the mixtures was estimated to be less than ±0.0001. All molar quantities were based on the IUPAC relative atomic mass table.
Refractive index for sodium D-line was measured using a thermostatically controlled Abbe refractometer (Agato 3T, Japan). Calibration of the instrument was performed with double distilled water. A minimum of three readings were taken for each composition and the average value was considered in all calculations. Refractive index data are accurate to ±0.0001 units.
3 Theoretical
Ramaswamy and Anbananthan (1981) and Shukla et al. (2011) proposed the model based on the assumption of linearity of acoustic impedance with the mole fraction of components. Further Glinski (2003) assumed that when solute is added to solvent, the molecules interact according to the equilibrium as
By applying the condition of linearity with composition
The general idea of this model can be, however, exploited as
From Eq. (6) one can obtain the value of Kas as
Glinski (2003) suggested that experimental results with significantly well accuracy can be produced from the following equation as
Lorentz–Lorentz (L–L) relation (Tasic et al., 1992) has a widest application during the evaluation of refractive indices of mixture and density of pure components as well as density of the mixture and represented in terms of specific refraction as
4 Results and discussion
Table 1 presents the comparison of experimental densities and refractive indices of acetonitrile, formamide, NMA, DMF and DMA with literature values (Timmermans, 1950; Riddick et al., 1986) at 293.15, 298.15, 303.15, 308.15 and 313.15 K. Coefficients of the Redlich–Kister polynomials and their standard deviations (σ) are presented in Table 2. Parameters of McAllister three body and four body interaction models and standard deviations for refractive indices are presented in Table 3. Table 4 presents the comparison of average percent molar refractivity deviation (%ΔR), average molar refractivity deviation (ΔR), average refractive index deviation (Δn) obtained from Lorentz–Lorentz mixing rule, Ramaswamy and Anbananthan model, model devised by Glinski and MacAllister three body and four body models. Values of volume fraction (
), density of the mixture (ρ), experimental refractive index (nexp), experimental molar refractivity (Rexp), theoretical molar refractivity (Rtheo), percent deviation in molar refractivity values (%ΔR) and theoretical refractive index (ntheo) obtained from various models (Eqs. (4), (9), and (10)) for acetonitrile + formamide, acetonitrile + NMA, acetonitrile + DMF and acetonitrile + DMA over the whole composition range at five temperatures were recorded in Table 5.
T
A0
A1
A2
A3
σ
Acetonitrile + formamide
ΔR
293.15
−2.0315
−0.1889
−0.9531
−2.8605
0.0904
298.15
−1.9217
0.3225
0.0652
−7.7578
0.0981
303.15
−1.6476
−0.1599
−0.5022
−6.6511
0.1121
308.15
−0.8264
−1.3079
2.7451
4.8070
0.0903
313.15
−0.4447
1.9884
−2.7031
−4.8913
0.0705
Acetonitrile + NMA
ΔR
293.15
1.2501
−0.4386
−2.3835
5.4272
0.1704
298.15
0.7610
1.5891
−4.3049
−1.8726
0.1178
303.15
1.5405
−0.9992
−4.7506
−0.2562
0.1422
308.15
1.7268
−2.6296
−6.4052
3.2337
0.1500
313.15
2.2992
−7.9806
−5.3893
17.5480
0.1800
Acetonitrile + DMF
ΔR
293.15
0.4292
−4.0572
0.5360
13.8886
0.1243
298.15
0.5172
−1.3493
2.6418
3.3518
0.1205
303.15
−0.3637
−3.3653
−0.7733
5.8006
0.2001
308.15
−1.1838
−0.4123
