10.8
CiteScore
 
5.3
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Corrigendum
Current Issue
Editorial
Erratum
Full Length Article
Full lenth article
Letter to Editor
Original Article
Research article
Retraction notice
Review
Review Article
SPECIAL ISSUE: ENVIRONMENTAL CHEMISTRY
10.8
CiteScore
5.3
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Corrigendum
Current Issue
Editorial
Erratum
Full Length Article
Full lenth article
Letter to Editor
Original Article
Research article
Retraction notice
Review
Review Article
SPECIAL ISSUE: ENVIRONMENTAL CHEMISTRY
View/Download PDF

Translate this page into:

Original article
9 (
2_suppl
); S1084-S1100
doi:
10.1016/j.arabjc.2011.12.012

Oxovanadium(IV) complexes of bioinorganic and medicinal relevance: Synthesis, characterization and 3D molecular modeling of some oxovanadium(IV) complexes involving O, N-donor environment of salicylaldehyde-based sulfa drug Schiff bases

Coordination and Bioinorganic Chemistry Laboratory, Department of P.G. Studies and Research in Chemistry and Pharmacy, R.D. University, Jabalpur 482 001, India

⁎Corresponding author. rcmaurya1@gmail.com (R.C. Maurya)

Disclaimer:
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.

Peer review under responsibility of King Saud University.

Abstract

The present paper reports the synthesis and characterization of some new sulfa drug based Schiff base oxovanadium(IV) complexes of composition, [VO(sal-sdz)2(H2O)]·H2O, [VO(sal-sgn)2(H2O)]·H2O, [VO(sal-snm)(H2O)]·H2O, [VO(sal-smr)2(H2O)]·H2O and [VO(dadps)(H2O)]2·2H2O, where sal-sdzH = N-(salicylidene)sulfadizine, sal-sgnH = N-(salicylidene)sulfaguanidine, sal-snmH = N-(salicylidene)sulfanilamide, sal-smrH = N-(salicylidene)sulfamerizine, sal-dadpsH2 = N,N′-bis(salicylidene)-4,4′-diaminodiphenylsulfone, respectively. Complexes, (1)–(4) were prepared by the reaction of VOSO4·5H2O with the Schiff bases in 1:2 metal-ligand ratio while complex (5) in 2:2 metal-ligand ratio in DMF-ethanol medium. The compounds so obtained were characterized by different physico-chemical studies, such as, elemental analysis, molar conductance and magnetic measurements, infrared, ESR, thermogravimetric studies, mass and electronic spectral studies. The overall IR studies conclude that the ligand in complex (1)–(4) behave as monobasic bidentate ON donor, while the ligand in the complex (5) behaves as dibasic tetradentate O2N2 donor. The 3D-molecular modeling and analysis for bond lengths and bond angles have also been carried out for two representative compounds, [VO(sal-snm)2(H2O)]·H2O (3) and [VO(dadps)(H2O)]2·2H2O (5) to substantiate the proposed structures. Based on these studies suitable octahedral structures have been proposed for these complexes.

Keywords

Oxovanadium(IV) complexes
O, N-donor sulfa drug based organic matrix
Bioinorganic
Medicinal relevance
3D Molecular modeling
1

1 Introduction

Sulfa drugs are an important class of therapeutic (Pharmacopoeia of India, 1983) compounds. In combination with certain other drugs, they are used for the treatment of various bacterial infections. Study of the coordination behavior of sulfa drugs is of considerable interest because the coordination of metal ion is reported to enhance the biological activities of organic compounds.

The sulfa drugs, derivatives of a compound p-aminobenzenesulfonamide, commonly known as sulfanilamide, were the first effective chemotherapeutic agents to be widely used for the treatment of bacterial infection in humans. They are termed as sulfonamides, due to the presence of sulfonamide (Maurya and Patel, 1999) group (–SO2NH2). The derivatives of sulfonamide exhibit a range of bioactivities, including anti-angiogenic (Funahashi et al., 2002; Semba et al., 2004), anti-tumor (Semba et al., 2004; Sławínski and Gdaniec, 2005), anti-inflammatory and anti-analgesic (Chen et al., 2005), anti-tubercular (Gadad et al., 2004), anti-glaucoma (Agrawal et al., 2004), anti-HIV (Yeung et al., 2005), cytotoxic (Enćıo et al., 2005), anti-microbial (Nieta et al., 2005) and anti-malarial (Doḿınguez et al., 2005) agents. The sulfonamide derivatives are also known to exhibit a wide variety of pharmacological activities (Yoshino et al., 1992; Toth et al., 1997; Medina et al., 1999) through exchanges of different functional groups without modification of the structural –S(O)2N(H)– feature.

There are several reports on the Schiff bases complexes of different metals derived from sulfa drugs (Singh et al., 1999, 2000; Mohamed and Gad-Elkareem, 2007; Sharaby, 2007; Mohamed and Sharaby, 2007; Mohamed et al., 2010; Maurya et al., 1994, 2007, 2010a,b, 2015a,b,c). The pronounced biological activity of the metal complexes of Schiff bases derived from sulfa drugs (Lal and Shukla, 1981; Jain and Chaturvedi, 1977) has led to considerable interest in their coordination chemistry. The Schiff bases derived by the condensation of sulfonamides with salicylaldehyde are not only good complexing agents (Roy and Mukherjee, 1955; Jain and Chaturvedi, 1975a,b, 1976), but also good bacteriocides (Tiwari and Mishra, 1980). Chelating ligands containing O and N donor atoms (Maurya et al., 2003) show broad biological activity and are of special interest because of the variety of ways in which they are bonded to metal ions (Syamal and Maurya, 1989; Maurya and Maurya, 1995). Aromatic hydroxyaldehydes form stable complexes and the presence of a phenolic hydroxyl group at their o-position imparts an additional donor site of the molecule making it bidentate. Such a molecule coordinates with the metal ion through the carbonyl oxygen and deprotonated hydroxyl group. The chelating properties of Schiff bases derived from o-hydroxyaldehydes and ketones are well established (Maurya et al., 1993, 1995; Agarwal et al., 1994).

The coordination chemistry (Maurya, 2003) of vanadium has acquired renewed interest since the discovery of vanadium in organisms such as certain ascidians and Amanita muscaria mushrooms and as a constituent of the cofactors in vanadate-dependent haloperoxidases and vanadium nitrogenase (Butler, 1999; Little and Butler, 2001; Roson et al., 1986; Rehder, 2003a,b). The role of vanadium complexes in catalytically conducted redox reactions (Ligtenbarg et al., 2003; Conte et al., 1997) potential pharmaceutical applications (Rehder, 2003a,b; Thompson and Orvig, 2004; Sakurai et al., 2002; Rehder et al., 2002; Melchier et al., 1999; Clarke et al., 1999) studies on the metabolism and detoxification of vanadium compounds under physiological conditions (Baran, 2000) and the stability and specification of vanadium complexes in biofluids (Kiss et al., 2003, 2000) have also influenced the study of the coordination chemistry of vanadium. Spectroscopic investigations have shown a distinct preference of this metal center for N and/or O coordination environment (Sivak et al., 1998; Asgedom et al., 1995). This is consistent with the combination of hard acid (VO+2) and hard (N and O ligands) bases (Sakurai et al., 1998). Some vanadium complexes of O, N donor ligands have been reported recently (Sutradhar et al., 2006; Miyazaki et al., 2005; Sarkar and Pal, 2006; Hazara et al., 2007). Vanadium complexes with Schiff base were reported to exhibit a range of biological activities including anti-tuberculosis, antibacterial, and antifungal properties, (Hashidhara and Goudar, 2000; Maqsood et al., 2006). In contrast to O, N donor ligands, complexes of vanadium containing sulfur functionality have not received much attention (Samanta et al., 2003; Maurya et al., 2002a,b, 2003; Monga et al., 2005). Vanadium complexes having sulfur functionality have been found to be orally active insulin-mimetic agents in the treatment of diabetic model animals (Kotosh et al., 2004). In vanadium nitrogenase, the sulfur-vanadium bond has also been well established (Eady and Legh, 1994).

It has also been recognized that vanadium as a micronutrient, prevents the minor wear and tear of the essential critical molecules of the cell like DNA, proteins, etc., in humans (Fenech and Ferguson, 2001). Thus, it has a role in DNA maintenance reactions and may protect the genomic instability that may be leading to cancer (Ray et al., 2006).

A recent report from our laboratory, Maurya and Rajput (2006) has reported the synthesis and characterization of four new oxovanadium(IV) complexes, formed by the Schiff bases derived from 3-methyl-1-phenyl-4-valeryl-2-pyrazolin-5-one and the sulfa drugs. Another new series of four oxovanadium(IV) complexes involving O, N donor environment of pyrazolone based sulfa drugs Schiff bases has also been reported from our laboratory (Maurya et al., 2015a,b,c).

Considering the pronounced biological activity of the sulfa drug Schiff base complexes, in view of the importance of vanadium compound, and also extending our search for more efficacious vanadium compounds, a study was undertaken of the coordination chemistry of oxovanadium(IV) complexes involving salicylaldehyde based sulfadrug Schiff bases viz., N-(salicylidene)sulfadiazine (sal-sdzH, I), N-(salicylidene)sulfaguanidine (sal-sgnH, II), N-(salicylidene)sulfanilamide(sal-snmH, III), N-(salicylidene)sulfamerazine(sal-smrH, IV) and N,N′-bis(salicylidene)-4,4′-diaminodiphenylsulfone(sal-dadpsH2, V) (Scheme 1).

