10.8
CiteScore
 
5.3
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Corrigendum
Current Issue
Editorial
Erratum
Full Length Article
Full lenth article
Letter to Editor
Original Article
Research article
Retraction notice
Review
Review Article
SPECIAL ISSUE: ENVIRONMENTAL CHEMISTRY
10.8
CiteScore
5.3
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Corrigendum
Current Issue
Editorial
Erratum
Full Length Article
Full lenth article
Letter to Editor
Original Article
Research article
Retraction notice
Review
Review Article
SPECIAL ISSUE: ENVIRONMENTAL CHEMISTRY
View/Download PDF

Translate this page into:

Review article
09 2023
:16;
105011
doi:
10.1016/j.arabjc.2023.105011

Chemical diversity and biological activities of marine-derived sulphur containing alkaloids: A comprehensive update

School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, PR China

⁎Corresponding author at: School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Provance of China 712046. zhangnatprod@163.com (Dongdong Zhang)

Disclaimer:
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.

Peer review under responsibility of King Saud University.

Abstract

Objectives

The ocean is a huge ecosystem with diverse marine life. Scientists have found a large number of natural products with unique structural features and excellent biological activity from these organisms. Marine-derived sulphur-containing alkaloids are a significant family of natural products with diverse structures and bioactivities. In this paper, the chemical and biological diversity of 972 sulfur-containing alkaloids derived from marine organisms reported from 1982 to 2022 were reviewed, and the structure–activity relationship was briefly analyzed, in order to provide reference for the discovery, synthesis, biological activity research and drug development of such compounds.

Key findings

A total of 972 marine-derived sulphur-containing alkaloids have been collected. Among them, 80.36% of sulphur-containing alkaloids are from marine sponges, fungi, tunicates and bacteria. Moreover, cytotoxicity is their most significant property, About 1/3 sulphur-containing organisms are reported to be cytotoxic. Aming them, discorhabdins, curacins, tanjungides, leptosins, and latrunculins exhibit better cytotoxicity. In addition, the structure–activity relationships of the cytotoxicity of these compounds have been summarized for further investigation.

Summary

In this paper, the chemical and bioactivity diversity of marine-derived sulphur-containing alkaloids were reviewed, which are a significant family of natural products with diverse structures and bioactivities. 972 sulphur-containing alkaloids were obtained from marine algae, sponges, cnidarians, tunicates, echinoderms, molluscs, bryozoans, dinoflagellates, cyanobacteria, bacteria and fungi, which possessed a wide spectrum of pharmacology including cytotoxicity, antibacterial, antifungal, antimitotic, antiviral, and other activities.

Keywords

Sulphur-containing alkaloids
Marine organisms
Chemical diversity
Bioactivity diversity
Cytotoxicity
1

1 Introduction

Natural medicines found from terrestrial plant and animal resources have been widely used in the clinical treatment of various diseases. However, with continuous exploitation, it has become increasingly difficult to develop drugs from terrestrial resources. Therefore, researchers have started to work on finding new sources of drugs from the ocean. (Lu et al., 2021).

The oceans are extremely rich in biological resources, including large numbers of fish, shrimps, crabs and many lower species such as molluscs, corals and seaweeds. Together, these organisms maintain the balance and stability of the marine ecosystem. (Seipp et al., 2021). It is worth noting that the marine environment has extreme living conditions such as high pressure, high salinity, hypoxia and low light. As a result, marine organisms often produce unique and active secondary metabolites, giving them an edge in the competition for limited resources. (Shang et al., 2018).

Pharmacological studies have shown that marine natural products (MNPs) have great potential in the treatment of various diseases. These results have stimulated research and development of marine organisms. After decades of in-depth studies, a large number of active ingredients have been found. (Lu et al., 2021). To date, 11 marine-derived drugs have successfully reached the market. For example, cytarabine (Cytosar-U®), ET-743 (Yondelis®), eribulin mesylate (Halaven®) and the antibody-drug conjugates (ADCs) brentuximab (Adcetris®) and polatumumab (Polivy®) have been used to treat cancer. Lovaza®, Vascepa® and Epanova® are used to treat hypertriglyceridemia. (Liang et al., 2019). In addition, 23 compounds are in various stages of clinical development. For example, the combination therapy of prambulin and docetaxel is currently in phase III clinical trials for the treatment of non-small cell lung cancer and the prevention of chemotherapy-induced neutropenia. lurbinectedin is in phase II/III clinical trials for the treatment of BRCA1/2-mutated breast cancer and small cell lung cancer. In addition, tetrodotoxin (Tectin), an alkaloid derived from the tetrodotoxin liver, is in phase III clinical trials for the treatment of severe pain. (Jiménez, 2018).

Among the many MNPs, sulphur-containing alkaloids are important natural marine products with good bioactivity. As shown in Fig. 1, about 972 sulphur-containing alkaloids have been isolated from marine organisms from 1982. (marine fungi have become an important source of sulphur-containing alkaloids in recent 10 years, Fig. 2). The sulphur-containing alkaloids displayed a variety of biological activities such as cytotoxicity, anti-proliferation, anti-virus, anti-inflammatory and antioxidant, as listed in Table 14 (Supporting material) (Berman et al., 1999; Du et al., 2012; Goey et al., 2016; Guzmán et al., 2009; Harris et al., 2018; Jeong et al., 2003; Johnson et al., 1999; Jun et al., 2007; Lam et al., 2020; Lee et al., 2016; Li et al., 2021; Machihara and Namba, 2020; Merrouche et al., 2020; Morgan et al., 2010, 2015; Oluwabusola et al., 2022; Reid et al., 1996; Salam et al., 2013; Susana and Salvador-Reyes, 2022; Wang et al., 2022; Zhao et al., 2019). Of them, ecteinascidin 743 (yondelis) has become the first modern marine drug to treat advanced soft tissue tumors (Menchaca et al., 2003). Thiomarinols have excellent antibacterial activity and can even be effective against methicillin-resistant Staphylococcus aureus (MRSA) (Shiozawa et al., 1995). Somocystinamide A (601) shows strong cytotoxicity to Jurkat and CEM cells with IC50 values of 3 and 14 nM, respectively (Wrasidlo et al., 2008).

The percentage of sulphur-containing alkaloids from diverse marine organisms.
Fig. 1
The percentage of sulphur-containing alkaloids from diverse marine organisms.
All sulphur-containing alkaloids by source/year, n = 972.
Fig. 2
All sulphur-containing alkaloids by source/year, n = 972.

In this study, we comprehensively summarized the chemistry and biological activity of sulphur-containing alkaloids in 459 publications and provided a brief analysis of the active conformational relationships between their structure and biological activity. This will help us to provide a reference for the discovery, synthesis and biological activity studies of this class of compounds and for drug discovery and development.

1.1

1.1 Search strategy

Comprehensive research and analysis of previously published literature were conducted for studies on the chemical and biological diversity of the marine-derived sulphur-containing alkaloids. The search was conducted using databases such as Sciencedirect, SciFinder, Medline PubMed, Google Scholar, Baidu Scholar, and CNKI by using the keywords such as marine alkaloids, marine-derived sulphur-containing alkaloids, sulphur-containing alkaloids. Furthermore, part of the analyzed studies was got by a manual search of articles in the reference lists of the included studies. The PRISMA template for determining the list of articles is displayed in Fig. 3. The chemical structures were drawn using ChemDraw Professional 20.0.

Research Data Search & Selection Flow.
Fig. 3
Research Data Search & Selection Flow.

1.2

1.2 Chemical diversity of Marine-Derived Sulphur-containing alkaloids

1.2.1

1.2.1 Marine algae

The photosynthesis of algae is an extremely important source of oxygen. At the same time, the organic matter they produce and the energy they accumulate are the basis for the survival and development of the entire marine biosphere. Therefore, marine algae are considered to be an important marine biological resource. Human exploitation of marine algal resources has a long history. In the early days, some seaweeds such as roundworms, kelp and nori were used as food. Later, seaweed was used as medicine, animal feed and fertiliser. With the development of seaweed resources, one of the most important uses of seaweed is the extraction of various seaweed extracts. For example, agar is widely used as a bacterial culture medium and carrageenan is widely used in the food industry.

Although abundant compounds were isolated from the marine algae by natural product chemists, only 15 sulphur-containing alkaloids (115) were reported from red algae and brown algae (Fig. 4 and Table 1). Of them, sulphur-containing alkaloids reported from the red algae are all reported from Laurencia brongniartii (Tanaka et al., 1989). In addition, it’s worth noting that these alkaloids are all indole alkaloids and compounds 4, 814 are special indole alkaloid dimers (El-Gamal et al., 2005).