−6.8095
2.7590
0.0882
313.15
−22.5512
21.7620
71.9787
−81.9660
4.2072
Acetonitrile + DMA
ΔR
293.15
−0.7744
0.8444
2.0731
0.0058
0.0775
298.15
−1.3985
1.1097
7.6152
−6.6792
0.1061
303.15
0.0721
−6.2540
−0.9942
20.2712
0.1930
308.15
0.4789
−1.0475
4.0208
3.8755
0.0789
313.15
−1.0524
7.1479
1.5652
−11.4325
0.2420
Component
Temperature
McAllister three body (n)
McAllister four body (n)
a
b
σ
a
b
c
σ
Acetonitrile + Formamide
293.15
1.3844
1.4289
0.0029
0.3515
3.1291
0.5709
0.0546
298.15
1.3829
1.4324
0.0032
1.3811
1.3899
1.4440
0.0028
303.15
1.3827
1.4326
0.0032
1.3814
1.3885
1.4448
0.0028
308.15
1.3889
1.4019
0.0048
1.3935
1.3577
1.4312
0.0037
313.15
1.3720
1.3980
0.0026
1.3510
1.4023
1.3941
0.0022
Acetonitrile + NMA
293.15
1.4300
1.4562
0.0473
1.3487
1.5770
1.3435
0.0447
298.15
1.4498
1.4261
0.0022
1.4050
1.4563
1.4040
0.0015
303.15
1.4364
1.4355
0.0042
1.3834
1.4847
1.3881
0.0025
308.15
1.4296
1.4300
0.0042
1.3805
1.4721
1.3884
0.0030
313.15
1.4281
1.4223
0.0008
1.3969
1.4160
1.4213
0.0008
Acetonitrile + DMF
293.15
1.4537
1.4300
0.0033
1.4301
1.4081
1.4456
0.0027
298.15
1.4661
1.4342
0.0023
1.4389
1.4166
1.4480
0.0013
303.15
1.4389
1.4405
0.0018
1.4066
1.4338
1.4326
0.0046
308.15
1.4242
1.4218
0.0045
1.3726
1.4710
1.3808
0.0026
313.15
1.4306
1.4257
0.0018
1.3994
1.4176
1.4240
0.0018
Acetonitrile + DMA
293.15
1.4634
1.4365
0.0021
1.4648
1.4366
1.4500
0.0020
298.15
1.4572
1.4264
0.0032
1.4714
1.3989
1.4662
0.0015
303.15
1.4868
1.3932
0.0496
1.5610
1.2492
1.5670
0.0479
308.15
1.4609
1.4318
0.0035
1.4778
1.3959
1.4743
0.0008
313.15
1.4452
1.4032
0.0039
1.4322
1.4451
1.3982
0.0035
Temperature
Kas × 104
%ΔRLL Eq. (10)
%ΔRRS Eq. (4)
%ΔRGLI Eq. (9)
nLL Eq. (10)
nRS Eq. (4)
nGLI Eq. (9)
nMcA Eq. (15)
nMcA Eq. (16)
Acetonitrile + formamide
293.15
1.3000
2.97
1.79
3.11
0.0180
0.0081
0.0140
0.0021
0.3865
298.15
1.0000
3.41
2.20
3.54
0.0169
0.0099
0.0159
0.0023
0.0019
303.15
1.2000
3.57
2.34
3.70
0.0152
0.0105
0.0166
0.0024
0.0020
308.15
1.1200
3.71
8.72
3.86
0.0056
0.0370
0.0164
0.0042
0.0029
313.15
1.1100
2.44
1.24
2.58
0.0075
0.0051
0.0108
0.0020
0.0018
Acetonitrile + NMA
293.15
1.4000
2.91
3.20
3.02
0.0063
0.0137
0.0288
0.0212
0.0242
298.15
1.5000
2.14
2.42
2.24
0.0043
0.0105
0.0097
0.0018
0.0012
303.15
1.6000
1.90
2.18
1.96
0.0066
0.0095
0.0085
0.0036
0.0022
308.15
1.7000
1.37
1.69
1.43
0.0077
0.0073
0.0061
0.0032
0.0023
313.15
1.8000
1.61
2.03
1.74
0.0061
0.0084
0.0072
0.0006
0.0006
Acetonitrile + DMF
293.15
1.1800
2.68
3.95
2.79
0.0059
0.0172
0.0121
0.0028
0.0020
298.15
1.1900
3.81
5.00
3.92
0.0061
0.0221
0.0173
0.0020
0.0011
303.15
1.2100
2.41
3.59
2.51
0.0050
0.0157
0.0110
0.0017
0.0032
308.15
1.3200
1.24
1.94
1.30
0.0129
0.0083
0.0055
0.0036
0.0023
313.15
1.3300
2.07
3.32
2.19
0.0058
0.0141
0.0091
0.0016
0.0014
Acetonitrile + DMA
293.15
1.3400
3.03
4.98
3.16
0.0035
0.0220
0.0139
0.0019
0.0016
298.15
1.3500
2.42
4.33
2.55
0.0042
0.0189
0.0111
0.0025
0.0014
303.15
1.3600
2.23
4.14
2.36
0.0204
0.0333
0.0255
0.0240
0.0265
308.15
1.3700
3.28
5.16
3.40
0.0074
0.0226
0.0149
0.0030
0.0006
313.15
1.3800
1.80
3.46
1.92
0.0053
0.0145
0.0080
0.0033
0.0030
ρmix (g cm3)
RLL Eq. (10)
Rexp
RRS Eq. (4)
RGLI Eq. (9)
%ΔRLL
%ΔRRS
%ΔRGLI
nexp
nLL (Eq. (10))
nRS (Eq. (4))
nGLI (Eq. (9))
Acetonitrile + formamide
T = 293.15 K
0.1531
1.1258
10.1213
10.4027
10.1943
10.1116
2.70
2.00
2.80
1.4387
1.4455
1.4286
1.4246
0.2892
1.0992
9.9640