Synthesis of sulfa drug Schiff base ligands.
Scheme 1
Synthesis of sulfa drug Schiff base ligands.

2

2 Experimental

2.1

2.1 Materials used

Vanadyl sulfate pentahydrate (Thomas Baker Ltd., Mumbai), salicylaldehyde (E. Merck, Germany), sulfa drugs (sulfadiazine, sulfaguanidine, sulfanilamide, sulfamerazine, (Sigma Chemicals Co., USA), daphsone (Fluka Chemie A.G., Switzerland), ethanol (Bengal Chemicals and Pharmaceuticals Ltd., Kolkata), were used as supplied. All other chemicals used were of analytical reagent grade.

2.2

2.2 Synthesis of Schiff bases

The Schiff bases of sulfa drugs were prepared as follows: An ethanolic solution (10 mL) of salicylaldehyde (0.244 g, 0.209 mL, 2 mmol) was added to the ethanolic solution (∼20 mL) of sulfadiazine (0.500 g, 2 mmol), sulfanilamide (0.344 g, 2 mmol), sulfaguanidine (0.428 g, 2 mmol), sulfamerizine (0.528 g, 2 mmol) or 4,4′-diaminodiphenylsulfone (0.248 g, 1 mmol). A colored solid mass separated out when the mixture was heated at 80 °C for ∼20 min. It was filtered, washed several times with ethanol and diethyl ether and subsequently, dried over anhydrous CaCl2 in a desiccator. The characterization data of Schiff bases are given in Table 1.

Table 1 Characterization data of the synthesized Schiff bases.
S. no. Ligands (empirical formula) (F.W.) Found/calc. (%) Color Decom. temp. (°C)
C H N S
I (sal-sdzH) (C17H14N4O3S)(354) 57.55 (57.63) 3.79 (3.95) 15.75 (15.82) 8.99 (9.04) Daffodil 260
II (sal-sgnH) (C14H14N4O3S)(318) 52.70 (52.83) 4.29 (4.40) 17.52 (17.61) 9.95 (10.06) Daffodil 250
III (sal-snmH) (C13H12N2O3S)(276) 56.49 (56.52) 4.25 (4.35) 10.05 (10.14) 11.42 (11.59) Daffodil 210
IV (sal-smrH) (C18H16N4O3S)(368) 58.65 (58.70) 4.21 (4.35) 15.12 (15.22) 8.62 (8.70) Primrose 265
V (sal-dadpsH2) (C26H20N2O4S)(456) 68.29 (68.42) 4.30 (4.39) 6.02 (6.14) 6.92 (7.02) Canary yellow 260

2.3

2.3 Synthesis of complexes

The following general procedure was used in the synthesis of all the complexes: A suspension of the Schiff base ligand sal-sdzH (0.708 g, 2 mmol), sal-sgnH (0.636 g, 2 mmol), sal-snmH (0.552 g, 2 mmol), sal-smrH (0.736 g, 2 mmol), and sal-dadpsH2 (0.456 g, 1 mmol) in the minimum quantity of DMF was mixed with ethanol (∼20 mL). The resulting mixture was refluxed with stirring on a magnetic stirrer equipped with heater for 1 h to get a clear solution. The salt of VOSO4·5H2O (0.253 g, 1 mmol) was dissolved in ethanol-water (4:1, 5 mL) and the solution so obtained was added to a hot, stirred ethanolic solution of the corresponding Schiff bases. The resulting solution was refluxed for 10–12 h, and then concentrated to half of its volume. The resulting colored precipitate was then filtered and washed several times with ethanol to remove any unreacted ligand and the metal salt. The product was dried in vacuo. The analytical data of the complexes are given in Table 2.

Table 2 Analytical data and some physical properties of the synthesized complexes.
S. no. Complex (empirical formula) (F.W.) Analysis, found/calc. (%) Color Decom. temp.(°C) ^M (ohm1cm2 mol−1) μeff (B.M.)
C H N S V
1. [VO(sal-sdz)2(H2O)]·H2O (C34H30N8O9S2V)(808.94) 50.40 (50.44) 3.67 (3.71) 13.70 (13.85) 7.85 (7.91) 6.21 (6.30) Green gold 230 14.1 1.71
2. [VO(sal-sgn)2(H2O)]·H2O(C28H30N8O9S2V)(736.94) 45.40 (45.59) 3.97 (4.07) 15.12 (15.20) 8.56 (8.68) 6.82 (6.91) Olive green 190 17.4 1.68
3. [VO(sal-snm)2(H2O)]·H2O(C26H26N4O9S2V)(652.94) 47.70 (47.78) 3.85 (3.98) 8.49 (8.58) 9.75 (9.80) 7.70 (7.80) Green gold 210 21.2 1.74
4. [VO(sal-smr)2(H2O)]·H2O (C36H34N8O9S2V)(836.94) 51.50 (51.62) 3.98 (4.06) 13.21 (13.38) 7.58 (7.65) 6.02 (6.09) Olive green 220 24.3 1.70
5. [VO(sal-dadps)(H2O)]2·2H2O(C52H44N4O14S2V2)(1113.88) 55.95 (56.02) 3.90 (3.95) 4.99 (5.03) 5.60 (5.75) 9.08 (9.15) Green gold 220 20.5 1.61

2.4

2.4 Analyses

Carbon, hydrogen and nitrogen were determined micro-analytically at SAIF, Indian Institute of Technology, Mumbai. The vanadium content of each of the complexes was determined as follows. A 100 mg of sample of the compound was placed in a silica crucible, decomposed by gentle heating and then adding 1–2 mL of concentrated HNO3, 2–3 times. An orangish mass (V2O5) was obtained after decomposing and complete drying. It was dissolved in the minimum amount of dilute H2SO4, and the solution so obtained was diluted with distilled water to 100 mL in a measuring flask. The vanadium content of each of the complexes was determined volumetrically using decinormal KMnO4 solution as an oxidizing agent in the presence of sulfurous acid. The amount of vanadium in the sample solution was calculated using the standard (Furman, 1962) relationship: 1 mL of 0.1 N KMnO4 = 5.094 mg vanadium.

2.5

2.5 Physical methods

The following physical methods were used in the present investigation. The solid-state infrared spectra were obtained using KBr pellets with a Perkin–Elmer model 1620 FT-IR spectrophotometer at the Central Drug Research Institute, Lucknow. Thermogravimetry of the complexes was performed on a Perkin–Elmer Thermoanalyser at S. A. I. F., Indian Institute of Technology, Mumbai. Electronic spectra were recorded on an ATI Unicam UV-1-100 UV/Visible Spectrophotometer in our laboratory. Conductance measurements were made in DMF solution using a Toshniwal conductivity bridge and dip-type cell with a smooth platinum electrode of cell constant 1.02. Magnetic measurements were done by a vibrating sample magnetometer at the Regional Sophisticated Instrumentation Centre, Indian Institute of Technology, Chennai. The decomposition temperatures of the complexes were recorded by an electrically operated melting point apparatus (Kumar Industries, Mumbai) of heating capacity up to 360 °C. The X-Band and EPR spectra of the complexes were measured on a Bruker ESP X-Band EPR spectrometer using powdered samples at the Regional Sophisticated Instrumentation Centre, Indian Institute of Technology, Chennai. The FAB mass spectrum of a representative complex was recorded on a JEOL SX 102/DA-6000 Mass Spectrometer/Data system using Argon/Xenon (6KV, 10 mA) as the FAB gas. The accelerating voltage was 10 KV and the spectrum was recorded at room temperature and m-nitrobenzyl alcohol (NBA) was used as the matrix.

2.6

2.6 3D Molecular modeling studies

The 3D molecular modeling of one of the synthesized compound was carried out on CS Chem 3D Ultra Molecular Modeling and Analysis Program (http://www.cambridgesoft.com). It is an interactive graphics program that allows rapid structure building, geometry optimization and molecular display. It has the ability to handle transition metal compounds.

3

3 Results and discussion

The five sulfa drugs based Schiff base ligands, sal-sdzH, sal-sgnH, sal-snmH, sal-smrH and sal-dadpsH2 were prepared by the interaction of salicylaldehyde and sulfa drugs in ethanol according to Scheme 1.

The micro-analytical data of these Schiff base ligands along with physical properties are given in Table 1. Some important IR spectral bands of these ligands are given in Table 3. The formation of these Schiff base ligands can be confirmed by the appearance of a strong band for ν(C⚌N) (Hazara et al., 2007; Hashidhara and Goudar, 2000) (azomethine) at 1615–1620 cm−1. The IR spectra of these ligands also exhibit relevant bands for ν(OH) (phenolic), ν(C–O) (phenolic), ν(NH/NH2), νas(SO2) and νs(SO2) (see Table 3), which also support the formation of Schiff base ligands.