Sulphur-containing alkaloids from marine algae.
Fig. 4
Sulphur-containing alkaloids from marine algae.
Table 1 Sulphur-containing alkaloids from marine algae.
No. Compounds Time From Location Ref.
Marine algae
Red algae
1. itomanindole A 1989 Laurencia brongniartii Okinawa, Japan (Tanaka et al., 1989)
2. itomanindole B 1989
3. 4,6-dibromo-2-(methylthio)indole 1989
4. 3,3-bis(4,6-dibromo-t-methyIthio)indole 1989
5. 2-methylsulfinyl-3-methylthio-4,5,6-tribromoindole 2005 Ken-Ting National Park, South Taiwan (El-Gamal et al., 2005)
6. 3-methylsulfinyl-2,4,6-tribromoindole 2005
7. 4,6-dibromo-2,3-di(methylsulfinyl)indole 2005
8. 3,3′-bis(2′-methylsulfinyl-2-methylthio-4,6,4′,6′-tetrabromo)indole 2005
9. 3,3-bis(4,6-dibromo-2-methylsulfinyl)indole 2005
10. 2,4,4′.6.6′-pentabromo-2′,3-bis(methylthio)-1,3′-bi-1H-indole 2005 Kikai Island, Japan (Natsuki et al., 2005)
11. 2.4.4‘0.5′.6.6‘-hexabromo-2′,3-bis(methylthio)-1,3′-bi-1H-indole 2005
12. 2,4,4′,5,6,6′-hexabromno-2′,3-bis(methylthio)-1,3′-bi-1H-indole 2005
13. 2.4.4‘0.5.5′.6.6′-heptabromo-2′,3-bis(methylthio)-1,3′-bi-1H-indole 2005
14. 2.4.4′.6.6′-pentabromo-2′-methylthio-3,3′-bi-1H-indole 2005
Brown algae
15. sargassulfamide A 2020 Sargassum naozhouense Leizhou Peninsula, Guangdong, China (Peng et al., 2020)

1.2.2

1.2.2 Marine fauna

1.2.2.1
1.2.2.1 Marine sponges

Marine sponges are the most primitive multicellular animal, which have been living in the ocean since 600 million years ago. They have developed to more than 10,000 species, accounting for 1/15 of the marine animal species. Sponges have been developed very early by ancient humans. Now they are extensive used in technology, medicine and daily life and have become an important resource for marine drug development. A total of 316 (16331) sulphur-containing alkaloids were reported from the marine sponges (Fig. 5 and Table 2). These compounds isolated from marine sponges have various bioactivities such as antitumor, antifungal, antibacterial and enzyme inhibitory activities.