10.3566
10.0854
9.9483
3.79
2.62
3.94
1.4298
1.4405
1.4169
1.4105
0.4108
1.0835
9.7429
9.9907
9.8913
9.7243
2.48
0.99
2.67
1.4105
1.4401
1.4058
1.3981
0.5203
1.0405
9.8022
10.1990
9.9651
9.7824
3.89
2.29
4.08
1.4058
1.4264
1.3952
1.3871
0.6193
1.0102
9.7758
10.2255
9.9374
9.7568
4.40
2.82
4.58
1.3978
1.4181
1.3851
1.3773
0.7094
0.9705
9.8718
10.2417
10.0215
9.8546
3.61
2.15
3.78
1.3848
1.4050
1.3755
1.3685
0.7915
0.9403
9.9024
10.2041
10.0281
9.8883
2.96
1.72
3.10
1.3735
1.3958
1.3663
1.3606
0.8668
0.9015
10.0541
10.2753
10.1473
10.0440
2.15
1.25
2.25
1.3625
1.3822
1.3574
1.3534
0.9361
0.8503
10.3916
10.4727
10.4435
10.3860
0.78
0.28
0.83
1.3501
1.3623
1.3490
1.3468
T = 298.15 K
0.1553
1.1015
10.2680
10.6322
10.3447
10.2583
3.43
2.70
3.52
1.4387
1.4334
1.4251
1.4210
0.2927
1.0825
10.0469
10.4993
10.1735
10.0316
4.31
3.10
4.45
1.4290
1.4331
1.4138
1.4072
0.4149
1.0657
9.8412
10.1554
9.9960
9.8232
3.09
1.57
3.27
1.4104
1.4333
1.4030
1.3952
0.5245
1.0345
9.8007
10.2492
9.9683
9.7818
4.38
2.74
4.56
1.4054
1.4262
1.3928
1.3845
0.6233
0.9985
9.8379
10.3384
10.0049
9.8197
4.84
3.23
5.02
1.3975
1.4163
1.3830
1.3751
0.7128
0.9624
9.9087
10.3231
10.0626
9.8923
4.01
2.52
4.17
1.3846
1.4057
1.3737
1.3666
0.7943
0.9351
9.9180
10.2511
10.0467
9.9046
3.25
1.99
3.38
1.3731
1.3988
1.3648
1.3590
0.8687
0.8792
10.2755
10.5281
10.3726
10.2656
2.40
1.48
2.49
1.3622
1.3775
1.3562
1.3521
0.9371
0.8492
10.3783
10.4809
10.4312
10.3731
0.98
0.47
1.03
1.3499
1.3683
1.3480
1.3459
T = 303.15 K
0.1562
1.0998
10.2589
10.6338
10.3374
10.2493
3.53
2.79
3.62
1.4380
1.4337
1.4240
1.4199
0.2940
1.0735
10.1048
10.5852
10.2353
10.0895
4.54
3.31
4.68
1.4289
1.4304
1.4127
1.4060
0.4164
1.0538
9.9254
10.2635
10.0851
9.9073
3.29
1.74
3.47
1.4101
1.4295
1.4020
1.3940
0.5261
1.0258
9.8564
10.3271
10.0287
9.8375
4.56
2.89
4.74
1.4050
1.4242
1.3917
1.3833
0.6248
0.9802
9.9935
10.5197
10.1668
9.9750
5.00
3.35
5.18
1.3970
1.4098
1.3820
1.3739
0.7142
0.9594
9.9117
10.3410
10.0690
9.8954
4.15
2.63
4.31
1.3840
1.4067
1.3726
1.3655
0.7953
0.9256
9.9917
10.3513
10.1241
9.9784
3.47
2.19
3.60
1.3729
1.3968
1.3637
1.3579
0.8695
0.8728
10.3222
10.5974
10.4217
10.3124
2.60
1.66
2.69
1.3619
1.3772
1.3552
1.3510
0.9374
0.8402
10.4610
10.5658
10.5153
10.4558
0.99
0.48
1.04
1.3489
1.3667
1.3470
1.3448
T = 308.15 K
0.1569
1.0856
10.2091
10.3831
9.9464
10.1983
1.68
4.21
1.78
1.4199
1.4208
1.3998
1.4114
0.2951
1.0568
10.0653
10.3470
9.6011
10.0481
2.72
7.21
2.89
1.4105
1.4158
1.3772
1.3970
0.4177
1.0215
10.0245
10.5834
9.4163
10.0039
5.28
11.03
5.48
1.4099
1.4073
1.3594
1.3846
0.5274
0.9856
10.0284
10.4048
9.3348
10.0067
3.62
10.28
3.83
1.3904
1.3979
1.3458
1.3736
0.6260
0.9508
10.0577
10.4341
9.3380
10.0368
3.61
10.50
3.81
1.3801
1.3883
1.3359
1.3639
0.7152
0.9256
10.0168
10.3693
9.3357
9.9983
3.40
9.97
3.58
1.3700
1.3827
1.3293
1.3552
0.7962
0.8809
10.2241
10.7356
9.6238
10.2088
4.76
10.36
4.91
1.3675
1.3675
1.3255
1.3474
0.8701
0.8405
10.4269
10.9501
9.9677
10.4158
4.78
8.97
4.88
1.3599
1.3538
1.3243
1.3404
0.9377
0.8028
10.6390
11.0323
10.3800
10.6330
3.57
5.91
3.62
1.3480
1.3409
1.3253
1.3341
T = 313.15 K
0.1568
1.0807
10.1923
10.2642
10.2764
10.1816
0.70
−0.12
0.81
1.4123
1.4196
1.4128
1.4085
0.2950
1.0559
10.0117
10.2513
10.1511
9.9946
2.34
0.98
2.50
1.4058
1.4163
1.4013
1.3943
0.4176
1.0158
10.0183
10.2889
10.1924
9.9978
2.63
0.94
2.83
1.3945
1.4056
1.3903