Table 3 Some important IR spectral bands (cm−1) of the synthesized Schiff bases.
S. no. Ligands ν(C⚌N) (azomethine) ν(C–O) (phenolic) ν(NH)/NH2 ν(OH) (phenolic) νas(SO2) νs(SO2)
I sal-sdzH 1620 1490 3100 3480 1340 1160
II sal-sgnH 1620 1480 3353 3420 1300 1170
3240
III sal-snmH 1615 1490 3340 3480 1310 1160
3240
IV sal-smrH 1620 1490 3240 3340 1310 1160
V sal-dadpsH2 1620 1480 3400 (br) 1320 1150

The oxovanadium(IV) complexes were prepared according to the following equations: VOSO 4 · 5 H 2 O + 2 LH Reflux H 2 O,Ethanol [ VO ( L ) 2 ( H 2 O ) ] · H 2 O + H 2 SO 4 Where, LH = sal-sdzH (1), sal-sgnH (2), sal-snmH (3) or sal-smrH (4) and 2 VOSO 4 · 5 H 2 O + 2 sal - dadpsH 2 Reflux H 2 O,Ethanol [ VO ( sal - dadps ) ( H 2 O ) ] 2 · 2 H 2 O ( 5 ) + 2 H 2 SO 4 The resulting complexes are soluble in DMF and DMSO, partially soluble in acetonitrile and insoluble in ethanol, methanol and carbon tetrachloride. Their physical properties are given in Table 2. The complexes were characterized by the following studies:

3.1

3.1 Infrared spectral studies

All the ligands except (sal-dadpsH2 and sal-snmH) contain five donor sites: (i) the phenolic oxygen, (ii) the azomethine nitrogen, (iii) sulfonamide oxygens, (iv) sulfonamide nitrogen, (v) ring nitrogens in the case of sal-sdzH and sal-smrH or amino nitrogen in the case of sal-sgnH. The ligand, sal-snmH contains only four potential donor sites, (i)–(iv) given above. The remaining ligand, sal-dadpsH2 possesses five potential donor sites (i) two azomethine nitrogens, (ii) two phenolic oxygens, (iii) sulfonamide oxygens. All the Schiff base ligands show a sharp and strong band due to ν(C⚌N) of the azomethine group at 1615–1620 cm−1. The observed low energy shift (Maurya and Rajput, 2006) of this band in the complexes appearing at 1580–1600 cm−1, suggests the coordination of azomethine nitrogen to the metal center. This is further supported by the appearance of a new band at 450–470 cm−1 due to the ν(V–N) band (Maurya et al., 2015a,b,c).

The ν(NH) mode of the sulfonamide group/amino group in the uncoordinated Schiff bases remains unchanged in the spectra of their complexes (see Tables 3 and 4). This suggests that the sulfonamide nitrogen or amino group is not taking part in coordination. The bands, in these ligands, due to νas(SO2) and νs(SO2) appear at 1300–1340 and 1150–1170 cm−1, respectively. These remain almost unchanged in the spectra of complexes, indicating that sulfonamide oxygens are not participating in coordination. This is consistent with our previous observation (Maurya et al., 2003a) in sulfa drug based Schiff bases.

Table 4 Important IR spectral bands (cm−1) of the synthesized complexes.
S. no. Complex ν(C⚌N) (azomethine) ν(C–O) (phenolic) ν (V⚌O) ν(OH)(H2O) ν(NH)/NH2 νs(SO2) νas(SO2) ν(V–O) ν(V–N)
1 [VO(sal-sdz)2(H2O)]·H2O 1600 1440 945 3400 3100 1160 1340 580 450
2 [VO(sal-sgn)2(H2O)]·H2O 1580 1440 940 3400 3360 1150 1330 580 450
3360 3240
3 [VO(sal-snm)2(H2O)]·H2O 1580 1440 940 3400 3350 1150 1330 580 460
3350 3240
4 [VO(sal-smr)2(H2O)]·H2O 1590 1450 930 3500 3240 1170 1325 580 470
3380
5 [VO(sal-dadps)(H2O)]2·2H2O 1590 1450 980 3460 1150 1300 550 450
3380

The characteristic phenolic ν(OH) mode in all the ligands due to the presence of a hydroxyl group at the ortho position, was observed at 3340–3480 cm−1. A medium band at 1480–1490 cm−1 due to ν(C–O) of the phenolic group was also observed in these ligands. The band due to the phenolic (OH) group of these ligands should be absent in all of the complexes under study to indicate the coordination of the phenolic oxygen, after deprotonation, to the metal ion. But due to the presence of a broad band (vide infra) for lattice and coordinated water, it is difficult to confirm with certainty the coordination of the phenolic oxygen after deprotonation. However, such coordination is supported by the observed shift of the phenolic ν(C–O) band to a lower wave number (Maurya et al., 2008a,b) at 1440–1450 cm−1 in the complexes. The coordination of phenolic oxygen is further supported by the appearance of a non ligand band at 550–580 cm−1, due to ν(V–O) (Maurya et al., 2003b) in the complexes. The band due to ν(C⚌N) ring appearing at 1580 and 1588 cm−1 in the ligands, sal-sdzH and sal-smrH remains unchanged in the respective complexes. This suggests that ring nitrogens of the ligand are not taking part in coordination. This is logical in terms of six-member chelate ring formation including metal on account of the bidentate coordination of azomethine nitrogen and phenyl oxygen from the ortho position.

The presence of lattice/coordinated water (Maurya et al., 2003a,b,c,d) in the complexes is revealed by the presence of either a broad band at 3400 cm−1 or two weak bands at 3400–3500 and 3350–3380 cm−1.

Most of the oxovanadium(IV) complexes display a strong band near 1000 cm−1 assignable to ν(V⚌O) (Selbin, 1966). Contrary to this, several oxovanadium(IV) complexes have been reported in which this stretching mode appears at quite lower (Maurya and Rajput, 2006; Maurya et al., 2001) wave numbers around 900 cm−1 due to the presence of a ⋯V⚌O⋯V⚌O⋯ chain structure, which is formed by the interaction of vanadyl oxygen of one molecule with a vanadium metal in another molecule (Boas and Pessoa, 1987). In the complexes presented here, ν(V⚌O) is found at 930–980 cm−1. This suggests the absence of a ⋯V⚌O⋯V⚌O⋯ chain. The presence of a coordinated water molecule in this complex (discussed above) supports this fact. The IR spectra of the Schiff base ligand (sal-snmH, III) and its complex, [VO(sal-snm)(H2O)]·H2O (3) are given in Figs. 1 and 2, respectively.

IR spectrum of sal-snmH.
Figure 1
IR spectrum of sal-snmH.
IR spectrum of [VO(sal-snm)(H2O)]·H2O (3).
Figure 2
IR spectrum of [VO(sal-snm)(H2O)]·H2O (3).

3.2

3.2 Thermogravimetric studies

Thermogravimetric analysis of two representative compounds, namely [VO(sal-sdz)2(H2O)]·H2O (1) and [VO(sal-dadps)(H2O)]2·2H2O (5) were recorded in the temperature range from ambient to 1000 °C at the heating rate of 15 °C/min. The compound (1) exhibits a weight loss of 4.66% at approximately 277.00 °C (calcd. wt. loss for two moles of H2O, 4.45%) corresponding to the removal of two molecules of water. As the compound starts loosing weight right from about 50.00 °C, one water molecule may be taken as lattice water and the other as the coordinated water. The second weight loss observed at 490.00 °C is found to be 51.48% against a calculated weight loss of 48.08% corresponding to the elimination of one ligand moiety. The final weight loss at approximately 573.13 °C has been found to be 90.54% against a calculated weight loss of 91.72% involving the removal of another ligand moiety. The final residue attaining a constant weight over 600.00 °C (obsd. = 9.46%) corresponds to V2O5 (calcd. = 10.25%) (Maurya et al., 2015a,b,c). This weight loss data, thus, agree well with the IR results for this complex. The thermogram of compound, [VO(sal-sdz)2(H2O)]·H2O (1) is given in Fig. 3.

TG curve of [VO(sal-sdz)(H2O)]·H2O (1).
Figure 3
TG curve of [VO(sal-sdz)(H2O)]·H2O (1).

The compound (5) shows a weight loss of 6.43% at 337.00 °C (calcd. wt. loss for four moles of water, 6.46%) corresponding to the removal of four water molecules similar to compound (1). It also starts loosing weight right from 50.00 °C. This suggests that two water molecules are lattice water and other two are coordinated. Taking the dimeric structure of the compound into account (vide infra), this seems to be logical. Another weight loss of 45.42% by this compound was noticed around 550.00 °C (calculated wt. loss of one ligand moiety, 47.22%), suggesting the removal of one ligand moiety from the complex. The final weight loss of 85.97% observed at ∼700.00 °C (calcd. wt. loss for another ligand moiety, 87.98%), indicates the elimination of second ligand moiety from the complex. The final residue attaining a constant weight over 750 °C corresponds to (obsd. = 14.03%) V2O5 (calculated = 14.89%) (Maurya et al., 2015a,b,c). The thermogram of compound, [VO(sal-dadps)(H2O)]2·2H2O (5) is given in Fig. 4.

TG curve of [VO(sal-dadps)(H2O)]2·2H2O (5).
Figure 4
TG curve of [VO(sal-dadps)(H2O)]2·2H2O (5).

3.3

3.3 ESR spectral studies

The liquid nitrogen temperature (LNT) X-Band ESR spectra of two representative compounds namely [VO(sal-sdz)2(H2O)]·H2O (1) and [VO(sal-dadps)(H2O)]2·2H2O (5) were recorded in powder form using TCNE (tetracynoethylene) as a marker. Both g‖ and g⊥ components were resolved in compound (1). The observed spectral parameters for this compound are: g⊥ = 1.976, g‖ = 1.966, gav = 1.969, A⊥ = 80 G, A‖ = 70 G and Aav = 76.66. The deviation of g‖, g⊥ and gav values in the complex from the free ion value of 2.0027 suggests that the resulting complex is covalent (Dutta and Syamal, 1993) in nature. Furthermore, the feature of the spectrum of the complex is indicative of its monomeric structure (Maurya et al., 2002a,b).