Sulphur-containing alkaloids from marine sponges.
Fig. 5
Sulphur-containing alkaloids from marine sponges.
Sulphur-containing alkaloids from marine sponges.
Fig. 5
Sulphur-containing alkaloids from marine sponges.
Sulphur-containing alkaloids from marine sponges.
Fig. 5
Sulphur-containing alkaloids from marine sponges.
Table 2 Sulphur-containing alkaloids from marine sponges.
No. Compounds Time From Location Ref.
Marine fauna
Marine sponges
16 latrunculin A 1982 Latruncularia magnifica Red Sea (Spector et al., 1983)
17 latrunculin B 1982
18 latrunculin C 1985 (Kashman et al., 1985)
19 latrunculin D 1985
20 agelasidine B 1984 Agefas nakamurai Okinawa, Japan (Nakamura et al., 1985)
21 agelasidine C 1984
22 prianosin A 1987 Prianos melanos (Kobayashi et al., 1987)
23 psammaplin A 1987 Psammaplvsilla sp. Tonga (Quiñoà and Crews, 1987)
24 (E,Z)-isomer of psammaplin A 1987 unidentified sponge Guam, U.S.A. (Arabshahi and Schmitz, 1987)
25 bisaprasin 1987 Thorectopsamma xana (Rodriguez et al., 1987)
26 mycothiazole 1988 Spongia mycofijiensis Vanuatu (Crews et al., 1988),(Sugiyama et al., 2003)
27 dercitin 1989 Dercitus sp. Bahamas (Burres et al., 1989)
28 prianosin B 1988 Prianos melanos Motobu Peninsula, Okinawa, Japan (Cheng et al., 1988)
29 prianosin C 1988
30 prianosin D(discorhabdin D) 1988
31 discorhabdin A 1988 Latrunculia sp. New Zealand (Perry et al., 1988)
32 discorhabdin B 1988
33 adociaquinone A 1987 Adocia sp. Truk Lagoon (Schmitz and Bloor, 1988)
34 adociaquinone B 1987
35 3-ketoadociaquinone A 1987
36 agelasidine A 1983 Agelas sp. Okinawa, Japan (Nakamura et al., 1983)
37 6,7-epoxy-latrunculin A 1989 Latruncularia magnifica Red Sea (Blasberger et al., 1989)
38 latrunculin M 1989
39 corallistine 1989 Corallistes fulvodesmus New Caledonia (Debitus et al., 1989)
40 batzelline A 1989 Batzella sp. Bahamas (Sakemi et al., 1989)
41 batzelline B 1989
42 cyclodercitin 1989 Dercitus sp. (Gunawardana et al., 1989)
43 nordercitin 1989 Stelletta sp.
44 dercitamine 1989
45 dercitamide 1989
46 isobatzelline A 1990 Batzella sp. Caribbean (Sun et al., 1990)
47 isobatzelline B 1990
48 isobatzelline D 1990
49 neamphine 1991 Neamphius huxleyi Papua New Guinea (de Silva et al., 1991)
50 psammaplin B 1991 Psammaplysilla purpurea (Jiménez and Crews, 1991)
51 psammaplin C 1991
52 psammaplin D 1991
53 prepsammaplin A 1991
54 phloeodictine B 1992 Phloeodictyon sp. New Caledonian (Kourany-Lefoll et al., 1992)
55 stellettamine 1992 Stelletta sp. (Gunawardana et al., 1992)
56 (9E)-clathridine 9-N-(2-sulfoethyl)-imine 1992 Leucetta microraphis pohnpei (He et al., 1992)
57 melemeleone A 1992 Dysidea avara Solomon Islands (Alvi et al., 1992)
58 melemeleone B 1992
59 (−)-agelasidine C 1992 Agelas clathrodes Puerto Rico (Morales and Rodríguez, 1992)
60 (−)-agelasidine D 1992
61 dysideathiazole 1993 Dysidea herbacea Pohnpei and Palau (Unson et al., 1993)
62 N-methyldysideathiazole 1993
63 l0-dechloro-N-methyldysideathiazole 1993
64 10-dechlorodysideathiazole 1993
65 9,l0-adechloro-N-methyldysideathiazo 1993
66 potent aldose reductase inhibitor la 1993 Dictyodendrilla sp. Kagoshima, Japan (Sato et al., 1993)
67 potent aldose reductase inhibitor lb 1993
68 potent aldose reductase inhibitor 2a 1993
69 makaluvamine F 1993 Zyzzya fuliginosa Fijian (Radisky et al., 1993)
70 34-O-sulfatobastadin-13 1993 Zanthella sp. Great Barrier Reef (Gulavita et al., 1993)
71 mauritamide A 1994 Agelas mauritiana Fijian (Jiménez and Crews, 1994)
72 6-(p-hydroxyphenyl)–2H-3,4-dihydro-1,1-dioxo-1,4-thiazine 1994 Anchinoe tenacior Mediterranean (Casapullo et al., 1994)
73 herbamide A 1995 Dysidea herbacea Papua New Guinea (Clark and Crews, 1995)
74 latrunculin S 1996 Fasciospongia rimosa Okinawa, Japan (Tanaka et al., 1996)
75 hyrtiomanzamine 1996 Hyrtios erecta Red Sea (Bourguet-Kondracki et al., 1996)
76 sagitol 1996 Oceanapia sagittaria Palau (Salomon and Faulkner, 1996)
77 5,5-dichloro-4-methyl-2-[methyl(4,4-dichloro-3-methyl-1-oxobutyl)amino]-N-(thiazol-2-ylmethyl)pentanamide 1997 Dysidea herbacea southern Great Barrier Reef (Dumdei et al., 1997)
78 tauroacidin A 1997 Hymeniacidon sp. Okinawa, Japan (Kobayashi et al., 1997)
79 tauroacidin B 1997
80 thiomycalolide A 1998 Mycale sp. Japan (Matsunaga et al., 1998)
81 thiomycalolide B 1998
82 kuanoniamine C 1998 Oceanapia sp. Truk, Micronesia. (Eder et al., 1998)
83 kuanoniamine D 1998
84 N-deacetylkuanoniamine C 1998
85 the methylthio derivative isobatzelline B 1990 Batzella sp. Caribbean (Sun et al., 1990)
86 discorhabdin Q 1999 Latrunculia purpurea, Zyzzya massalis, Zyzzya fuliginosa, and Zyzzya spp. Assail Bank, between North Island and the Wallab Group, Australia, (Dijoux et al., 1999)
87 echinosulfonic acid A 1999 Echinodictyum sp. Great Australian Bight, Southern Australian (Ovenden and Capon, 1999),(Neupane et al., 2020)
88 echinosulfonic acid B 1999
89 echinosulfonic acid C 1999
90 S1319 1999 Dysidea sp. Okinawa, Japan (Suzuki et al., 1999)
91 penarolide sulfate A1 2000 Penares sp. Japan (Nakao et al., 2000)
92 penarolide sulfate A2 2000
93 pateamine 1991 Mycale sp. New Zealand (Northcote et al., 1991)
94 (−)-neodysidenin 2000 Dysidea herbacea Great Barrier Reef (MacMillan et al., 2000)
95 taurodispacamide A 2000 Agelas oroides The Bay of Naples (Fattorusso and Taglialatela-Scafati, 2000)
96 discorhabdin R 2000 Latrunculia sp. the central Prydz channel of Prydz Bay, Antarctica (Ford and Capon, 2000)
Negombata sp. Victoria, Port Campbell
97 ianthesine C 2000 Ianthella sp. Australian (Okamoto et al., 2000)
98 ianthesine D 2000
99 psammaplin A1 2000 Aplysinella rhax Pohnpei and Palau (Shin et al., 2000)
100 psammaplin A2 2000
101 aplysinellin A 2000
102 aplysinellin B 2000
103 psammaplin A 11′-sulfate 2000 Aplysinella rhax Great Barrier Reef (Pham et al., 2000)
104 bisaprasin 11′-sulfate 2000
105 wondonin A 2001 Poecillastra wondoensisand Japsis sp. Keomun Island, Korea (Shin et al., 2001)
106 wondonin B 2001
107 microxine 2001 Microxina sp. Cape Jaffa, Australian (Killday et al., 2001)
108 irciniamine 2002 Ircinia sp. Ehime Prefecture, Japan (Kuramoto et al., 2002)
109 ancorinolate A 2002 Ancorina sp. Chatham Island,New Zealand (Meragelman et al., 2002)
110 ancorinolate B 2002
111 bis-ancorinolate B 2002
112 ancorinazole 2002
113 psammaplin K 2002 Aplysinella rhax Fijian (Tabudravu et al., 2002)
114 psammaplin L 2002
115 cribronic acid 2003 Cribrochalina olemda Palau (Sakai et al., 2003)
116 (2S,4S)-4-sulfooxypiperidine-2-carboxylic acid 2003 Stylotella aurantium, andAxinella carteri Yap State, Micronesia
117 dictyodendrin A 2003 Dictyodendrilla verongiformis Nagashima Island, Japan (Warabi et al., 2003)
118 dictyodendrin B 2003
119 dictyodendrin C 2003
120 dictyodendrin D 2003
121 dictyodendrin E 2003
122 penasulfate A 2004 Penares sp. Hachijo-jima Island,Tokyo, Japan (Nakao et al., 2004)
123 spongiacysteine 2004 Spongia sp. Tateyama beach,Chiba Prefecture, Japan (Kobayashi et al., 2004)
124 dragmacidonamine A 2004 Dragmacidon sp. Adaman Islands, India (Pedpradab et al., 2004)
125 dragmacidonamine B 2004
126 1-methoxydiscorhabdin D 2004 Latrunculia bellae Thunderbolt Reef,Algoa Bay, South Africa (Antunes et al., 2004)
127 1-aminodiscorhabdin D 2004
128 discorhabdin G* 2004
129 discorhabdin N 2004
130 discorhabdin H 2004 Strongylodesma algoaensis
131 discorhabdin I 2004 Latrunculia brevis Tierra del Fuego, Patagonia, Argentina (Reyes et al., 2004)
132 discorhabdin L 2004
133 cribrostatin 7 2004 Petrosia sp. PC00-11–149 Kalampisauan Island, Philippines (Sandoval et al., 2004)
134 bisdemethylaaptamine-9-O-sulfate 2004 Aaptos sp. Bunaken Island, Indonesian (Herlt et al., 2004)
135 nagelamide H 2004 Agelas sp. Seragaki Beach, Okinawan (Endo et al., 2004)
136 schulzeine A 2004 Penares schulzei Hachijo-kojima Island, Japan (Takada et al., 2004)
137 schulzeine B 2004
138 schulzeine C 2004
139 1-O-sulfatohemibastadin-1 2004 Ianthella basta Mangilao, Guam, U.S.A. (Masuno et al., 2004)
140 1-O-sulfatohemibastadin-2 2004
141 34-O-sulfatobastadin-9 2004
142 32-O-sulfatobastadin-13 2004
143 hamiguanosinol 2004 Mediterranean hamigera Elba, Mediterranean Sea (Hassan et al., 2004),(Jamison et al., 2014)
144 3-ketoadociaquinone B 2005 Xestospongia sp. Indonesia, Sulawesi (Cao et al., 2005)
145 discorhabdin W 2005 Latrunculia sp. New Zealand (Lang et al., 2005)
146 discorhabdin G*/I 2005
147 echinosulfonic acid D 2005 Psammoclemma sp. New Caledonia (Rubnov et al., 2005), (Neupane et al., 2020)
148 gesashidine A 2005 An unidentified member of the Thorectidae family Okinawan (Iinuma et al., 2005)
149 halichondria sulfonic acid 2006 Halichondria rugosa South China Sea (Jin et al., 2006)
150 latrunculin T 2006 Negombata magnifica Red Sea (near Egypt) (El Sayed et al., 2006)
151 (−)-agelasidine A 2006 Agelas clathrodes Curaçao, Caribbean sea (Medeiros et al., 2006)
152 dysinosin A 2002 a New Genus and Species of Sponge of Dysideidae Lizard Island, North Queensland, Australia (Carroll et al., 2002)
153 mycothiazole-4,19-diol 2006 Cacospongia mycofijiensis Vanuatu (Sonnenschein et al., 2006)
154 ircinamine B 2006 Dactylia sp. Cape Sada, Japan (Sato et al., 2006)
155 discorhabdin S 2003 Batzella sp. Bimini, Bahamas (Gunasekera et al., 2003)
156 discorhabdin T 2003
157 discorhabdin U 2003
158 2-debromotaurodispacamide A 2006 Axinella verrucosa Corsica, France (Aiello et al., 2006)
159 oxalatrunculin B 2007 Negombata corticata Red Sea (near Egypt) (Ahmed et al., 2007)
160 araplysillin-N9-sulfamate 2007 Aplysina fulva Key Largo, Florida (Rogers and Molinski, 2007)