1.3819
0.5273
0.9758
10.0661
10.3897
10.2564
10.0444
3.11
1.28
3.32
1.3854
1.3942
1.3798
1.3710
0.6259
0.9365
10.1475
10.5636
10.3379
10.1265
3.94
2.14
4.14
1.3789
1.3825
1.3698
1.3614
0.7151
0.8905
10.3463
10.7441
10.5241
10.3272
3.70
2.05
3.88
1.3687
1.3672
1.3602
1.3528
0.7961
0.8726
10.2564
10.5195
10.4037
10.2410
2.50
1.10
2.65
1.3555
1.3643
1.3511
1.3450
0.8700
0.8405
10.3610
10.6291
10.4694
10.3499
2.52
1.50
2.63
1.3482
1.3545
1.3424
1.3380
0.9377
0.7992
10.6191
10.5675
10.6789
10.6131
0.49
-1.05
0.43
1.3302
1.3398
1.3340
1.3317
Acetonitrile + NMA
T = 303.15 K
0.2023
0.9357
17.0320
17.3975
17.0260
17.0160
2.10
2.14
2.19
1.4157
1.4199
1.4097
1.4094
0.3538
0.9235
15.3004
15.7587
15.2539
15.2795
2.91
3.20
3.04
1.4083
1.4100
1.3951
1.3959
0.4778
0.8895
14.4204
14.9367
14.3497
14.3984
3.46
3.93
3.60
1.3903
1.4013
1.3835
1.3850
0.5898
0.8764
13.4249
14.1096
13.3656
13.4045
4.85
5.27
5.00
1.3829
1.3976
1.3740
1.3753
0.6827
0.8658
12.6586
13.1657
12.6060
12.6411
3.85
4.25
3.98
1.3769
1.3845
1.3662
1.3673
0.7647
0.8465
12.1655
12.6080
12.1257
12.1513
3.51
3.82
3.62
1.3668
1.3756
1.3595
1.3604
0.8346
0.8351
11.6974
11.8827
11.6667
11.6867
1.56
1.82
1.65
1.3607
1.3612
1.3539
1.3545
0.8982
0.8252
11.2834
11.5844
11.2678
11.2765
2.60
2.73
2.66
1.3554
1.3599
1.3489
1.3492
0.9540
0.8051
11.0899
11.2439
11.0562
11.0866
1.37
1.67
1.40
1.3453
1.3501
1.3446
1.4974
T = 303.15 K
0.2046
0.9305
17.0905
17.2604
17.0659
17.0746
0.98
1.13
1.08
1.4160
1.4135
1.4082
1.4084
0.3570
0.9197
15.3294
15.7864
15.2734
15.3086
2.90
3.25
3.03
1.4102
1.4089
1.3938
1.3949
0.4813
0.8807
14.5323
15.0495
14.4567
14.5104
3.44
3.94
3.58
1.3903
1.4002
1.3824
1.3840
0.5933
0.8704
13.4888
14.0326
13.4279
13.4687
3.88
4.31
4.02
1.3850
1.3921
1.3731
1.3744
0.6858
0.8595
12.7262
13.1270
12.6733
12.7089
3.05
3.46
3.19
1.3794
1.3801
1.3654
1.3665
0.7673
0.8405
12.2301
12.5317
12.1910
12.2161
2.41
2.72
2.52
1.3698
1.3701
1.3588
1.3597
0.8365
0.8305
11.7430
11.8801
11.7132
11.7325
1.15
1.41
1.24
1.3648
1.3589
1.3532
1.3539
0.8995
0.8205
11.3317
11.3620
11.3169
11.3250
0.27
0.40
0.33
1.3598
1.3500
1.3484
1.3487
0.9546
0.8015
11.1259
11.2594
11.1232
11.1226
1.19
1.21
1.22
1.3504
1.3489
1.3442
1.3442
T = 303.15 K
0.2060
0.9108
17.4263
17.6150
17.3527
17.4103
1.07
1.49
1.16
1.4064
1.4130
1.4060
1.4075
0.3591
0.8998
15.6384
16.0869
15.5483
15.6175
2.79
3.35
2.92
1.4012
1.4075
1.3921
1.3940
0.4835
0.8712
14.6638
15.1900
14.5643
14.6420
3.46
4.12
3.61
1.3871
1.3995
1.3810
1.3832
0.5954
0.8652
13.5466
14.0467
13.4694
13.5268
3.56
4.11
3.70
1.3844
1.3899
1.3719
1.3737
0.6877
0.8501
12.8466
13.2317
12.7821
12.8295
2.91
3.40
3.04
1.3771
1.3788
1.3644
1.3659
0.7689
0.8357
12.2830
12.4633
12.2360
12.2692
1.45
1.82
1.56
1.3702
1.3655
1.3580
1.3591
0.8377
0.8256
11.7978
11.6866
11.7630
11.7875
−0.95
−0.65
−0.86
1.3654
1.3501
1.3526
1.3534
0.9003
0.7958
11.6706
11.6179
11.6523
11.6638
−0.45
−0.30
−0.39
1.3509
1.3468
1.3479
1.3483
0.9550
0.7853
11.3447
11.2952
11.3406
11.3415
−0.44
−0.40
−0.41
1.3459
1.3423
1.3438
1.3438
T = 308.15 K
0.2069
0.9007
17.5779
17.6987
17.4821
17.5617
0.68
1.22
0.77
1.4023
1.4100
1.4043
1.4063
0.3603
0.8795
15.9574
16.2728
15.8510
15.9361
1.94
2.59
2.07
1.3923
1.4023
1.3905
1.3929
0.4848
0.8654
14.7223
15.0544
14.6124
14.7005
2.21
2.94
2.35
1.3857
1.3925
1.3795
1.3821
0.5967
0.8556
13.6611
14.2043
13.5764
13.6412
3.82
4.42
3.96
1.3813
1.3899