The ESR spectrum of compound (5) does not exhibit usual shape of a paramagnetic sample. Instead, it shows a zigzag straight-line curve. This is most probably due to the partial pairing of two unpaired electron spins on two oxovanadium centers because of dimer formation involving ligand bridging. The ESR spectra of compound (1) and (5) are given in Figs. 5 and 6, respectively.

ESR spectrum of [VO(sal-sdz)(H2O)]·H2O (1).
Figure 5
ESR spectrum of [VO(sal-sdz)(H2O)]·H2O (1).
ESR spectrum of [VO(sal-dadps)(H2O)]2·2H2O (5).
Figure 6
ESR spectrum of [VO(sal-dadps)(H2O)]2·2H2O (5).

3.4

3.4 Mass spectral studies

In the FAB mass spectrum (Fig. 7) of a representative complex [VO(sal-sdz)2(H2O)]·H2O the matrix peaks were supposed to appear at m/z 136, 137, 154, 289, 307 in the absence of any metal ion. If metal ions are present, these peaks may be shifted accordingly. Besides matrix peaks at 136, 137, 154, 289 and 307 m/z, and other spectral peaks were observed at 381, 419, 460, 613, 773 m/z in the compound in question which are most probably due to following types of ion associations:

  1. [Molecular ion]+ (772.94) − *[C4N3H4SO2]+ (157) − **[C10N3H9SO2]+ (235) = 380.94 (∼381).

  2. [sal-sdz]+ (353) + [V⚌O]+ (66.94) − H+ = 418.94 (∼419).

  3. [Molecular ion]+ (772.94) − *[C4N3H4SO2]+ (157) −**[C4N3H4SO2]+ (157) = 458.94 ∼ 460.

  4. [Molecular ion]+ (772.94) − *[C4N3H4SO2]+ (157) − 3H+ = 612.94 ∼ 613.

  5. [Molecular ion]+ (772.94) = 772.94 ∼ 773.

Mass spectrum of [VO(sal-sdz)(H2O)]·H2O (1).
Figure 7
Mass spectrum of [VO(sal-sdz)(H2O)]·H2O (1).

 = From one diazine moiety; ∗∗ = from another diazine moiety.

From the above fragmentation patterns it appears that the mass spectral data are consistent with proposed formulation of the complex in question.

3.5

3.5 Electronic spectral studies

The electronic spectra of the complexes were recorded in 10−3 M dimethylformamide solutions in the range of 280–800 nm solutions, and the spectral data are given in Table 5. Besides high intensity charge transfer transitions, compound (1), (3), (4) and (5) displayed one low intensity d–d transition assignable to b 2 1 a 1 while compound (2) exhibited two low intensity d–d transitions at 339 and 426 nm assignable to b 2 1 a 1 and b 2 b 1 , respectively (Maurya et al., 1997). The assignment of b 2 1 a 1 transition in each case assumes idealized C2v symmetry. These spectra are typical of oxovanadium(IV) complexes (Maurya and Rajput, 2004; Dutta and Syamal, 1993). The electronic spectrum of compound, [VO(sal-sdz)2(H2O)]·H2O (1) is shown in Fig. 8.

Table 5 Electronic Spectral Peaks of the Synthesized Complexes.
Comp. no. Complex λmax (nm) ε (liter mol−1 cm−1) Peak assignments
1 [VO(sal-sdz)2(H2O)]·H2O 281 2446 Charge Transfer Transition
303 2404 Charge Transfer Transition
320 2340 Charge Transfer Transition
430 1137 b 2 1 a 1
2 [VO(sal-sgn)2(H2O)]·H2O 288 4770 Charge Transfer Transition
304 3947 Charge Transfer Transition Charge
322 3910 Transfer Transition
339 290 b 2 1 a 1
426 214 b 2 b 1
3 [VO(sal-snm)2(H2O)]·H2O 285 2230 Charge Transfer Transition
310 2170 Charge Transfer Transition Charge
330 2125 Transfer Transition
400 750 b 2 1 a 1
4 [VO(sal-smr)2(H2O)]·H2O 300 2247 Charge Transfer Transition
315 2183 Charge Transfer Transition Charge
325 2119 Transfer Transition
380 855 b 2 1 a 1
5 [VO(sal-dadps)(H2O)]2·2H2O 288 2340 Charge Transfer Transition
310 2204 Charge Transfer Transition
335 2040 Charge Transfer Transition
415 650 b 2 1 a 1
Electronic spectrum of [VO(sal-sdz)(H2O)]·H2O (1).
Figure 8
Electronic spectrum of [VO(sal-sdz)(H2O)]·H2O (1).

3.6

3.6 Magnetic studies

The observed magnetic moments of the compounds (1)–(4) at room temperature are in the range 1.68–1.74 B.M., expected for monomeric oxovanadium(IV) complexes. A low magnetic moment value of 1.61 B.M. of compound (5) suggests spin quenching most probably due to ligand bridged dimeric structure (Maurya et al., 2008b) for this complex. This is consistent with the zigzag straight line ESR spectrum of this compound (vide supra).

3.7

3.7 Conductance measurements

The observed molar conductance (14.1–24.3 ohm−1 cm2 mol−1) in 10−3 molar DMF solutions of these complexes are given in Table 2, and are consistent with the non-electrolytic (Geary, 1971) nature of these complexes. Such a non-zero molar conductance value for each complex in the present study is most probably due to the strong donor capacity of DMF, which may lead to the displacement of anionic ligand and change of electrolyte type.

4

4 3D Molecular modeling

Keeping in view the hexa-coordination of all the complexes (vide infra) and also taking into account the well established crystal structure (Melchior et al., 1999) of bis(picolinato)oxovanadium(IV) (Fig. 9) (having a monoprotic bidentate (O, N)-donor) picolinate ligand, similar to monoprotic (O, N)-donor LH ligands in the present investigation, the molecular modelings of two representative compounds, [VO(sal-snm)2(H2O)]·H2O (3) and [VO(sal-dadps)(H2O)]2·2H2O (5) were carried out with the CS Chem 3D Ultra Molecular Modeling and Analysis Program. These are based on their octahedral structures with axial oxo group and water molecule trans to O (oxo), and the two molecules of O,N-donor sal-snm/sal-dadps ligand at the equatorial positions in cis arrangement. Alternative structures of these compounds having water molecule cis to O (oxo) were not considered suitable due to steric reason of the ligand sal-snm/sal-dadps. The details of bond lengths, bond angles as per the 3D structures (Figs. 10 and 11) are given in Tables 6a1,a2, and Tables 6b1,b2, respectively. For convenience of looking over the different bond lengths and bond angles, the various atoms in the two compounds in question are numbered in Arabic numerals. Compound (3) displays a total of 192 measurements of the bond lengths (70 in number), plus the bond angles (122 in number), while compound (5) displays a total of 344 measurements of the bond lengths (124 in number), plus the bond angles (220 in number). Except few cases, optimal values of both the bond lengths and the bond angles are given in Tables 6a1–b2 along with the actual ones. The actual bond lengths/bond angles given in Tables 6a1–b2 are obtained as a result of energy optimization in CHEM 3D Ultra (http://www.cambridgesoft.com), while the optimal bond length/optimal bond angle values are the most desirable/favorable (standard) bond lengths/bond angles established by the builder unit of the CHEM 3D. The missing of some values of standard bond lengths/bond angles may be due to the limitations of the software, which we had already noticed in the modeling of other systems (Maurya et al., 2007, 2008, 2010a, 2015a,b,c). In most of the cases, the actual bond lengths and bond angles are close to the optimal values, and thus the proposed structures of compounds (3) and (5) (and also others) are acceptable (Maurya et al., 2007, 2008, 2010b, 2015a,b,c,d).