161 siphonodictyals B1 2007 Aka coralliphagum San Salvador, Bahamas (Grube et al., 2007)
162 exiguaquinol 2008 Neopetrosia exigua Queensland, Australia (de Almeida Leone et al., 2008)
163 CTP-431 2008 Cacospongia mycofijiensis Beqa Lagoon, Fiji (Johnson et al., 2008)
164 latrunculol A 2008 (Amagata et al., 2008)
165 latrunculol B 2008
166 latrunculol C 2008
167 18-epi-latrunculol A 2008
168 latrunculone A 2008
169 latrunculone B 2008
170 16-epi-latrunculin B 2004 Latruncularia magnifica Red Sea
171 15-methoxylatrunculin B 2004
172 nagelamide K 2008 Agelas sp. Seragaki, Okinawa, Japan (Araki et al., 2008)
173 nagelamide M 2008 (Kubota et al., 2008)
174 nagelamide N 2008
175 ianthesine E 2008 Pseudoceratina sp. Swain Reefs, Australia (Kalaitzis et al., 2008)
176 alisiaquinone C 2008 An unidentified sponge New Caledonia (Desoubzdanne et al., 2008)
177 phorbasin D 2008 Phorbas sp. Great Australian Bight, South Australia (Zhang and Capon, 2008)
178 phorbasin E 2008
179 phorbasin F 2008
180 (+)-debromodiscorhabdin A 2009 Higginsia sp. South Australia (El-Naggar and Capon, 2009)
181 (+)-discorhabdin X 2009
182 (−)-dihydrodiscorhabdin A 2009
183 (+)-Dihydrodiscorhabdin L 2009 Spongosorites sp.
184 (6R,8S)-1-thiomethyldiscorhabdin G*/I 2009 Latrunculia wellingtonesis Wellington, New Zealand (Grkovic and Copp, 2009)
185 16a,17a-dehydrodiscorhabdin W 2009
186 nagelamide Q 2009 Agelas sp. Okinawan, Japan (Araki et al., 2009)
187 psammaplin I 2003 Pseudoceratina purpurea Papua New Guinea (Piña et al., 2003)
188 psammaplin E 2003
189 psammaplin F 2003
190 psammaplin G 2003
191 psammaplin H 2003
192 psammaplin J 2003
193 19-oxofasciospongine A 2009 Fasciospongia sp. Palau (Yao et al., 2009)
194 fasciospongine C 2009
195 fasciospongine A 2009
196 fasciospongine B 2009
197 callyspongine 2010 Callyspongia sp. South China Sea(Hainan island) (Huang et al., 2010)
198 dysideanin A 2010 Dysidea sp. Lingshui County, Hainan, China (Ren et al., 2010)
199 (+)-discorhabdin H2 2010 Latrunculia fiordensi New Zealand (Grkovic et al., 2010)
200 (−)-discorhabdin K2 2010
201 (−)-discorhabdin N 2010 Latrunculia bellae
202 dihydrodiscorhabdin B 2010 Latrunculia sp. Aleutian Islands, U.S.A. (Na et al., 2010)
203 (−)-3-dihydrodiscorhabdin D 2010 Sceptrella sp. Gageodo, Korea (Jeon et al., 2010)
204 mauritamide B 2010 Agelas linnaei Peniki East island, ThoU.S.A. nd Islands, Indonesia (Hertiani et al., 2010)
205 mauritamide C 2010
206 mauritamide D 2010
207 baculiferin A 2010 Iotrochota baculifera Hainan island,South China Sea (Fan et al., 2010)
208 baculiferin B 2010
209 baculiferin C 2010
210 baculiferin D 2010
211 baculiferin E 2010
212 baculiferin F 2010
213 baculiferin G 2010
214 baculiferin H 2010
215 baculiferin I 2010
216 baculiferin J 2010
217 baculiferin M 2010
218 baculiferin O 2010
219 psammaplin N 2010 Aplysinella rhax Inner Gneerings Reef, Queensland, Australia (Graham et al., 2010)
220 9-(5′-deoxy-5′-thio-β-d-xylofuranosyl)adenine disulfide 2010 Trachycladus laevispirulifer Great Australian Bight, South Australian (Peng et al., 2010)
221 amaranzole B 2010 Phorbas amaranthus Dry Reef Rocks, Key Largo, Florida (Morinaka et al., 2010)
222 amaranzole C 2010
223 amaranzole D 2010
224 amaranzole E 2010
225 amaranzole F 2010
226 nakijinamine C 2011 Suberites sp. Unten Port, Okinawa, Japan (Takahashi et al., 2011)
227 nakijinamine D 2011
228 xestosaprol N 2012 Xestospongia sp. Weno island, Chuuk State, Federated States of Micronesia (Lee et al., 2012)
229 14-O-sulfate massadine 2012 Axinella sp. Great Australian Bight (Zhang et al., 2012)
230 (+)-2-oxo-agelasidine C 2012 Agelas mauritiana Yongxing island,South China Sea (Yang et al., 2012)
231 (−)-agelasidine E 2012 Agelas citrina Bahamas (Stout et al., 2012)
232 (−)-agelasidine F 2012
233 2-heptadec-11-enamidoethanesulfonic acid 2013 Axinella sp. Hainan island,South China Sea (Huang et al., 2013)
234 2-palmitamidoethanesulfonic acid 2013
235 2-octadec-7-enamidoethanesulfonic 2013
236 ciliatamide D 2013 Stelletta sp. Oshimashinsone, Japan (Imae et al., 2013),(Takada et al., 2017)
237 theonezolide A 2013 Theonella sp. Okinawa, Japan (Nozawa et al., 2013)
238 theonezolide B 2013
239 theonezolide C 2013
240 catechol sulfonate 2013 Asteropus sp. Ocean Cay, Bahamas (Russell et al., 2013)
241 hyrtimomine D 2013 Hyrtios sp. Kerama island, Okinawa, Japan (Tanaka et al., 2013c)
242 hyrtimomine E 2013
243 thiaplakortone A 2013 Plakortis lita Tydeman Reef,Queensland, Australia (Davis et al., 2013)
244 thiaplakortone B 2013
245 thiaplakortone C 2013
246 thiaplakortone D 2013
247 atkamine A 2013 Latrunculia sp. Aleutian island, Alaska, U.S.A. (Zou and Hamann, 2013)
248 nagelamide U 2013 Agelas sp. Kerama islands,Okinawa, Japan (Tanaka et al., 2013a)
249 nagelamide V 2013
250 nagelamide Y 2013 (Tanaka et al., 2013b)
251 nagelamide Z 2013
252 reticulatin A 2013 Hyrtios reticulatus N. Sulawesi, Indonesia (Imada et al., 2013)
253 reticulatin B 2013
254 N-methylmelemeleone-A 2013 Dysidea avara Fethiye, Turkey (Hamed et al., 2013)
255 deacyl irciniasulfonic acid C 2014 Coscinoderma sp. Weno island, Chuuk State, Micronesia (Kim et al., 2014a)
256 sodium deacyl irciniasulfonate D 2014
257 N,N-dimethylguanidium salt 2014
258 N,N-dimethyl-1,3-dimethylherbipoline salt 2014
259 coscinolactam C 2014
260 coscinolactam D 2014
261 coscinolactam E 2014
262 coscinolactam F 2014
263 coscinolactam G 2014
264 coscinolactam A 2009 Coscinoderma mathewsi Vangunu Island,Solomon Islands (De Marino et al., 2009)
265 coscinolactam B 2009
266 glassponsine 2014 Anoxycalyx joubini Trawled, E. Weddell Sea, Antarctica (Carbone et al., 2014)
267 hainanerectamine C 2014 Hyrtios erecta Lingshui Bay, China (He et al., 2014)
268 hyrtimomine H 2014 Hyrtios sp. Kerama islands,Okinawa, Japan (Tanaka et al., 2014)
269 hyrtimomine J 2014
270 hyrtimomine K 2014
271 callyspongisine A 2014 Callyspongia sp. Great Australian Bight (Plisson et al., 2014)
272 callyspongisine B 2014
273 tauroacidin C 2014 Agelas sp. Kerama islands,Okinawa, Japan (Kusama et al., 2014)
274 tauroacidin D 2014
275 5-epi-nakijiquinone U 2014 Dactylospongia metachromia Ambon, Indonesia (Daletos et al., 2014)
276 xestosaprol O 2014 Xestospongia vansoesti Palawan island,Philippines (Centko et al., 2014)
277 2-(3-methyl-dec-3-enamido)ethanesulfonic Acid 2015 Callyspongia sp. Hainan island, China (Huang et al., 2015)
278 tauroacidin E 2015 Agelas sp. Kerama island, Okinawa, Japan (Kusama et al., 2015)
279 2-debromonagelamide U 2015 (Kenta Nakamura, 2015)
280 citrinamine B 2015 Agelas citrina San Salvador, Bahamas (Cychon et al., 2015)
281 melemeleone C 2015 Dysidea sp. Chuuk island, Federated States of Micronesia (Kim et al., 2015)
282 melemeleone D 2015
283 cycloaurenone A 2015
284 xestoadociaminal A 2015 Xestospongia sp. Manado, N. Sulawesi, Indonesia (He et al., 2015)
285 xestoadociaminal B 2015
286 xestoadociaminal C/D 2015
287 xestoadociaquinone A 2015
288 xestoadociaquinone B 2015
289 seadociaquinone A 2015
290 seadociaquinone B 2015
291 petroquinone I 2016 Petrosia alfiani Ti Toi, N. Sulawesi, Indonesia (Tanokashira et al., 2016)
292 petroquinone J 2016
293 petroquinone K 2016
294 petroquinone L 2016
295 conulothiazole A 2016 Smenospongia conulosa Little Inagua island, Bahamas (Esposito et al., 2016)
296 conulothiazole B 2016
297 smenothiazole A 2016
298 smenothiazole B 2016
299 (–)-isowondonin A 2008 Poecillastra wondoensis Keomun Island, Korea (Chang et al., 2008)
300 (–)-isowondonin B 2008
301 ishigadine A 2018 Hyrtios sp. Ishigaki island, Okinawa, Japan (Takahashi et al., 2018)
302 langcoquinone D 2018 Spongia sp. Son Cha, Lang Co, Tha Thien-Hue City, Vietnam (Ito et al., 2018)
303 langcoquinone E 2018
304 langcoquinone B 2018
305 dactylospongin A 2018 Dactylospongia sp. Xisha island,South China Sea (Li et al., 2018)
306 dactylospongin B 2018
307 ent-melemeleone B 2018
308 melemeleone E 2018
309 (−)-2-bromo-discorhabdin D 2019 Latrunculia biformis Dredge,Southern Weddell Sea, Antarctica (Li et al., 2019)
310 (−)-1-acetyl-discorhabdin L 2019
311 (+)-1-octacosatrienoyl-discorhabdin L 2019
312 aleutianamine 2019 Latrunculia austini Aleutian Islands, Alaska, U.S.A. (Zou et al., 2019)
313 tedanizaine A 2020 Tedania sp. Zhanjiang, Guangdong, China (Zhang et al., 2020b)
314 (−)-(1S,2R,6R,8S,6′S)-discorhabdin B dimer 2020 Latrunculia biformis Dredge,Southern Weddell Sea, Antarctica (Li et al., 2020b)
315 (−)-(1R,2R,6R,8S,6′S)-16′,17′-dehydrodiscorhabdin B dimer 2020
316 (−)-(1R,2R,6R,8S,6′S)-discorhabdin B dimer 2020
317 (−)-tridiscorhabdin 2020 Dredge,Southern Weddell Sea, Antarctica (Li et al., 2020c)
318 (−)-didiscorhabdin 2020
319 psammaplin O 2020 Aplysinella rhax Wainunu, Bua, Fiji island (Oluwabusola et al., 2020)
320 psammaplin P 2020
321 echinosulfone A 1999 Echinodictyum sp. Great Australian Bight, Southern Australian (Ovenden and Capon, 1999)
322 neopetrothiazide 2021 Neopetrosia sp. Helen Reef, Southwest Islands, Palau (Wang et al., 2021)
323 tedaniophorbasin A 2021 Tedaniophorbas ceratosis northern New South Wales, Australia. (Hiranrat et al., 2021)
324 tedaniophorbasin B 2021
325 agelasidine G 2022 Agelas nakamurai Orchid Island, Taiwan (Lin et al., 2022)
326 agelasidine H 2022
327 agelasidine I 2022
328 isoagelasidine B 2022
329 24-methylsulfinyllancoquinone B 2022 Spongia pertusa South China Sea (Tang et al., 2022)
330 cyclohexylagelasidine A 2022 Agelas nakamurai Orchid Island, Taiwan (Fu et al., 2022)
331 (+)-12-hydroxyagelasidine C 2022 Agelas citrina Cozumel Island, Mexico (Pech-Puch et al., 2022)