1.3706
1.3725
0.6888
0.8456
12.8795
13.1076
12.8102
12.8624
1.74
2.27
1.87
1.3768
1.3726
1.3631
1.3648
0.7698
0.8298
12.3363
12.3823
12.2860
12.3225
0.37
0.78
0.48
1.3693
1.3600
1.3568
1.3580
0.8384
0.8198
11.8487
11.7359
11.8118
11.8385
−0.96
−0.65
−0.87
1.3646
1.3490
1.3515
1.3523
0.9008
0.7902
11.7214
11.6759
11.7019
11.7146
−0.39
−0.22
−0.33
1.3503
1.3460
1.3468
1.3472
0.9552
0.7805
11.3838
11.3616
11.3791
11.3806
−0.19
−0.15
−0.17
1.3458
1.3422
1.3427
1.3428
T = 313.15 K
0.2071
0.8798
17.8412
18.0763
17.7570
17.8203
1.30
1.77
1.42
1.3910
1.4089
1.4007
1.4023
0.3606
0.8697
15.9421
16.3079
15.8422
15.9150
2.24
2.86
2.41
1.3851
1.3982
1.3854
1.3873
0.4851
0.8556
14.6661
15.0200
14.5584
14.6383
2.36
3.07
2.54
1.3774
1.3865
1.3731
1.3754
0.5970
0.8425
13.6249
13.9268
13.5416
13.5994
2.17
2.77
2.35
1.3703
1.3748
1.3632
1.3649
0.6891
0.8346
12.7838
13.0216
12.7152
12.7621
1.83
2.35
1.99
1.3659
1.3645
1.3549
1.3564
0.7700
0.8194
12.2113
12.4016
12.1617
12.1938
1.53
1.93
1.68
1.3580
1.3556
1.3479
1.3489
0.8386
0.8008
11.8332
12.0112
11.7961
11.8200
1.48
1.79
1.59
1.3485
1.3489
1.3419
1.3427
0.9009
0.7824
11.5275
11.6073
11.5087
11.5189
0.69
0.85
0.76
1.3393
1.3400
1.3368
1.3371
0.9553
0.7615
11.3428
11.4415
11.3389
11.3387
0.86
0.90
0.90
1.3290
1.3356
1.3322
1.3322
Acetonitrile + DMF
T = 293.15 K
0.1551
0.9391
17.6433
17.8874
17.4617
17.6297
1.36
2.38
1.44
1.4189
1.4211
1.4097
1.4141
0.2923
0.9297
15.9640
16.5653
15.7119
15.9441
3.63
5.15
3.75
1.4128
1.4196
1.3951
1.4017
0.4146
0.9158
14.7188
15.1063
14.4522
14.6967
2.56
4.33
2.71
1.4047
1.4032
1.3835
1.3908
0.5242
0.8957
13.8215
14.2602
13.5687
13.7996
3.08
4.85
3.23
1.3936
1.3956
1.3740
1.3812
0.6229
0.8748
13.1170
13.4980
12.8943
13.0971
2.82
4.47
2.97
1.3823
1.3855
1.3662
1.3726
0.7125
0.8569
12.5066
12.9444
12.3235
12.4897
3.38
4.80
3.51
1.3727
1.3799
1.3595
1.3649
0.7941
0.8354
12.0585
12.4043
11.9190
12.0453
2.79
3.91
2.89
1.3615
1.3700
1.3539
1.3580
0.8685
0.8253
11.5379
11.9253
11.4454
11.5289
3.25
4.02
3.32
1.3559
1.3653
1.3489
1.3518
0.9370
0.7902
11.4444
11.5915
11.3973
11.4397
1.27
1.68
1.31
1.3385
1.3512
1.3446
1.3461
T = 298.15 K
0.1570
0.9342
17.6705
18.1493
17.4967
17.6571
2.64
3.60
2.71
1.4182
1.4256
1.4082
1.4124
0.2953
0.9272
15.9498
16.6204
15.7095
15.9302
4.03
5.48
4.15
1.4143
1.4199
1.3938
1.4001
0.4181
0.9215
14.5781
15.2423
14.3267
14.5567
4.36
6.01
4.50
1.4112
1.4102
1.3824
1.3893
0.5277
0.8901
13.8646
14.6061
13.6237
13.8433
5.08
6.73
5.22
1.3951
1.4036
1.3731
1.3799
0.6263
0.8721
13.1200
13.7547
12.9087
13.1007
4.61
6.15
4.75
1.3859
1.3924
1.3654
1.3715
0.7154
0.8504
12.5702
13.1198
12.3960
12.5539
4.19
5.52
4.31
1.3749
1.3824
1.3588
1.3639
0.7964
0.8344
12.0466
12.5870
11.9148
12.0338
4.29
5.34
4.39
1.3668
1.3756
1.3532
1.3572
0.8702
0.8248
11.5239
11.9355
11.4367
11.5153
3.45
4.18
3.52
1.3620
1.3654
1.3484
1.3511
0.9379
0.7899
11.4322
11.6256
11.3879
11.4278
1.66
2.05
1.70
1.3448
1.3522
1.3442
1.3455
T = 303.15 K
0.1572
0.9304
17.6550
18.0095
17.4852
17.6423
1.97
2.91
2.04
1.4181
1.4199
1.4060
1.4101
0.2956
0.9255
15.9091
16.5326
15.6750
15.8906
3.77
5.19
3.88
1.4157
1.4165
1.3921
1.3981
0.4184
0.9192
14.5584
15.0537
14.3133
14.5381
3.29
4.92
3.42
1.4125
1.4033
1.3810
1.3877
0.5281
0.8892
13.8323
14.3290
13.5979
13.8122
3.47
5.10
3.61
1.3973
1.3945
1.3719
1.3785
0.6266
0.8706
13.1050
13.4597
12.8994
13.0867
2.64
4.16
2.77
1.3880