Structure of bis(picolinato)oxovanadium(IV).
Figure 9
Structure of bis(picolinato)oxovanadium(IV).
3D-Structure of compound (3).
Figure 10
3D-Structure of compound (3).
3D-Structure of compound (5).
Figure 11
3D-Structure of compound (5).
Table 6a1 Various bond lengths of compound [VO(sal-snm)2(H2O)]·H2O (3).
S. no. Atoms Actual bond length Optimal bond length S. No. Atoms Actual bond length Optimal bond length
1 O(42)–H(44) 0.942 0.942 36 C(15)–C(17) 1.337 1.42
2 O(42)–H(43) 0.942 0.942 37 C(15)–O(16) 1.355 1.355
3 N(41)–H(65) 1.02 1.02 38 C(14)–C(21) 1.337 1.503
4 N(41)–H(64) 1.02 1.02 39 C(14)–C(20) 1.337 1.42
5 S(38)–N(41) 1.696 40 C(14)–C(15) 1.337 1.42
6 S(38)–O(40) 1.45 1.45 41 C(13)–S(38) 1.79
7 S(38)–O(39) 1.45 1.45 42 C(12)–H(53) 1.1 1.1
8 N(37)–H(63) 1.02 1.02 43 C(12)–C(13) 1.3949 1.42
9 N(37)–H(62) 1.02 1.02 44 C(11)–H(52) 1.1 1.1
10 S(34)–N(37) 1.696 45 C(11)–C(12) 1.3948 1.42
11 S(34)–O(36) 1.45 1.45 46 C(10)–N(32) 1.26 1.456
12 S(34)–O(35) 1.45 1.45 47 C(10)–C(11) 1.3948 1.42
13 C(31)–H(33) 1.1 1.1 48 C(9)–H(51) 1.1 1.1
14 C(31)–N(32) 2.3057 1.26 49 C(9)–C(10) 1.3949 1.42
15 C(30)–H(61) 1.1 1.1 50 C(8)–H(50) 1.1 1.1
16 C(29)–H(60) 1.1 1.1 51 C(13)–C(8) 1.3948 1.42
17 C(29)–C(30) 1.337 1.42 52 C(8)–C(9) 1.3948 1.42
18 C(28)–H(59) 1.1 1.1 53 C(7)–S(34) 1.79
19 C(28)–C(29) 1.4345 1.42 54 C(6)–H(49) 1.1 1.1
20 C(27)–H(58) 1.1 1.1 55 C(6)–C(7) 1.3949 1.42
21 C(27)–C(28) 1.337 1.42 56 C(5)–H(48) 1.1 1.1
22 C(25)–C(27) 1.337 1.42 57 C(5)–C(6) 1.3948 1.42
23 C(25)–O(26) 1.355 1.355 58 N(22)–C(4) 1.26 1.456
24 C(24)–C(31) 1.337 1.503 59 C(4)–C(5) 1.3948 1.42
25 C(24)–C(30) 1.337 1.42 60 C(3)–H(47) 1.1 1.1
26 C(24)–C(25) 1.337 1.42 61 C(3)–C(4) 1.3949 1.42
27 C(21)–H(23) 1.1 1.1 62 C(2)–H(46) 1.1 1.1
28 C(21)–N(22) 1.2782 1.26 63 C(7)–C(2) 1.3948 1.42
29 C(20)–H(57) 1.1 1.1 64 C(2)–C(3) 1.3948 1.42
30 C(19)–H(56) 1.1 1.1 65 V(1)–O(45) 1.5996
31 C(19)–C(20) 1.337 1.42 66 V(1)–O(42) 1.86
32 C(18)–H(55) 1.1 1.1 67 O(16)–V(1) 1.86
33 C(18)–C(19) 1.337 1.42 68 N(22)–V(1) 1.896
34 C(17)–H(54) 1.1 1.1 69 N(32)–V(1) 1.896
35 C(17)–C(18) 1.337 1.42 70 O(26)–V(1) 1.86
Table 6a2 Various bond angles of compound [VO(sal-snm)2(H2O)]·H2O (3).
S. no. Atoms Actual bond angles Optimal bond angles S. No. Atoms Actual bond angles Optimal bond angles
1 H(65)–N(41)–H(64) 119.9998 104.5 62 H(55)–C(18)–C(19) 119.9998 120
2 H(65)–N(41)–S(38) 120.0002 63 H(55)–C(18)–C(17) 119.9999 120
3 H(64)–N(41)–S(38) 120 64 C(19)–C(18)–C(17) 120.0003
4 H(63)–N(37)–H(62) 119.9999 104.5 65 H(54)–C(17)–C(18) 119.9999 120
5 H(63)–N(37)–S(34) 119.9995 66 H(54)–C(17)–C(15) 120.0003 120
6 H(62)–N(37)–S(34) 120.0006 67 C(18)–C(17)–C(15) 119.9997
7 H(60)–C(29)–C(30) 122.2431 120 68 C(15)–O(16)–V(1) 109.4996
8 H(60)–C(29)–C(28) 122.2429 120 69 H(57)–C(20)–C(19) 120 120
9 C(30)–C(29)–C(28) 115.514 70 H(57)–C(20)–C(14) 120.0004 120
10 H(59)–C(28)–C(29) 122.2423 120 71 C(19)–C(20)–C(14) 119.9996
11 H(59)–C(28)–C(27) 122.2421 120 72 C(17)–C(15)–O(16) 115.6987 124.3
12 C(29)–C(28)–C(27) 115.5156 73 C(17)–C(15)–C(14) 120.0004 120
13 H(61)–C(30)–C(29) 120 120 74 O(16)–C(15)–C(14) 124.2985 124.3
14 H(61)–C(30)–C(24) 119.9997 120 75 N(37)–S(34)–O(36) 109.4417
15 C(29)–C(30)–C(24) 120.0003 76 N(37)–S(34)–O(35) 109.4418
16 H(58)–C(27)–C(28) 119.9995 120 77 N(37)–S(34)–C(7) 109.5205
17 H(58)–C(27)–C(25) 120.0002 120 78 O(36)–S(34)–O(35) 109.4996 116.6
18 C(28)–C(27)–C(25) 120.0003 79 O(36)–S(34)–C(7) 109.4619
19 C(27)–C(25)–O(26) 115.6993 124.3 80 O(35)–S(34)–C(7) 109.462
20 C(27)–C(25)–C(24) 119.9989 120 81 S(34)–C(7)–C(6) 120.0002
21 O(26)–C(25)–C(24) 124.2997 124.3 82 S(34)–C(7)–C(2) 120.0002
22 N(41)–S(38)–O(40) 109.4417 83 C(6)–C(7)–C(2) 119.9996 120
23 N(41)–S(38)–O(39) 109.442 84 H(49)–C(6)–C(7) 120.0013 120
24 N(41)–S(38)–C(13) 109.5201 85 H(49)–C(6)–C(5) 120.0012 120
25 O(40)–S(38)–O(39) 109.4997 116.6 86 C(7)–C(6)–C(5) 119.9976
26 O(40)–S(38)–C(13) 109.4618 87 H(46)–C(2)–C(7) 119.9986 120
27 O(39)–S(38)–C(13) 109.462 88 H(46)–C(2)–C(3) 119.9985 120
28 S(38)–C(13)–C(12) 120.0007 89 C(7)–C(2)–C(3) 120.0029
29 S(38)–C(13)–C(8) 120.0001 90 H(48)–C(5)–C(6) 119.9989 120
30 C(12)–C(13)–C(8) 119.9992 120 91 H(48)–C(5)–C(4) 119.9993 120
31 H(53)–C(12)–C(13) 120.0008 120 92 C(6)–C(5)–C(4) 120.0018
32 H(53)–C(12)–C(11) 120.0013 120 93 H(47)–C(3)–C(4) 120.0015 120
33 C(13)–C(12)–C(11) 119.9979 94 H(47)–C(3)–C(2) 120.0016 120
34 H(50)–C(8)–C(13) 119.9987 120 95 C(4)–C(3)–C(2) 119.9969
35 H(50)–C(8)–C(9) 119.9986 120 96 C(21)–C(14)–C(20) 119.9989 120
36 C(13)–C(8)–C(9) 120.0028 97 C(21)–C(14)–C(15) 119.9987 120
37 H(52)–C(11)–C(12) 119.9989 120 98 C(20)–C(14)–C(15) 119.9999 120
38 H(52)–C(11)–C(10) 119.9993 120 99 H(23)–C(21)–N(22) 119.12 116.5
39 C(12)–C(11)–C(10) 120.0017 100 H(23)–C(21)–C(14) 119.12 120
40 H(51)–C(9)–C(10) 120.0017 120 101 N(22)–C(21)–C(14) 121.76 123.5
41 H(51)–C(9)–C(8) 120.0011 120 102 N(22)–C(4)–C(5) 119.9993 120
42 C(10)–C(9)–C(8) 119.9971 103 N(22)–C(4)–C(3) 119.9994 120
43 C(31)–C(24)–C(30) 119.9988 120 104 C(5)–C(4)–C(3) 120.0013 120
44 C(31)–C(24)–C(25) 119.9989 120 105 C(21)–N(22)–C(4) 119.1178
45 C(30)–C(24)–C(25) 119.9998 120 106 C(21)–N(22)–V(1) 121.7647
46 H(33)–C(31)–N(32) 105.7245 116.5 107 C(4)–N(22)–V(1) 119.1175
47 H(33)–C(31)–C(24) 105.7246 120 108 O(45)–V(1)–O(42) 135.6046
48 N(32)–C(31)–C(24) 148.5509 123.5 109 O(45)–V(1)–O(16) 174.2007
49 N(32)–C(10)–C(11) 119.9995 120 110 O(45)–V(1)–N(22) 89.1053
50 N(32)–C(10)–C(9) 119.9992 120 111 O(45)–V(1)–N(32) 95.7292
51 C(11)–C(10)–C(9) 120.0012 120 112 O(45)–V(1)–O(26) 65.4876