Among them, discorhabdins, psammaplins and latrunculins are the three noteworthy chemical components. (1) The discorhabdin alkaloids, which have a unique structure with azacarbocyclic spirocyclohexanone and pyrroloiminoquinone units, usually have cytotoxicity against a variety of tumor cells. And when they have a sulfur-containing six-membered ring, discorhabdin alkaloids often have good cytotoxicity (Antunes et al., 2004). Notably, dimers (Lang et al., 2005) and trimers (Li et al., 2020c) of discorhabdin alkaloids, which were reported in recent years, also have good cytotoxicity. (2) Psammaplins are bromotyrosine derivatives with oxime groups and carbon–sulfur bonds. Among them, psammaplin A (23) is the first identified symmetrical bromotyrosine-derived disulfide dimer, which has a broad bioactive spectrum, especially in terms of antimicrobial and antiproliferative activities (Quiñoà and Crews, 1987). (3) Latrunculins, toxins from the red sea sponge Latrunculia magnifica, are concerned as a kind of F-actin-severing compound. Of which, latrunculin A (16) is the most widely used reagent to depolymerize actin filaments in experiments on live cells (Spector et al., 1983).

1.2.2.2
1.2.2.2 Marine cnidarians

Cnidarians are the most primitive metazoan, which can be divided into three classes: Hydra, Aquarius and Corallus. And with growing bioprospecting efforts and the screening of previously unexplored marine habitats, the phylum cnidarians have been a large, diverse and ecologically important group of marine invertebrates that includes over 11,000 extant species (Rocha et al., 2011).

A total of 21 (332352) sulphur-containing alkaloids were reported from the marine cnidarians (Fig. 6 and Table 3). Among them, tridentatols E-H are sodium sulfate salt of tridentatols A-D. When potential predators appear, Tridentata marginata will rapidly convert tridentatols E-H to tridentatols A-D, which are nonprotein venom produced by cnidarian nematocysts, and repel the potential predators (Lindquist, 2002).

Sulphur-containing alkaloids from marine cnidarians.
Fig. 6
Sulphur-containing alkaloids from marine cnidarians.
Table 3 Sulphur-containing alkaloids from marine cnidarians.
No. Compounds Time From Location Ref.
Marine cnidarians
332 tridentatol A 1996 Tridentata marginata Morehead City,North Carolina, USA. (Lindquist et al., 1996)
333 tridentatol B 1996
334 tridentatol C 1996
335 tridentatol D 2002 (Lindquist, 2002)
336 tridentatol E 2002
337 tridentatol F 2002
338 tridentatol G 2002
339 tridentatol H 2002
340 sinulasulfoxide 2012 Sinularia sp. Manado, North Sulawesi, Indonesia (Putra et al., 2012)
341 sinulasulfone 2012
342 palyosulfonoceramide A 2012 Palythoa caribaeorum andProtopalythoa variabilis Paracuru beach,Fortaleza, Brazil (Almeida et al., 2012)
343 palyosulfonoceramide B 2012
344 (+)-4β-N-methenetauryl-10β-methoxy1β,5α,6β,7β-aromadendrane 2012 Melitodes squamata Sanya, Hainan,South China Sea (Huang et al., 2012)
345 (−)-4β-N-methenetauryl-10β-methoxy-1β,5β,6α,7α-aromadendrane 2012
346 macrophilone B 2018 Macrorhynchia philippina Northwestern Australia (Yan et al., 2018)
347 macrophilone C 2018
348 macrophilone D 2018
349 macrophilone E 2018
350 macrophilone F 2018
351 macrophilone G 2018
352 macrophilone A 2018

1.2.2.3
1.2.2.3 Marine tunicates

Tunicates, which distribute in the world's major seas, are soft-bodied solitary or colonial sessile small marine organisms belonging to the family Ascidiacea under the subphylum Urochordata, phylum Chordata. There’re more than 2,800 species of tunicate species, which are divided into three classes: Ascidiacea, Thaliacea and Appendicularia. Tunicates will lose the notochord and post-anal tail; thus, these organisms are often referred to as the “evolutionary connecting link” between invertebrates and chordates (Ramesh et al., 2021).

158 (353510) sulphur-containing alkaloids were reported from the marine tunicates (Fig. 7 and Table 4). Among them, eudistomins and ecteinascidins are noteworthy chemical components. (1) Eudistomins attract the attention of scientists because of their good antiviral activity. Subsequent studies have found that eudistomins have the strongest anti-tumor activity when they contain a 1,3,7-oxathiazepine ring. For example, eudistomins C and E, which contain a 1,3,7-oxathiazepine ring, are potent antiviral against RNA viruses (Coxsackie A-21 virus and equine rhinovirus) as well as DNA viruses (HSV-1, HSV-2, and Vaccinia virus). Besides the substituents on the pyridine ring of the β-carboline, the substituents (Br and/or OH) and their positions on the benzenoid ring of the β-carboline may influence the antiviral activity of eudistomins; the order of antiviral activity observed is E (5-Br, 6-OH) > C (6-OH, 7-Br) > L (6-Br). But acetylation of the phenol and primary amine functions of eudistomin C affected a 100-fold reduction in activity (Blunt et al., 1987). (2) Ecteinascidins, a kind of sulphur-containing alkaloids, are marine natural products with potent antitumor activity. These compounds have been a lot of synthetic research and structural modification. Of them, ecteinascidin 743 (yondelis) has been approved by the European Union in October 2007 for the treatment of advanced soft tissue tumors, which became the first modern marine drug (Menchaca et al., 2003).