1.3822
1.3644
1.3703
0.7157
0.8584
12.4231
12.7882
12.2555
12.4078
2.85
4.17
2.97
1.3819
1.3755
1.3580
1.3630
0.7966
0.8261
12.1436
12.4042
12.0143
12.1315
2.10
3.14
2.20
1.3659
1.3654
1.3526
1.3564
0.8703
0.8259
11.4906
11.5378
11.4060
11.4825
0.41
1.14
0.48
1.3659
1.3524
1.3479
1.3505
0.9379
0.7853
11.4858
11.6249
11.4424
11.4815
1.20
1.57
1.23
1.3460
1.3499
1.3438
1.3451
T = 308.15 K
0.1575
0.9280
17.6332
17.3847
17.4653
17.6207
−1.43
−0.46
−1.36
1.4184
1.4022
1.4043
1.4083
0.2961
0.9234
15.8865
16.2197
15.6552
15.8684
2.05
3.48
2.17
1.4163
1.4065
1.3905
1.3965
0.4190
0.9065
14.7098
15.0335
14.4649
14.6897
2.15
3.78
2.29
1.4079
1.3964
1.3795
1.3861
0.5286
0.8801
13.9274
14.0855
13.6941
13.9076
1.12
2.78
1.26
1.3947
1.3825
1.3706
1.3770
0.6271
0.8647
13.1509
13.3713
12.9470
13.1330
1.65
3.17
1.78
1.3871
1.3765
1.3631
1.3689
0.7161
0.8561
12.4171
12.5136
12.2515
12.4021
0.77
2.09
0.89
1.3830
1.3654
1.3568
1.3617
0.7970
0.8248
12.1258
12.0259
11.9983
12.1140
−0.83
0.23
−0.73
1.3675
1.3524
1.3515
1.3552
0.8706
0.8234
11.4920
11.4988
11.4084
11.4840
0.06
0.79
0.13
1.3669
1.3499
1.3468
1.3494
0.9381
0.7805
11.5242
11.4000
11.4813
11.5201
−1.09
−0.71
−1.05
1.3459
1.3401
1.3427
1.3440
T = 313.15 K
0.1581
0.9255
17.5590
17.8738
17.3750
17.5430
1.76
2.79
1.85
1.4158
1.4138
1.4007
1.4051
0.2970
0.9199
15.7847
16.1754
15.5310
15.7615
2.41
3.98
2.56
1.4119
1.4035
1.3854
1.3918
0.4200
0.9002
14.6181
15.0482
14.3487
14.5923
2.86
4.65
3.03
1.4010
1.3937
1.3731
1.3803
0.5297
0.8751
13.7831
14.1264
13.5267
13.7576
2.43
4.24
2.61
1.3876
1.3813
1.3632
1.3701
0.6282
0.8615
12.9546
13.4178
12.7309
12.9316
3.45
5.12
3.62
1.3801
1.3764
1.3549
1.3611
0.7170
0.8502
12.2408
12.5634
12.0587
12.2215
2.57
4.02
2.72
1.3738
1.3642
1.3479
1.3531
0.7977
0.8227
11.8741
12.0473
11.7345
11.8590
1.44
2.60
1.56
1.3597
1.3521
1.3419
1.3460
0.8711
0.8207
11.2374
11.4086
11.1459
11.2272
1.50
2.30
1.59
1.3582
1.3456
1.3368
1.3395
0.9383
0.7798
11.2192
11.1941
11.1723
11.2139
−0.22
0.19
−0.18
1.3379
1.3330
1.3322
1.3336
Acetonitrile + DMA
T = 293.15 K
0.1561
0.9591
20.0390
20.4129
19.7001
20.0211
1.83
3.49
1.92
1.4324
1.4298
1.4127
1.4203
0.2939
0.9512
17.5288
18.0019
17.0868
17.5033
2.63
5.08
2.77
1.4266
1.4200
1.3958
1.4067
0.4164
0.9421
15.6735
16.3668
15.2301
15.6461
4.24
6.95
4.40
1.4203
1.4156
1.3831
1.3949
0.5261
0.9159
14.5072
15.0818
14.1002
14.4806
3.81
6.51
3.99
1.4055
1.4025
1.3731
1.3844
0.6248
0.8856
13.6742
14.2744
13.3232
13.6500
4.21
6.66
4.37
1.3891
1.3945
1.3651
1.3751
0.7141
0.8653
12.8865
13.2809
12.6048
12.8662
2.97
5.09
3.12
1.3779
1.3801
1.3585
1.3668
0.7953
0.8529
12.1423
12.5919
11.9345
12.1268
3.57
5.22
3.69
1.3707
1.3748
1.3530
1.3593
0.8694
0.8355
11.5954
11.8436
11.4591
11.5849
2.10
3.25
2.18
1.3613
1.3614
1.3483
1.3526
0.9374
0.8159
11.1740
11.3953
11.1070
11.1687
1.94
2.53
1.99
1.3509
1.3543
1.3443
1.3464
T = 298.15 K
0.1570
0.9358
20.4636
20.8744
20.1247
20.4456
1.97
3.59
2.05
1.4253
1.4287
1.4111
1.4186
0.2953
0.9256
17.9523
18.2016
17.5096
17.9268
1.37
3.80
1.51
1.4189
1.4123
1.3945
1.4052
0.4181
0.9145
16.0956
16.5355
15.6509
16.0682
2.66
5.35
2.83
1.4121
1.4065
1.3820
1.3935
0.5278
0.8995
14.7292
15.0866
14.3260
14.7029
2.37
5.04
2.54
1.4034
1.3945
1.3722
1.3832
0.6264
0.8755
13.7961
14.2897
13.4510
13.7725
3.45
5.87
3.62
1.3904
1.3899
1.3643
1.3740
0.7155
0.8504
13.0823
13.5105
12.8038
13.0624
3.17
5.23