52 H(44)–O(42)–H(43) 120.0002 113 O(42)–V(1)–O(16) 44.9999
53 H(44)–O(42)–V(1) 120.0001 114 O(42)–V(1)–N(22) 135
54 H(43)–O(42)–V(1) 119.9997 115 O(42)–V(1)–N(32) 90.0001
55 C(31)–N(32)–C(10) 148.1512 116 O(42)–V(1)–O(26) 89.9998
56 C(31)–N(32)–V(1) 63.698 117 O(16)–V(1)–N(22) 90.0001
57 C(10)––N(32)–V(1) 148.1508 118 O(16)–V(1)–N(32) 90.0002
58 C(25)–O(26)–V(1) 109.5002 119 O(16)–V(1)–O(26) 109.4998
59 H(56)–C(19)–C(20) 119.9995 120 120 N(22)–V(1)–N(32) 90.0001
60 H(56)–C(19)–C(18) 120.0004 120 121 N(22)–V(1)–O(26) 109.5001
61 C(20)–C(19)–C(18) 120.0001 122 N(32)–V(1)–O(26) 151.8308
Table 6b1 Various bond lengths of compound [VO(sal-dadps)(H2O)]2·2H2O (5).
S. no. Atoms Actual bond length Optimal Bond Length S. No. Atoms Actual bond length Optimal bond length
1 O(76)–H(78) 0.942 0.942 63 S(36)–C(45) 1.79
2 O(76)–H(77) 0.942 0.942 64 S(36)–C(39) 1.79
3 O(75)–H(80) 0.942 0.942 65 S(36)–O(38) 1.45 1.45
4 O(75)–H(79) 0.942 0.942 66 S(36)–O(37) 1.45 1.45
5 V(72)–O(75) 1.86 67 O(34)–V(72) 1.86
6 V(72)–O(74) 1.5996 68 C(33)–H(35) 1.1 1.1
7 V(71)–O(76) 1.86 69 O(34)–C(32) 1.3722 1.355
8 V(71)–O(73) 1.5996 70 C(31)–H(96) 1.1 1.1
9 O(69)–V(72) 1.86 71 C(31)–C(32) 1.337 1.42
10 C(68)–H(70) 1.1 1.1 72 C(30)–H(95) 1.1 1.1
11 O(69)–C(67) 3.4681 1.355 73 C(30)–C(31) 1.337 1.42
12 C(66)–H(112) 1.1 1.1 74 C(29)–H(94) 1.1 1.1
13 C(66)–C(67) 1.337 1.42 75 C(29)–C(30) 2.6164 1.42
14 C(65)–H(111) 1.1 1.1 76 C(28)–H(93) 1.1 1.1
15 C(65)–C(66) 1.337 1.42 77 C(28)–C(29) 1.337 1.42
16 C(64)–H(110) 1.1 1.1 78 C(27)–C(33) 1.337 1.503
17 C(64)–C(65) 1.6862 1.42 79 C(32)–C(27) 1.337 1.42
18 C(63)–H(109) 1.1 1.1 80 C(27)–C(28) 1.337 1.42
19 C(63)–C(64) 1.337 1.42 81 N(26)–V(72) 1.896
20 C(62)–C(68) 1.337 1.503 82 N(26)–C(33) 1.26 1.26
21 C(67)–C(62) 1.337 1.42 83 C(24)–H(25) 1.1 1.1
22 C(62)–C(63) 1.337 1.42 84 O(23)–V(71) 1.86
23 N(61)–V(72) 1.896 85 N(22)–V(71) 1.896
24 N(61)–C(68) 1.26 1.26 86 N(22)–C(24) 1.26 1.26
25 C(59)–H(60) 1.1 1.1 87 C(21)–O(23) 1.355 1.355
26 O(58)–V(71) 1.86 88 C(20)–H(92) 1.1 1.1
27 N(57)–V(71) 1.896 89 C(20)–C(21) 1.337 1.42
28 N(57)–C(59) 1.26 1.26 90 C(19)–H(91) 1.1 1.1
29 C(56)–O(58) 1.355 1.355 91 C(19)–C(20) 1.337 1.42
30 C(55)–H(108) 1.1 1.1 92 C(18)–H(90) 1.1 1.1
31 C(55)–C(56) 1.337 1.42 93 C(18)–C(19) 1.5533 1.42
32 C(54)–H(107) 1.1 1.1 94 C(17)–H(89) 1.1 1.1
33 C(54)–C(55) 1.337 1.42 95 C(17)–C(18) 1.337 1.42
34 C(53)–H(106) 1.1 1.1 96 C(16)–C(24) 1.4475 1.503
35 C(53)–C(54) 1.3514 1.42 97 C(21)–C(16) 1.337 1.42
36 C(52)–H(105) 1.1 1.1 98 C(16)–C(17) 1.337 1.42
37 C(52)–C(53) 1.337 1.42 99 C(15)–H(88) 1.1 1.1
38 C(51)–C(59) 4.3751 1.503 100 C(14)–H(87) 1.1 1.1
39 C(56)–C(51) 1.337 1.42 101 C(14)–C(15) 1.337 1.42
40 C(51)–C(52) 1.337 1.42 102 C(13)–N(26) 1.26 1.456
41 C(50)–H(104) 1.1 1.1 103 C(13)–C(14) 1.337 1.42
42 C(49)–H(103) 1.1 1.1 104 C(12)–H(86) 1.1 1.1
43 C(49)–C(50) 2.1434 1.42 105 C(12)–C(13) 1.337 1.42
44 C(48)–N(61) 1.26 1.456 106 C(11)–H(85) 1.1 1.1
45 C(48)–C(49) 1.337 1.42 107 C(11)–C(12) 1.3373 1.42
46 C(47)–H(102) 1.1 1.1 108 C(10)–C(15) 1.337 1.42
47 C(47)–C(48) 1.337 1.42 109 C(10)–C(11) 1.337 1.42
48 C(46)–H(101) 1.1 1.1 110 C(9)–H(84) 1.1 1.1
49 C(46)–C(47) 1.8878 1.42 111 C(8)–H(83) 1.1 1.1
50 C(45)–C(50) 1.337 1.42 112 C(8)–C(9) 1.337 1.42
51 C(45)–C(46) 1.337 1.42 113 N(22)–C(7) 1.26 1.456
52 C(44)–H(100) 1.1 1.1 114 C(7)–C(8) 1.337 1.42
53 C(43)–H(99) 1.1 1.1 115 C(6)–H(82) 1.1 1.1
54 C(43)–C(44) 1.337 1.42 116 C(6)–C(7) 1.337 1.42
55 N(57)–C(42) 1.26 1.456 117 C(5)–H(81) 1.1 1.1
56 C(42)–C(43) 1.337 1.42 118 C(5)–C(6) 1.3373 1.42
57 C(41)–H(98) 1.1 1.1 119 C(4)–C(9) 1.337 1.42
58 C(41)–C(42) 1.337 1.42 120 C(4)–C(5) 1.337 1.42
59 C(40)–H(97) 1.1 1.1 121 S(1)–C(10) 1.79
60 C(40)–C(41) 1.3371 1.42 122 S(1)–C(4) 1.79
61 C(39)–C(44) 1.337 1.42 123 S(1)–O(3) 1.45 1.45
62 C(39)–C(40) 1.337 1.42 124 S(1)–O(2) 1.45 1.45
Table 6b2 Various bond angles of compound [VO(sal-dadps)(H2O)]2·2H2O (5).
S. no. Atoms Actual bond angles Optimal bond angles S. No. Atoms Actual bond angles Optimal bond angles
1 H(111)–C(65)–C(66) 126.8897 120 111 O(75)–V(72)–O(74) 82.1813
2 H(111)–C(65)–C(64) 126.8887 120 112 O(75)–V(72)–O(69) 88.922
3 C(66)–C(65)–C(64) 106.2217 113 O(75)–V(72)–N(61) 91.0778
4 H(110)–C(64)–C(65) 126.8892 120 114 O(75)–V(72)–O(34) 97.8186
5 H(110)–C(64)–C(63) 126.8892 120 115 O(75)–V(72)–N(26) 172.1064
6 C(65)–C(64)–C(63) 106.2216 116 O(74)–V(72)–O(69) 89.9999
7 H(112)–C(66)–C(67) 119.9995 120 117 O(74)–V(72)–N(61) 90.0002
8 H(112)–C(66)–C(65) 120.0002 120 118 O(74)–V(72)–O(34) 179.9998
9 C(67)–C(66)–C(65) 120.0003 119 O(74)–V(72)–N(26) 90
10 O(69)–C(67)–C(66) 111.531 124.3 120 O(69)–V(72)–N(61) 179.9997
11 O(69)–C(67)–C(62) 128.4687 124.3 121 O(69)–V(72)–O(34) 90
12 C(66)–C(67)–C(62) 119.9986 120 122 O(69)–V(72)–N(26) 90.0001
13 H(109)–C(63)–C(64) 120 120 123 N(61)–V(72)–O(34) 89.9999
14 H(109)–C(63)–C(62) 119.9998 120 124 N(61)–V(72)–N(26) 90.0002
15 C(64)–C(63)–C(62) 120.0002 125 O(34)–V(72)–N(26) 90.0001
16 H(107)–C(54)–C(55) 120.2968 120 126 H(35)–C(33)–C(27) 119.9998 120
17 H(107)–C(54)–C(53) 120.297 120 127 H(35)–C(33)–N(26) 119.9997 116.5
18 C(55)–C(54)–C(53) 119.4062 128 C(27)–C(33)–N(26) 120.0005 123.5
19 H(106)–C(53)–C(54) 120.3246 120 129 H(78)–O(76)–H(77) 119.9995
20 H(106)–C(53)–C(52) 120.3253 120 130 H(78)–O(76)–V(71) 120.0004
21 C(54)–C(53)–C(52) 119.3502 131 H(77)–O(76)–V(71) 120.0001
22 H(108)–C(55)–C(56) 120.0002 120 132 V(71)–O(58)–C(56) 109.5001
23 H(108)–C(55)–C(54) 120 120 133 V(71)–N(57)–C(59) 120.0003
24 C(56)–C(55)–C(54) 119.9999 134 V(71)–N(57)–C(42) 119.9998