Sulphur-containing alkaloids from marine tunicates.
Fig. 7
Sulphur-containing alkaloids from marine tunicates.
Table 4 Sulphur-containing alkaloids from marine tunicates.
No. Compounds Time From Location Ref.
Marine tunicates
353 dendrodoine 1982 Dendrodoa grossularia (Heitz et al., 1980)
354 eudistomin C 1987 Eudistoma olivaceum Caribbean (Rinehart et al., 1987),(Blunt et al., 1987)
355 eudistomin E 1987
356 eudistomin K 1987
357 eudistomin L 1987
358 eudistomin F 1987
359 citorellamine 1985 Polycitorella mariae Suva, Fiji (Roll and Ireland, 1985),(Moriarty et al., 1987)
360 patellazole A 1988 Lissoclinum patella Palau (Zabriskie et al., 1988)
361 patellazole B 1988
362 patellazole C 1988
363 (4-hydroxy-3-methoxyphenyl)(thiazol-2-yl)methanone 1988 Aplydium pliciferum Australian (Arabshahi and Schmitz, 1988)
364 4-(hydroxy(thiazol-2-yl)methyl)-2-methoxyphenol 1988
365 shermilamine A 1988 Trididemnum sp. Pago Bay, Guam (Cooray et al., 1988)
366 eudistomin K sulfoxide 1988 Ritterella sigillinoides New Zealand (Lake et al., 1988)
367 cis-5-hydroxy-4-(4′-hydroxy-3′-methoxyphenyl)-4-(2″-imidazolyl)-1,2,3-trithiane 1989 Aplidium sp. (Copp et al., 1989)
368 debromoeudistomin K 1989 Ritterella sigillinoides (Lake et al., 1989)
369 shermilamine B 1989 Trididemnum sp. Pago Bay, Guam (Carroll et al., 1989)
370 varamine A 1989 Lissoclinum vareau Yasawa island chain, Fiji (Molinski and Ireland, 1989)
371 varamine B 1989
372 diplamine 1989 Diplosomra sp. Fiji (Charyulu et al., 1989)
373 eudistomidin C 1990 Eudistoma glaucus Ie Island, Okinawan,Japan (Kobayashi et al., 1990)
374 6-O-methyleudistomidin C 1990
375 ecteinascidin 729 1990 Ecteinascidia turbinata Caribbean (Menchaca et al., 2003)
376 ecteinascidin 743 1990
377 ecteinascidin 745 1990
378 ecteinascidin 770 1990
379 eudistomidin E 1991 Eudistoma glaucus Ie Island, Okinawan,Japan (Murata et al., 1991)
380 eudistomidin F 1991
381 kuanoniamine A 1990 an unidentified Micronesian tunicate Mante Channel, Pohnpei,Micronesia (Carroll and Scheuer, 1990)
382 kuanoniamine B 1990
383 lissoclinotoxin B 1994 Lissoclinum perforatum Northern Brittany, France (Litaudon et al., 1994)
384 lissoclin A 1994 Lissoclinum sp. Great Barrier Reef (Searle and Molinski, 1994)
385 lissoclin B 1994
386 benzo-1,3-oxathiazoline 1994
387 dehydrokuanoniamine B 1994 Cystodytes sp. Fiji (McDonald et al., 1994)
388 shermilamine C 1994
389 didemnoline A 1995 Didemnum sp. Rota, Northern Mariana Islands (Schumacher and Davidson, 1995)
390 didemnoline B 1995
391 didemnoline C 1995
392 didemnoline D 1995
393 ecteinascidin 597 1996 Ecteinascidia turbinata Caribbean (Sakai et al., 1996)
394 ecteinascidin 583 1996
395 ecteinascidin 594 1996
396 ecteinascidin 596 1996
397 polycarpine 1996 Polycarpa clavataPolycarpa aurata Western AustraliaChuuk, Federated States of Micronesia (Kang and Fenical, 1996),(Abas et al., 1996)
398 4-methoxy-4-(4-methoxyphenyl)-1-methyl-5-thioxoimidazolidin-2-one 1996
399 4-hydroxy-4-(4-methoxyphenyl)-1-methyl-5-thioxoimidazolidin-2-one 1996 Polycarpa clavata Western Australia (Kang and Fenical, 1996)
400 N-methyl-(4-methoxyphenyl)-2-oxothioacetamide 1996 Polycarpa aurata Chuuk, Federated States of Micronesia (Abas et al., 1996)
401 polycarpine dihydrochloride 1996
402 the 20-sulfate of lamellarins T 1997 An unidentified ascidian Arabian Sea (near India) (Reddy et al., 1997)
403 the 20-sulfate of lamellarins U 1997
404 the 20-sulfate of lamellarins V 1997
405 the 20-sulfate of lamellarins Y 1997
406 shermilamine D 1998 Cystodytes violatinctus Mayotte lagoon, ComorosIslands, Madagascar (Koren-Goldshlager et al., 1998)
407 shermilamine E 1998
408 tintamine 1998
409 the 20-sulfates of lamellarin B 1999 Didemnum chartaceum Great Barrier Reef (Davis et al., 1999)
410 the 20-sulfates of lamellarin C 1999
411 the 20-sulfates of lamellarin L 1999
412 the 20-sulfates of lamellarin G 1999
413 lamellarin α 20-sulfate 1999 an unidentified ascidian Arabian Sea(near Trivandrum, India) (Reddy et al., 1999)
414 cycloshermilamine D 2000 Cystodytes violatinctus Mayotte lagoon, ComorosIslands, Madagascar (Koren-Goldshlager et al., 2000)
415 (−)-enantiomer 2001 Hypsistozoa fasmeriana New Zealand (Pearce et al., 2001)
416 fasmerianamine A 2001
417 fasmerianamine B 2001
418 14-methyleudistomidin C 2001 Eudistoma gilboverde Sias Tunnel, Palau (Rashid et al., 2001)
419 (2E,4′R,5′S,6′R,7′R,8′S,2′'''E)-3-{8′-hydroxy-4′,6′-dimethyl-4′-(3′'-methylenepent-4′'-enyl)-7′-(-L-mannopyranosyloxy)-[1′,2′,3′]-trithiocan-5′-yl}-N-[4′''-(3′'''-methylsulfanylacryloylamino)-butyl]aerylamide 2002 Perophora viridis Atlantic coast (near North Carolina) (Řezanka and Dembitsky, 2002)
420 isodiplamine 2002 Lissoclinum notti Leigh Harbour, Northland, New Zealand (Appleton et al., 2002)
421 lissoclinidine 2002
422 varacin 2002
423 kuanoniamine E 2002 an unidentified Singaporean ascidian Pulau Subar Laut,Singapore (Nilar et al., 2002)
424 kuanoniamine F 2002
425 ecteinascidin 770 2002 Ecteinascidia thurstoni Phuket Island, Thai (Suwanborirux et al., 2002)
426 ecteinascidin 786 2002
427 ecteinascidin 759B 2002
428 conicaquinone A 2003 Aplidium conicum Capo Caccia, Alghero, Italy (Aiello et al., 2003)
429 conicaquinone B 2003
430 kottamide E 2003 Pycnoclavella kottae New Zealand (Appleton and Copp, 2003)
431 shishijimicin A 2003 Didemnum proliferum South Japan (Oku et al., 2003)
432 shishijimicin B 2003
433 shishijimicin C 2003
434 namenamicin 2003
435 methylthioadenosine 2004 Atriolum robustum Heron Islands, Wistari Reef, Great Barrier Reef (Kehraus et al., 2004)
436 methylsulfinyladenosine 2004
437 violatinctamine 2004 Cystodytes cf. violatinctus Kenya (Chill et al., 2004)
438 ecteinascidin 731 2004 Ecteinascidia turbinata Caribbean (Blunt et al., 2006)
439 ecteinascidin 745b 2004
440 ecteinascidin 808 2004
441 ecteinascidin 815 2004
442 ascidiathiazone A 2007 Aplidium sp. Tom Bowling Bay,Northland, New Zealand (Pearce et al., 2007)
443 ascidiathiazone B 2007
444 polycarpaurine A 2007 Polycarpa aurata Lembeh Strait, Indonesia (Wang et al., 2007)
445 polycarpaurine B 2007
446 polycarpaurine C 2007
447 nordehydrocyclodercitin 2007 Aplidium sp. Arab Reef, Australia (Agrawal and Bowden, 2007)
448 diplamine B 2008 Lissoclinum cf. badium Port Moresby,Papua New Guinea (Clement et al., 2008)
449 lissoclinidine B 2008
450 isolissoclinotoxin B 2008
451 N,N-dimethyl-5-methylvaracin 2008
452 leptoclinidamine C 2009 Leptoclinides durus Heron island, Queensland, Australia (Carroll and Avery, 2009)
453 N-deacetylshermilamine B 2010 Cystodytes dellechiajei Catalonia, Spain (Bontemps et al., 2010)
454 N-deacetylkuanoniamine D 2010
455 eudistomidin J 2011 Eudistoma glaucus Ie island, Okinawa, Japan (Suzuki et al., 2011)
456 13-didemethylaminoshermilamine D 2011 Cystodytes dellechiajei Catalonia, Spain (Bry et al., 2011)
457 polycarpathiamine A 2013 Polycarpa aurata Ambon, Indonesia (Pham et al., 2013)
458 polycarpathiamine B 2013
459 duramidine A 2013 Leptoclinides durus Swains Reef, Great Barrier Reef (Rudolph et al., 2013)
460 duramidine C 2013
461 leptoclinidamine D 2013
462 leptoclinidamine E 2013
463 leptoclinidamine F 2013
464 momusine A 2013 Herdmania momus Jeju island, Korea (Li et al., 2013)
465 momusine B 2013
466 momusine C 2013
467 momusine D 2013
468 conthiaquinone A 2013 Aplidium conicum Porto Cesareo, Lecce, Italy (Menna et al., 2013)
469 conthiaquinone B 2013
470 shermilamine F 2013 Cystodytes violatinctus Solomon islands (Bontemps et al., 2013)
471 dehydrokuanoniamine F 2013
472 salvadenosine 2014 Didemnum sp. Little San Salvador island, Bahamas (Jamison et al., 2014)
473 tanjungide A 2014 Diazona cf formosa East Timor (Murcia et al., 2014)
474 tanjungide B 2014
475 stolonine A 2015 Cnemidocarpa stolonifera Peel island, Australia (Tran et al., 2015)
476 stolonine B 2015
477 stolonine C 2015
478 sagitol D 2015 an unidentified Vietnamese ascidian PhuQuok, Vietnam (Utkina, 2015)
479 lepadin I 2018 Didemnum sp. Stirrup Cay, Bahamas (Ómarsdóttir et al., 2018)
480 lepadin J 2018
481 lepadin K 2018
482 siladenoserinol M 2018 Didemnum sp. Siladen, North Sulawesi, Indonesia (Torii et al., 2018)
483 siladenoserinol N 2018
484 siladenoserinol O 2018
485 siladenoserinol P 2018
486 polyaurine B 2019 Polycarpa aurata (Casertano et al., 2019)
487 lamellarin K-20-sulfate 2019 Didemnum ternerratum Eua, Kingdom of Tonga (Bracegirdle et al., 2019)
488 lamellarin E-20-sulfate 2019
489 lamellarin A3-20-sulfate 2019
490 lamellarin B1-20-sulfate 2019
491 lamellarin D-8-sulfate 2019
492 lamellarin B2-20-sulfate 2019
493 ireneamide A 2020 Cnemidocarpa irene Oshima-Kojima Islet off the Oshima Peninsula, Hokkaido, Japan (Miyako et al., 2020)
494 ireneamide B 2020
495 ireneamide C 2020
496 6-biopterin-2′-sulfate 2020
497 6-biopterin-1′-2′-disulfate 2020
498 3-methyl-6-biopterin-2′-sulfate 2020
499 siladenoserinol A 2013 a tunicate of the family Didemnidae NorthSulawesi, Indonesia (Nakamura et al., 2013)
500 siladenoserinol B 2013
501 siladenoserinol C 2013
502 siladenoserinol D 2013
503 siladenoserinol E 2013
504 siladenoserinol F 2013
505 siladenoserinol G 2013
506 siladenoserinol H 2013
507 siladenoserinol I 2013
508 siladenoserinol J 2013
509 siladenoserinol K 2013
510 siladenoserinol L 2013

1.2.2.4
1.2.2.4 Marine echinoderms

Echinoderms are a kind of deuterostomes, which account for up to 90% of benthic biomass in the abyssal seafloor. The common sea stars, sea urchins, sea cucumbers, and sea snake tails all are echinoderms. At present, about 6000 species of echinoderms were widely distributed from shallow sea to thousands of meters deep sea, which can be divided into five classes including Crinoidea, Holothurioidea, Asteroidea, Echinoidea and Ophiuroidea.

22 (511532) sulphur-containing alkaloids were reported from the marine cnidarians (Fig. 8 and Table 5). Ovothiols are histidine-derived thiols that are receiving great interest for their biological activities in human model systems. Among them, ovothiol A (514) is one of the strongest natural antioxidants (Osik et al., 2021). It’s worth noting that hypalocrinins are the first naturally occurring anthraquinones and anthraquinone biaryls conjugated with taurine. Hypalocrinins A-E (520524) are five new water-soluble amido- and aminoanthraquinone pigments and hypalocrinin F-G (525526) are two new amidoanthraquinone biaryls, which all are quite unusual among natural products (Wolkenstein et al., 2019). Likewise, microdiscusols A-F (527532), six new polyhydroxylated steroids conjugated with taurine, are rare new polyhydroxylated steroids conjugated with taurine (Kicha et al., 2019).