3.32
1.3770
1.3800
1.3578
1.3659
0.7964
0.8348
12.3810
12.8466
12.1748
12.3657
3.62
5.23
3.74
1.3685
1.3742
1.3524
1.3585
0.8701
0.8119
11.9125
12.1818
11.7764
11.9021
2.21
3.33
2.30
1.3566
1.3612
1.3478
1.3519
0.9378
0.7999
11.3821
11.4962
11.3158
11.3769
0.99
1.57
1.04
1.3501
1.3500
1.3439
1.3459
T = 303.15 K
0.1564
0.9248
20.6280
21.0667
20.2885
20.6106
2.08
3.69
2.17
1.4247
1.4274
1.4094
1.4168
0.2942
0.9016
18.3694
18.6463
17.9193
18.3444
1.48
3.90
1.62
1.4113
1.4113
1.3931
1.4037
0.4168
0.8908
16.4770
16.7356
16.0244
16.4500
1.55
4.25
1.71
1.4046
1.4000
1.3808
1.3922
0.5265
0.8705
15.1828
15.5576
14.7697
15.1567
2.41
5.06
2.58
1.3931
1.3936
1.3712
1.3821
0.6252
0.8559
14.0827
14.4035
13.7324
14.0594
2.23
4.66
2.39
1.3848
1.3835
1.3635
1.3732
0.7145
0.8391
13.2350
13.5058
12.9549
13.2156
2.01
4.08
2.15
1.3754
1.3742
1.3572
1.3652
0.7956
0.8069
12.7900
13.1542
12.5783
12.7748
2.77
4.38
2.88
1.3586
1.3699
1.3519
1.3580
0.8696
0.7909
12.2137
12.4679
12.0749
12.2034
2.04
3.15
2.12
1.3500
1.3600
1.3474
1.3515
0.9375
0.7854
11.5804
12.0059
11.5134
11.5753
3.54
4.10
3.59
1.3467
1.4990
1.3435
1.3455
T = 308.15 K
0.1562
0.9158
20.7508
21.3781
20.4105
20.7336
2.93
4.53
3.01
1.4228
1.4298
1.4076
1.4150
0.2940
0.9016
18.3024
18.8255
17.8555
18.2778
2.78
5.15
2.91
1.4141
1.4158
1.3916
1.4020
0.4166
0.8759
16.6989
17.2305
16.2419
16.6719
3.09
5.74
3.24
1.3996
1.4056
1.3794
1.3907
0.5263
0.8669
15.1951
15.8398
14.7832
15.1694
4.07
6.67
4.23
1.3939
1.3998
1.3699
1.3807
0.6249
0.8498
14.1384
14.7286
13.7882
14.1154
4.01
6.38
4.16
1.3843
1.3901
1.3623
1.3719
0.7143
0.8257
13.4085
13.9863
13.1259
13.3891
4.13
6.15
4.27
1.3712
1.3822
1.3560
1.3639
0.7954
0.8067
12.7554
13.2274
12.5451
12.7404
3.57
5.16
3.68
1.3610
1.3721
1.3507
1.3568
0.8695
0.7895
12.2005
12.6176
12.0624
12.1903
3.31
4.40
3.39
1.3517
1.3641
1.3463
1.3504
0.9375
0.7759
11.6899
11.8883
11.6226
11.6848
1.67
2.23
1.71
1.3444
1.3512
1.3425
1.3445
T = 313.15 K
0.1566
0.9098
20.7511
20.4521
20.3759
20.7293
−1.46
0.37
−1.36
1.4191
1.4056
1.4038
1.4118
0.2946
0.8890
18.3804
18.5576
17.8839
18.3491
0.95
3.63
1.12
1.4057
1.4026
1.3861
1.3974
0.4173
0.8654
16.4854
16.6883
15.9847
16.4516
1.22
4.22
1.42
1.3966
1.3912
1.3727
1.3849
0.5270
0.8566
15.1380
15.5174
14.6811
15.1053
2.45
5.39
2.66
1.3847
1.3854
1.3622
1.3739
0.6256
0.8442
13.9728
14.4572
13.5864
13.9438
3.35
6.02
3.55
1.3765
1.3792
1.3537
1.3641
0.7148
0.8198
13.2255
13.6420
12.9136
13.2011
3.05
5.34
3.23
1.3626
1.3687
1.3468
1.3554
0.7959
0.7908
12.7124
12.7749
12.4773
12.6933
0.49
2.33
0.64
1.3468
1.3501
1.3410
1.3476
0.8698
0.7828
11.9949
12.2468
11.8423
11.9821
2.06
3.30
2.16
1.3415
1.3489
1.3361
1.3405
0.9376
0.7742
11.3963
11.2615
11.3223
11.3899
−1.20
−0.54
−1.14
1.3360
1.3300
1.3319
1.3341
Ramaswamy and Anbananthan model has been extended and corrected for the prediction of refractive index and molar refractivity of binary mixtures which was originally derived for the prediction of acoustical impedance. The results of fittings obtained from the model were utilized properly. The basic doubt regarding this model except the assumption of linearity of refractive index with mole fraction is that these liquids have poor tendency to form dimmers. Calculations were performed using a computer program which allows easily both the adjustable parameters simultaneously or the parameters were changed, manually.