25 O(58)–C(56)–C(55) 115.699 124.3 135 C(59)–N(57)–C(42) 114.9999
26 O(58)–C(56)–C(51) 124.3001 124.3 136 V(71)–O(23)–C(21) 109.4998
27 C(55)–C(56)–C(51) 119.9989 120 137 H(92)–C(20)–C(21) 120.0002 120
28 H(105)–C(52)–C(53) 119.9996 120 137 H(92)–C(20)–C(19) 120.0001 120
29 H(105)–C(52)–C(51) 120.0002 120 139 C(21)–C(20)–C(19) 119.9996
30 C(53)–C(52)–C(51) 120.0002 140 H(91)–C(19)–C(20) 124.6011 120
31 C(68)–C(62)–C(67) 119.9999 120 141 H(91)–C(19)–C(18) 124.6013 120
32 C(68)–C(62)–C(63) 119.9988 120 142 C(20)–C(19)–C(18) 110.7976
33 C(67)–C(62)–C(63) 119.9988 120 143 H(90)–C(18)–C(19) 124.6019 120
34 H(70)–C(68)–C(62) 119.9999 120 144 H(90)–C(18)–C(17) 124.6013 120
35 H(70)–C(68)–N(61) 120.0001 116.5 145 C(19)–C(18)–C(17) 110.7968
36 C(62)–C(68)–N(61) 120 123.5 146 O(23)–C(21)–C(20) 115.6987 124.3
37 H(103)–C(49)–C(50) 137.9078 120 147 O(23)–C(21)–C(16) 124.3003 124.3
38 H(103)–C(49)–C(48) 137.9074 120 148 C(20)–C(21)–C(16) 119.9989 120
39 C(50)–C(49)–C(48) 84.1848 149 H(89)–C(17)–C(18) 120 120
40 N(61)–C(48)–C(49) 119.9999 120 150 H(89)–C(17)–C(16) 120 120
41 N(61)–C(48)–C(47) 119.9986 120 151 C(18)–C(17)–C(16) 120
42 C(49)–C(48)–C(47) 119.999 120 152 C(24)–C(16)–C(21) 140.0803 120
43 H(102)–C(47)–C(48) 144.7547 120 153 C(24)–C(16)–C(17) 99.9193 120
44 H(102)–C(47)–C(46) 144.7544 120 154 C(21)–C(16)–C(17) 119.9995 120
45 C(48)–C(47)–C(46) 70.4909 155 O(76)–V(71)–O(73) 95.1862
46 H(104)–C(50)–C(49) 145.0758 120 156 O(76)–V(71)–O(58) 115.7977
47 H(104)–C(50)–C(45) 145.0758 120 157 O(76)–V(71)–N(57) 45.3302
48 C(49)–C(50)–C(45) 69.8484 158 O(76)–V(71)–O(23) 154.1071
49 H(101)–C(46)–C(47) 137.5888 120 159 O(76)–V(71)–N(22) 70.4684
50 H(101)–C(46)–C(45) 137.5891 120 160 O(73)–V(71)–O(58) 82.7958
51 C(47)–C(46)–C(45) 84.8221 161 O(73)–V(71)–N(57) 90.0001
52 C(50)–C(45)–C(46) 119.9986 120 162 O(73)–V(71)–O(23) 90
53 C(50)–C(45)–S(36) 119.9987 163 O(73)–V(71)–N(22) 159.2605
54 C(46)–C(45)–S(36) 120.0003 164 O(58)–V(71)–N(57) 159.2607
55 H(100)–C(44)–C(43) 119.9998 120 165 O(58)–V(71)–O(23) 90
56 H(100)–C(44)–C(39) 119.9998 120 166 O(58)–V(71)–N(22) 90
57 C(43)–C(44)–C(39) 120.0004 167 N(57)–V(71)–O(23) 109.4998
58 C(45)–S(36)–C(39) 109.5003 168 N(57)–V(71)–N(22) 90.0003
59 C(45)–S(36)–O(38) 109.4618 169 O(23)–V(71)–N(22) 109.5
60 C(45)–S(36)–O(37) 109.442 170 H(25)–C(24)–N(22) 124.6646 116.5
61 C(39)–S(36)–O(38) 109.4615 171 H(25)–C(24)–C(16) 124.664 120
62 C(39)–S(36)–O(37) 109.4419 172 N(22)–C(24)–C(16) 110.6714 123.5
63 O(38)–S(36)–O(37) 109.5197 116.6 173 V(72)–N(26)–C(33) 119.9996
64 C(44)–C(39)–C(40) 119.9987 120 174 V(72)–N(26)–C(13) 120.0001
65 C(44)–C(39)–S(36) 120 175 C(33)–N(26)–C(13) 115.0003
66 C(40)–C(39)–S(36) 119.9988 176 H(87)–C(14)–C(15) 119.9999 120
67 H(97)–C(40)–C(41) 120.003 120 177 H(87)–C(14)–C(13) 119.9999 120
68 H(97)–C(40)–C(39) 120.0032 120 178 C(15)–C(14)–C(13) 120.0002
69 C(41)–C(40)–C(39) 119.9938 179 N(26)–C(13)–C(14) 119.9999 120
70 H(99)–C(43)–C(44) 120.0004 120 180 N(26)–C(13)–C(12) 119.9991 120
71 H(99)–C(43)–C(42) 120 120 181 C(14)–C(13)–C(12) 119.9984 120
72 C(44)–C(43)–C(42) 119.9996 182 H(86)–C(12)–C(13) 120.0079 120
73 H(98)–C(41)–C(42) 120.0008 120 183 H(86)–C(12)–C(11) 120.008 120
74 H(98)–C(41)–C(40) 120.0005 120 184 C(13)–C(12)–C(11) 119.9841
75 C(42)–C(41)–C(40) 119.9987 185 H(88)–C(15)–C(14) 120.0001 120
76 C(59)–C(51)–C(56) 106.5371 120 186 H(88)–C(15)–C(10) 120.0001 120
77 C(59)–C(51)–C(52) 133.4032 120 187 C(14)–C(15)–C(10) 119.9998
78 C(56)–C(51)–C(52) 120.0557 120 188 H(85)–C(11)–C(12) 120.0081 120
79 H(60)–C(59)–N(57) 145.4489 116.5 189 H(85)–C(11)–C(10) 120.0081 120
80 H(60)–C(59)–C(51) 145.4491 120 190 C(12)–C(11)–C(10) 119.9838
81 N(57)–C(59)–C(51) 69.102 123.5 191 C(15)–C(10)–C(11) 119.9989 120
82 N(57)–C(42)–C(43) 119.9987 120 192 C(15)–C(10)–S(1) 119.9988
83 N(57)–C(42)–C(41) 119.9999 120 193 C(11)–C(10)–S(1) 119.9998
84 C(43)–C(42)–C(41) 119.9989 120 194 V(71)–N(22)–C(24) 119.9999
85 H(80)–O(75)–H(79) 119.9994 195 V(71)–N(22)–C(7) 119.9999
86 H(80)–O(75)–V(72) 120.0002 196 C(24)–N(22)–C(7) 115.0001
87 H(79)–O(75)–V(72) 120.0004 197 H(83)–C(8)–C(9) 120.0004 120
88 V(72)–O(69)–C(67) 42.58 198 H(83)–C(8)–C(7) 120.0001 120
89 V(72)–N(61)–C(68) 120.0001 199 C(9)–C(8)–C(7) 119.9995
90 V(72)–N(61)–C(48) 119.9996 200 N(22)–C(7)–C(8) 119.9996 120
91 C(68)–N(61)–C(48) 115 201 N(22)–C(7)–C(6) 119.9986 120
92 V(72)–O(34)–C(32) 97.6087 202 C(8)–C(7)–C(6) 119.9993 120
93 H(96)–C(31)–C(32) 119.9995 120 203 H(82)–C(6)–C(7) 120.0079 120
94 H(96)–C(31)–C(30) 120.0004 120 204 H(82)–C(6)–C(5) 120.0081 120
95 C(32)–C(31)–C(30) 120.0001 205 C(7)–C(6)–C(5) 119.984
96 H(95)–C(30)–C(31) 138.0414 120 206 H(84)–C(9)–C(8) 119.9997 120
97 H(95)–C(30)–C(29) 138.042 120 207 H(84)–C(9)–C(4) 120.0003 120
98 C(31)–C(30)–C(29) 83.9166 208 C(8)–C(9)–C(4) 120
99 H(94)–C(29)–C(30) 138.0414 120 209 H(81)–C(5)–C(6) 120.009 120
100 H(94)–C(29)–C(28) 138.0417 120 210 H(81)–C(5)–C(4) 120.0088 120
101 C(30)–C(29)–C(28) 83.9168 211 C(6)–C(5)–C(4) 119.9822
102 O(34)–C(32)–C(31) 138.4832 124.3 212 C(9)–C(4)–C(5) 120.0003 120
103 O(34)–C(32)–C(27) 101.0414 124.3 213 C(9)–C(4)–S(1) 119.9984
104 C(31)–C(32)–C(27) 119.9997 120 214 C(5)–C(4)–S(1) 119.9988
105 H(93)–C(28)–C(29) 119.9996 120 215 C(10)–S(1)–C(4) 109.5002
106 H(93)–C(28)–C(27) 120.0001 120 216 C(10)–S(1)–O(3) 109.4618
107 C(29)–C(28)–C(27) 120.0003 217 C(10)–S(1)–O(2) 109.4418
108 C(33)–C(27)–C(32) 120 120 218 C(4)–S(1)–O(3) 109.4619
109 C(33)–C(27)–C(28) 119.9989 120 219 C(4)–S(1)–O(2) 109.4418
110 C(32)–C(27)–C(28) 119.9986 120 220 O(3)–S(1)–O(2) 109.5198 116.6