Sulphur-containing alkaloids from marine echinoderms.
Fig. 8
Sulphur-containing alkaloids from marine echinoderms.
Table 5 Sulphur-containing alkaloids from marine echinoderms.
No. Compounds Time From Location Ref.
Marine echinoderms
511 bis(l-methyl-L-histidin-5-yl)disulphide 1986 unfertilized echinoderm eggs (Faulkner, 1986)
512 bis(Nα.Nα,l-trimethyI-L-histidin-5-yl)disulphide 1986 unfertilized echinoderm eggs
513 imbricatine 1986 Dermasterias imbricata (Pathirana and Andersen, 1986)
514 ovothiol A 1986 Evasterias troschelii (Turner et al., 1987)
515 ovothiol C 1986 Strongylocentrotus purpuratus
516 pucherrimine 2000 Hemicentrotus pulcherrimus Japanese sea (Murata and Sata, 2000)
517 fisherioside A 2012 Leptasterias fisheri Sakhalin island, Sea of Okhotsk (Kicha et al., 2012)
518 curacin E 2016 Ophiocoma scolopendrina Kabira Reef, Ishigaki island, Okinawa, Japan (Ueoka et al., 2016)
519 curacin A 2016
520 hypalocrinin A 2019 Hypalocrinus naresianus Shima Spur, Kumano-nada Sea, Japan (Wolkenstein et al., 2019)
521 hypalocrinin B 2019
522 hypalocrinin C 2019
523 hypalocrinin D 2019
524 hypalocrinin E 2019
525 hypalocrinin F 2019
526 hypalocrinin G 2019
527 microdiscusol A 2019 Asterias microdiscus Eastern part of the Chukchi Sea,Arctic Ocean (Kicha et al., 2019)
528 microdiscusol B 2019
529 microdiscusol C 2019
530 microdiscusol D 2019
531 microdiscusol E 2019
532 microdiscusol F 2019

1.2.2.5
1.2.2.5 Marine molluscs

Molluscs, a kind of soft marine animal usually with a calcareous shell, are the largest group of animals in the ocean, with more than 100,000 species, more than half of which live in the ocean. Mollusks have 7 classes, including Aplacophora, Bivalvia, Monoplacophora, Polyplacophora, Scaphopoda, Gastropoda and Cephalopoda. These mollusks are widely distributed, from the cold, temperate to tropical, from the highest point of the intertidal zone to 10,000 m deep at the bottom of the ocean.

16 (533543, 8283, 369, 381382) sulphur-containing alkaloids were reported from the marine molluscs (Fig. 9 and Table 6). Notably, pteriatoxins A-C (535537) are a group of cyclic imine toxins only isolated from Japanese shellfish, which can cause rapid death in mouse (Selwood et al., 2010). Now pteriatoxins have been considered emerging toxins in the European Union and a scientific opinion has been published by the European Food Safety Authority in which an assessment of the risks to human health related to their consumption has been carried out (Moreiras et al., 2020).

Sulphur-containing alkaloids from marine molluscs.
Fig. 9
Sulphur-containing alkaloids from marine molluscs.
Table 6 Sulphur-containing alkaloids from marine molluscs.
No. Compounds Time From Location Ref.
Marine Molluscs
533 9-(5-deoxy-5-methylthio-β-D-xylofuranosyl)adenine 1986 Extracts of the digestive gland of the dorid nudibranchDoris verrucosa (Faulkner, 1988)
534 ovothiol B 1986 Chlamys hastata (Turner et al., 1987)
369 shermilamine B 1990 Chelynotus semperi Mante Channel, Pohnpei,Federated States of Micronesia (Carroll and Scheuer, 1990)
381 kuanoniamine A 1990
382 kuanoniamine B 1990
82 kuanoniamine C 1990
83 kuanoniamine D 1990
535 pteriatoxin A 2001 Pteria penguin Okinawa, Japan (Takada et al., 2001)
536 pteriatoxin B 2001
537 pteriatoxin C 2001
538 the disulfide-linked dimer of 6-bromo-2-mercaptotryptamine 2003 Calliostoma canaliculatum Monterey Bay, California (Kelley et al., 2003)
539 iejimalide C 2006 Eudistoma cf. rigida Okinawa, Japan (Kikuchi et al., 1991)
540 Iejimalide D 2006
541 11β-hydroxy-N-sulfocarbamoylsaxitoxin 2008 Wild mussels (Mytilus edulis andMytilus trossulus) Eastern Canada coasts (Dell’Aversano et al., 2008)
542 11,11-dihydroxy-N-sulfocarbamoylsaxitoxin 2008
543 orbicularisine 2017 Codakia orbicularis Guadeloupe (Goudou et al., 2017)

1.2.2.6
1.2.2.6 Marine bryozoans

Bryozoans are bryophyte-like animals, which had complete digestive apparatus, including the mouth, esophagus, stomach, intestines and anus. The individual bryozoans are small and undivided, with a body cavity. Their bones are formed by a layer of colloid which was secreted in vitro. They can devour microorganisms and organic impurities in water and have a positive effect on water purification.

10 (544553) sulphur-containing alkaloids were reported from the marine bryozoans (Fig. 10 and Table 7). Perfragilin A (547) and B (545) were isolated from Membranipora perfragilis. As cytotoxic isoquinolines quinone, they contain a relatively uncommon thiomethyl ether functionality. And Both perfragilin A and B were toxic to murine leukemia cells (P388), with perfragilin B being considerably more potent: ED50= 0.8 and 0.07 μg/ml, respectively (Choi et al., 1993).

Sulphur-containing alkaloids from marine bryozoans.
Fig. 10
Sulphur-containing alkaloids from marine bryozoans.
Table 7 Sulphur-containing alkaloids from marine bryozoans.
No. Compounds Time From Location Ref.
Marine Bryozoans
544 1-ethyl-4-methylsulfone-β-carboline 1991 Cribricellina cribraria New Zealand (Prinsep et al., 1991)
545 perfragilin B 1993 Membranipora perfragilis Rapid Bay, South Australia (Choi et al., 1993)
546 2-methyl-6-methylthioisoquinoline-3,5,8(2H)trione 1993 Blflustra perfragilis Bass Strait (Blackman et al., 1993)
547 perfragilin A 1993 Membranipora perfragilis Rapid Bay, South Australia (Choi et al., 1993)
548 euthyroideone A 1998 Euthyroides episcopalis Fiordland, New Zealand (Morris and Prinsep, 1998)
549 euthyroideone B 1998
550 euthyroideone C 1998
551 N-(2-[6-bromo-2-(1,1-dimethyl-2-propenyl)-1H-indol-3-yl]ethyl)-N-methy-lmethanesulfonamide 2002 Flustra foliacea “Steingrund”, North Sea, Helgoland, Germany (Peters et al., 2002)
552 flustramine R 2020 Flustra foliacea Iceland (Di et al., 2020)
553 orthoscuticelline E 2020 Orthoscuticella ventricosa Korora beach, Coffs Harbour, NSW, Australia (Kleks et al., 2020)

1.2.2.7
1.2.2.7 Other marine animals

22 (554575) sulphur-containing alkaloids were reported from other marine animals (Fig. 11 and Table 8). Of them, nebulosins A-P (560575) were reported from the northeastern Atlantic marine terebellid Eupolymnia nebulosa. It’s worth noting that nebulosins feature an unprecedented highly substituted thiolane ring leading to up to four contiguous chiral centers (Calabro et al., 2020).

Sulphur-containing alkaloids from other marine animals.
Fig. 11
Sulphur-containing alkaloids from other marine animals.
Table 8 Sulphur-containing alkaloids from other marine animals.
No. Compounds Time From Location Ref.
Other marine animals
554 L-ovithiol A 1999 Platynereis dumerilii (Röhl et al., 1999)
555 2-n-octylpyrrole sulfamate 2003 Cirriformia tentaculata Florida (Barsby et al., 2003)
556 2-n-heptylpyrrole sulfamate 2003
557 2-n-hexylpyrrole sulfamate 2003
558 thelepamide 2014 Thelepus crispus Friday Harbor, WA, U.S.A. (Rodríguez et al., 2014)
559 cypridina luciferyl sulfate 2014 Vargula hilgendorfii Chita, Aichi, Japan (Nakamura et al., 2014)
560 nebulosin A 2020 Eupolymnia nebulosa Intertidal area of Corranroo, West coast of Ireland (Calabro et al., 2020)
561 nebulosin B 2020
562 nebulosin C 2020
563 nebulosin D 2020
564 nebulosin E 2020
565 nebulosin F 2020
566 nebulosin G 2020
567 nebulosin H 2020
568 nebulosin I 2020
569 nebulosin J 2020
570 nebulosin K 2020
571 nebulosin L 2020
572 nebulosin M 2020
573 nebulosin N 2020
574 nebulosin O 2020
575 nebulosin P 2020

1.3

1.3 Marine microorganism

1.3.1

1.3.1 Dinoflagellates

Dinoflagellates are a group of single cells with double flagella, whose shape is variable. They have both plant and animal characteristics, which could perform photosynthesis and move by the rotation of two flagella. Dinoflagellates are widely distributed, especially in tropical oceans. When the light and water temperature are appropriate, dinoflagellates can multiply in a short period of time to become the main feed of marine animals.