We constructed the data sheet in a computer program, with association constant Kas and CAB as the fitted parameters (CAB is the refractive index in the pure component AB means a hypothetical liquid having only the associate A–B. On changing these parameters, the equilibrium concentrations of species [A], [B] and [AB] will change and the refractive index can be computed. The difference between experimental and theoretical refractive indices is used to obtain the sum of squares of deviations. It is assumed that in solution three associates are formed instead of two (pure A, pure B and AB). The values of refractive index in pure associate can be treated as a fitted one with the value of Kas. The mixing function, ΔR was represented mathematically by the Redlich–Kister equation (Redlich and Kister, 1948) for correlating the experimental data as
Molar refractivity was obtained from refractive index data according to the following expression:
The molar refractivity deviation function shown in Figs. 1 and 2 has been calculated by the following expression:
McAllister (1960) multibody interaction model which is based on the Eyring’s theory of absolute reaction rates and for liquids the free energy of activation for viscosity is additive on a number fractions and that interactions of like and unlike molecules must be considered hence it can be applied to refractive index data. The three body model is defined as
The minimum and maximum average percent deviation (%ΔR) in molar refractivity and average deviation in refractive index for all the systems are found to be 1.24 & 8.72 and 0.0006 & 0.38 at 308.15 K, 313.15 & 293.15 K, respectively, as indicated in Table 4. With the increase of volume fraction ( ), the values of refractive index obtained from all the models decrease at all temperatures except in few places. Results of molar refractivity computed from Eq. (13) for the entire systems show regular trend except in few places as shown in Table 5. The minimum and maximum percent deviation (%ΔR) in molar refractivity are 0.12 at 313.15 K for acetonitrile + formamide and 11.03 at 308.15 K for acetonitrile + formamide system, respectively.
The results of deviation in molar refraction, ΔR, plotted as a function of for acetonitrile + DMA mixtures at 298.15, 303.15, 308.15 and 313.15 K are displayed in the Figs. 1 and 2 which indicate negative values for all the mixtures. In all the cases, theoretical molar refractivity computed from all the models agree well within the experimental precision. The trend in all the figures is almost similar and negative. Molar refraction increases with molecular weight for all the systems. Density and refractive index depend on molecular weight and nature of solution and values decrease with the increase of temperature as evidenced in Table 5. Very close values of McAllister three and four body interaction models with the experimental data confirm the success of our experimental findings as evidenced in Table 4.
Finally, it can be concluded that the expressions used for interpolating the experimental data measured in this work provide good results as can be seen by inspecting the σ values obtained. All the models based on associated processes and non-associated processes give more reliable results and are helpful in deducing the internal structure of associates through the fitted values of refractive index in a hypothetical pure associate and observed dependence of concentration on the composition of a mixture.
Acknowledgments
Authors are extremely thankful to U.G.C., New Delhi, for financial support (Grant 34-332/2008) and Department of Chemistry, V.S.S.D. College for cooperation.
References
- J. Chem. Eng. Data. 1999;44:441-445.
- J. Chem. Eng. Data. 1990;44:435-440.
- J. Chem. Eng. Data. 1999;44(1999):446-450.
- J. Chem. Eng. Data. 1999;44:965-969.
- J. Chem. Phys.. 2003;118:2301-2307.
- Molecular Connectivity in Chemistry and Drug Research. Sand Diego: Academic Press; 1976.
- J. Chem. Eng. Data. 1997;42:614-618.
- AIChE J.. 1960;6:427-431.
- Proc. Indian Acad. Sci.. 2003;115:47-1547.
- J. Chem. Eng. Data. 2003;48:1483-1488.
- Indian J. Pure Appl. Phys.. 1992;30:94-97.
- Acustica. 1981;48:281-282.
- Boiling point. In: Lyman W.J., Reehl W.F., Rosenblatt D.H., eds. Hand Book of Chemical Property Estimation. Washington: American Chemical Society; 1990.
- [Google Scholar]
- Ind. Eng. Chem.. 1948;40(3):45-348.
- Techniques of Chemistry, Organic Solvents.Physical Properties and Methods of Purification. Vol vol. 2. New York: John Wiley & Sons; 1986.
- E.J. Chem.. 2007;4:343-349.
- J. Mol. Liq.. 2011;158:131-138.
- J. Chem. Eng. Data. 1992;37:310-313.
- Physico-Chemical Constants of Pure Organic Compounds. New York: Elsevier; 1950.