5

5 Conclusions

The satisfactory analytical data coupled with the studies presented above suggest that the complexes prepared in this investigation are of the general composition [VO(L)2(H2O)]·H2O and [VO(sal-dadps)(H2O)]2·2H2O, where, LH = sal-sdzH, sal-sgnH, sal-snmH or sal-smrH. Keeping in view the monomeric hexacoordination and the dimeric hexacoordination of compound, and the well documented crystal structure (Burguess et al., 1997) of bis(maltolato)-oxovanadium(IV) (BMOV) (Fig. 12) involving a monomeric bidentate (O, O) donor ligand (similar to (O, N)-donor in the present investigation), octahedral structures (Fig. 13) with an axial oxo group have been proposed for complexes (1)–(5). Maurya et al. have already proposed a similar octahedral structure (Maurya et al., 2002a,b) (for hexacoordination oxovanadium(IV) complexes). In complex (5) the Schiff base ligand behaves as a dibasic tetradentate ligand which on reaction with VO2+ forms a stable binuclear oxovanadium(IV) complex. The neighboring vanadyl group participates in spin-spin exchange interaction (Maurya et al., 1997) leading to subnormal magnetic moment.

Structure of bis(maltolato)oxovanadium(IV).
Figure 12
Structure of bis(maltolato)oxovanadium(IV).
Proposed structure of complexes.
Figure 13
Proposed structure of complexes.

Acknowledgments

Authors are thankful to Prof. K. N. Singh Yadava, Vice-Chancellor, Rani Durgavati University, Jabalpur, M.P., India, for the encouragement. Analytical facilities provided by the Central Drug Research Institute, Lucknow, India, and the Regional Sophisticated Instrumentation Centre, Indian Institute of Technology, Chennai and Mumbai, India, are gratefully acknowledged.

References

  1. , , , , , . Transit. Metal Chem.. 1994;19:25.
  2. , , , , . Eur. J. Med. Chem.. 2004;39:593.
  3. , , , , , . J. Chem. Soc. Dalton Trans. 1995:2459.
  4. , . Inorg. Biochem.. 2000;80:1.
  5. , , . , , , eds. Comprehensive Coordination Chemistry. Vol vol. 3. Oxford: Pergamon Press; . first ed. p. 540
  6. , , , , , . Polyhedron. 1997;16:789.
  7. , . Coord. Chem. Rev.. 1999;187:17.
  8. , , , . Bioorg. Med. Chem.. 2005;13:2459.
  9. , , , , . Chem. Rev.. 1999;99:2561.
  10. , , , . Appl. Catal. A. 1997;157:335.
  11. , , , , , , . IL Farmaco. 2005;60:307.
  12. , , . Electron spin resonance. In: Elements of Magneto Chemistry. New Delhi: Affiliated East-West Press Pvt. Ltd.; . second ed. p. 225
    [Google Scholar]
  13. , , . J. Chem. Soc., Dalton Trans. 1994:2739.
  14. , , , , , . Br. J. Cancer. 2005;92:690.
  15. , , . Mutat. Res.. 2001;475:1.
  16. , , , , , , , , , , , , , , , , , , . Cancer Res.. 2002;62:6116.
  17. Furman, N. H., 1962. Standard Methods of Chemical Analysis, sixth ed. vol. 1, Van D. Nostrand Company, Inc., New Jersey, p. 1211.
  18. , , , . Bioorg. Med. Chem.. 2004;12:651.
  19. , . Coord. Chem. Rev.. 1971;7:81.
  20. , , . Synth. React. Inorg. Met. -Org. Chem.. 2000;30:1581.
  21. , , , , , , , , , . Polyhedron. 2007;26:773.
  22. , , . J. Inorg. Chem.. 1975;52:805.
  23. , , . J. Inorg. Chem. Soc.. 1975;52:1250.
  24. , , . J. Inorg. Chem. Nucl. Chem.. 1976;38:999.
  25. , , . J. Inorg. Nucl. Chem.. 1977;39:901.
  26. , , , , , . Polyhedron. 2000;19:2389.
  27. , , , , . Coord. Chem. Rev.. 2003;237:123.
  28. , , , , , . Chem. Lett.. 2004;30:1274.
  29. , , . J. Indian Chem. Soc.. 1981;58:115.
  30. , , , . Coord. Chem. Rev.. 2003;237:89.
  31. , , . J. Am. Chem. Soc.. 2001;123:2389.
  32. , , , , , , , . J. Enzyme Inhib. Med. Chem.. 2006;21:37.
  33. , . Coord. Chem. Rev.. 2003;237:163.
  34. , , . Rev. Inorg. Chem.. 1995;15:1.
  35. , , . Spect. Lett.. 1999;32:213. and references therein
  36. , , . J. Mol. Struct.. 2004;687:35.
  37. , , . J. Mol. Struct.. 2006;794:24.
  38. , , , , . Polyhedron. 1993;12:159.
  39. , , , , . Synth. React. Inorg. Met. -Org. Chem.. 1994;26:1013.
  40. , , , , . Synth. React. Inorg. Met. -Org. Chem.. 1995;25:437.
  41. , , , , . Polyhedron. 1997;16:1825.
  42. , , , , . Indian J. Chem.. 2001;40A:1053.
  43. , , , , . Eur. J. Inorg. Chem. 2002:1749.
  44. , , , . Synth. React. Inorg. -Met. Org. Chem.. 2002;32:231.
  45. , , , , , . Eur. J. Inorg. Chem. 2003:1966.
  46. , , , . Synth. React. Inorg. Met. -Org. Chem.. 2003;33:1857.
  47. , , , . Synth. React. Inorg. Met. -Org. Chem.. 2003;33:817.
  48. , , , . Synth. React. Inorg. Met. -Org. Chem.. 2003;33:801.
  49. , , , . Indian J. Chem.. 2007;46A:1594.
  50. , , , . Indian J. Chem.. 2008;47A:517.
  51. , , , . Indian J. Chem.. 2008;47A:1333.
  52. , , , , . Int. J. Curr. Chem.. 2010;1:309.
  53. , , , , . Int. J. Curr. Chem.. 2010;2:393.
  54. Maurya, R. C., Jhamb, S., Roy, S., Chourasia, J., Sharma, A. K., Vishwakarma, P., 2015a. Arabian J. Chem. 8, 143.
  55. , , , , , , , . Arabian J. Chem. 2015;8:655.
  56. Maurya, R. C., Sutradhar, D., Martin, M. H., Roy, S., Chourasia, J., Sharma, A. K., Vishwakarma, P., 2015c. Arabian J. Chem. 8, 78.
  57. Maurya, R. C., Sutradhar, D., Martin, M. H., Roy, S., Chourasia, J., Sharma, A. K., Vishwakarma, P., 2015d. Arabian J. Chem. 8, 78.
  58. , , , , , , . Bioorg. Med. Chem. Lett.. 1999;9:1843. and references therein
  59. , , , , , , , , , . Inorg. Chem.. 1999;38:2288.
  60. , , , , , , , , , . Inorg. Chem.. 1999;38:2288.
  61. , , , , , . Polyhedron. 2005;24:985.
  62. , , . Spectrochim. Acta Part A. 2007;68:1382.
  63. , , . Spectrochim. Acta Part A. 2007;66:949.
  64. , , , . J. Mol. Struct.. 2010;979:62.
  65. , , , , , , , . Inorg. Chem.. 2005;44:2678.
  66. , , , , . Eur. J. Med. Chem.. 2005;40:361.
  67. , , , , . Int. J. Cancer. 2006;120:13.
  68. , . J. Inorg. Biochem.. 2003;80:133.
  69. , . Inorg. Chem. Commun.. 2003;6:604.
  70. , , , , , , , , , , , , , , . Inorg. Chem.. 2002;7:384.
  71. , , , , , , . Nature. 1986;322:388.
  72. , , . J. Indian Chem. Soc.. 1955;32:604.
  73. , , , , , , . Inorg. Chim. Acta. 1998;283:175.
  74. , , , , , . Coord. Chem. Rev.. 2002;226:187.
  75. , , , , , , . Inorg. Chem.. 2003;42:1508.
  76. , , . Polyhedron. 2006;25:1689.
  77. , . Coord. Chem. Rev.. 1966;1:293.
  78. , , , , , , , , . Clin. Cancer Res.. 2004;10:1430.
  79. , . Spectrochim. Acta Part A. 2007;66:1271.
  80. , , , . Appl. Organometal. Chem.. 1999;13:637.
  81. , , , . Appl. Organometal. Chem.. 2000;14:212.
  82. , , , , . Polyhedron. 1998;18(93)
  83. , , . Eur. J. Med. Chem.. 2005;40:377.
  84. , , , , . Inorg. Chem.. 2006;45:5150.
  85. , , . Coord. Chem. Rev.. 1989;95:183.
  86. The Pharmacopoeia of India, 1983, vol. 2, p. 3.
  87. , , . Met. Ions Biol. Syst.. 2004;41:221.
  88. , , . Curr. Sci.. 1980;49:8.
  89. , , , , , , , , , , , , . J. Med. Chem.. 1997;40:1018.
  90. , , , , , , , , , . Bioorg. Med. Chem. Lett.. 2005;15:2275.
  91. , , , , , , , , , . J. Med. Chem.. 1992;35:2496.

Further reading

  1. , . Inorganic Electronic Spectroscopy (second ed.). New York: Elsevier; . p. 387
  2. , , . J. Mol. Struct.. 2007;833:133.
Show Sections