13 (576588) sulphur-containing alkaloids were reported from dinoflagellates (Fig. 12 and Table 9). Among them, compounds 576585 are thought as the carbamoyl-N-sulfo derivatives of saxitoxin and neosaxitoxin (Hall et al., 1984). In addition, it’s worth noting that symbioimine (586) and neosymbioimine (587) both have a characteristic 6,6,6-tricyclic iminium ring structure and an aryl sulfate moiety. And the plausible biogenetic pathway of them can be explained by an intramolecular Diels-Alder reaction followed by imine cyclization (Kita et al., 2005).

Sulphur-containing alkaloids from dinoflagellates.
Fig. 12
Sulphur-containing alkaloids from dinoflagellates.
Table 9 Sulphur-containing alkaloids from dinoflagellates.
No. Compounds Time From Location Ref.
Dinoflagellates
576 toxin B1 1984 Protugonyaulax catenella Northeast Pacific (Hall et al., 1984)
577 toxin B2 1984
578 toxin C1 1984
579 toxin C2 1984
580 toxin C3 1984
581 toxin C4 1984
582 GTX-1 1984
583 GTX-2 1984
584 GTX-3 1984
585 GTX-4 1984
586 symbioimine 2004 Symbiodinium sp. Sesoko Island, Okinawa, Japan. (Kita et al., 2004)
587 neosymbioimine 2005 (Kita et al., 2005)
588 ovataline 2022 Ostreopsis cf. ovata Kimyong, Jeju island (Lee et al., 2022)

1.3.2

1.3.2 Cyanobacteria

Cyanobacteria, also known as blue-green algae, are large, single-celled prokaryotes with a long evolutionary history. They have chlorophyll which enabled them to perform oxygen-producing photosynthesis. The photosynthesis of cyanobacteria is also thought as the reason why the earth's atmosphere develops from an anaerobic state to an aerobic state. At present, there are about 2000 species of cyanobacteria, which are mainly divided into two classes: Chroococcus and Phytoplankton. As highly adaptable organisms, they are widely distributed in all kinds of natural water bodies, soil and some organisms, even in the rock surface and other harsh environments.

41 (589627, 61, 519) sulphur-containing alkaloids were reported from cyanobacteria (Fig. 13 and Table 10). Curacins A-D (519, 591592 and 594) are toxic metabolites isolated from the cyanobacteria, which are thought of as antimitotic agents. In addition, lyngbyabellins are a kind of depsipeptide derivatives, whose typical structural features are two thiazole rings and a chlorinated 2-methyloctanoate residue (Choi et al., 2012). They generally display various activities such as cytotoxicity, antimalarial, and antifouling activities (Fathoni et al., 2020). Lyngbyabellins O (613) and P (614) both exhibit strong antifouling activity, which may be related to the fact that compounds don’t have a side chain (Petitbois et al., 2017). Notably, aulosirazoles A-C (623625) are the structurally unique isothiazolonaphthoquinone aulosirazole, which possess selective antitumor cytotoxicity. Although its mechanism of action is unknown, biological evaluation of them identified one potential target as the immunoregulatory enzyme indoleamine-2,3-dioxygenase (IDO) (Blunt et al., 2015).

Sulphur-containing alkaloids from cyanobacteria.
Fig. 13
Sulphur-containing alkaloids from cyanobacteria.
Table 10 Sulphur-containing alkaloids from cyanobacteria.
No. Compounds Time From Location Ref.
Cyanobacteria
589 cylindrospermopsin 1992 Cylindrospermopsis raciborskii Palm Island, Queensland, Australia (Ohtani et al., 1992)
590 13-demethylisodysidenin 1993 Oscillatoria spongeliae (Faulkner, 1995)
591 curacin B 1995 Lyngbya majuscula Curaçao, Caribbean sea (Yoo and Gerwick, 1995)
592 curacin C 1995
593 barbamide 1996 (Orjala and Gerwick, 1996)
519. curacin A 519 1998 Virgin Islands, British (Márquez et al., 1998)
594 curacin D 1998
595 kalkitoxin 2000 Curaçao, Caribbean sea (Yokokawa et al., 2004)
596 dechlorobarbamide 2000 (Sitachitta et al., 2000)
597 pseudodysidenin 2001 Lyngbya majuscula Boca del Drago Beach, Bocas del Toro, Panama (Jiménez and Scheuer, 2001)
598 nordysidenin 2001
599 dysidenin 2001
600 isodysidenin 2001
61. dysideathiazole 61 2001
601 somocystinamide A 2002 Lyngbya majuscula andSchizothrix sp. Fijian (Nogle and Gerwick, 2002)
602 lyngbyabellin D 2003 Lyngbya sp. Guam, U.S.A. (Williams et al., 2003)
603 lyngbyabellin E 2005 Lyngbya majuscula Alotau Bay, Papua New Guinea (Han et al., 2005)
604 lyngbyabellin F 2005
605 lyngbyabellin G 2005
606 lyngbyabellin H 2005
607 lyngbyabellin I 2005
608 dolabellin 2005
609 herbamide B 2010 Bocas del Toro, Panama (Balunas et al., 2010)
610 hectochlorin B 2015 Moorea producens (Paul and Boudreau, 2015)
611 hectochlorin C 2015
612 hectochlorin D 2015
613 lyngbyabellin O 2017 Okeania sp. Algetah Alkabira reef, Jeddah, Saudi Arabia (Petitbois et al., 2017)
614 lyngbyabellin P 2017
615 trichothiazole A 2017 Trichodesmium sp. Gulf of Mexico (Belisle et al., 2017)
616 laucysteinamide A 2017 Caldora penicillata Lau Lau Bay, Saipan (Zhang et al., 2017a)
617 aranazole A 2018 Fischerella sp. PCC 9339 (Moosmann et al., 2018)
618 aranazole B 2018
619 aranazole C 2018
620 aranazole D 2018
621 isoconulothiazole B 2019 Trichodesmium sp. Mayaguana Island, Bahamas (Teta et al., 2019)
622 conulothiazole C 2019
623 aulosirazole A 2022 Nostoc sp. UIC 10771 Reykjavık, Iceland (Davis et al., 2022)
624 aulosirazole B 2022
625 aulosirazole C 2022
626 caldorazole 2022 Caldora sp. Ishigaki Island, Okinawa, Japan (Ohno et al., 2022)
627 iezoside 2022 Leptochromothrix valpauliae Ie Island, Okinawa, Japan, (Kurisawa et al., 2022)

1.3.3

1.3.3 Marine bacteria

Marine bacteria are the most important members of marine microorganisms, which are widely distributed and abundant in the ocean. The common bacteria include Pseudomonas, Vibrio, Achromobacter, Nocardia and Streptomyces. Almost all known bacteria can be found in the marine environment. Meanwhile, most marine bacteria are decomposers, which play an important role in the whole process of marine material decomposition and transformation. Moreover, because the deep-sea environment has the characteristics of high salt, high pressure, low temperature and low nutrition, the physiological and ecological characteristics of deep-sea bacteria are very different from those of terrestrial bacteria. This is also the reason why scientists are paying more attention to deep-sea bacteria.

110 (628737) sulphur-containing alkaloids were reported from marine bacteria (Fig. 14 and Table 11). Notably, thiomarinols are a kind of naturally occurring double‐headed antibiotic, whose structure comprises two antimicrobial subcomponents, pseudomonic acid analogue and holothin, linked by an amide bond (Dunn et al., 2015). Such ingredients usually have excellent antibacterial activity and can even be effective against MRSA (Shiozawa et al., 1995). And sulfadixiamycins A-C (685687), sulfonyl‐bridged alkaloid dimers, are isolated from recombinant Streptomyces species. They have both aromatic sulfonamide and diarylsulfone substructures. In addition, sungeidines A-H (724731), a class of microbial secondary metabolites with unique structural features, are likely to be assembled from two octaketide chains following processing by oxygenases/oxidases and cyclases.

Sulphur-containing alkaloids from marine bacteria.
Fig. 14
Sulphur-containing alkaloids from marine bacteria.
Sulphur-containing alkaloids from marine bacteria.
Fig. 14
Sulphur-containing alkaloids from marine bacteria.
Table 11 Sulphur-containing alkaloids from marine bacteria.
No. Compounds Time From Location Ref.
Marine bacteria
628 thiomarinol A(Thiomarinol) 1993 Alteromonas raw sp. nov. SANK 73390 (Shiozawa et al., 1993)
629 thiomarinol B 1995 (Shiozawa et al., 1995)
630 thiomarinol C 1995
631 1,2-diacyl-3-α-d-glucuronopyranosyl-sn-glycerol taurineamide 1996 Hyphomonas jannaschiana (Batrakov et al., 1996)
632 cyclo(L-Pro-L-Met) 1996 Pseudomonas aeruginosa Ross Island, Antarctica (Jayatilake et al., 1996)
633 thiomarinol D 1997 Alteromonas raw sp. nov. SANK 73390 (Shiozawa et al., 1997)
634 thiomarinol E 1997
635 thiomarinol F 1997
636 thiomarinol G 1997
637 B-90063 1998 Blastobacter sp. SANK 71894 Japan (Sachiko Takaishi et al., 1998)
638 agrochelin 1999 Agrobacterium sp. (Cañedo et al., 1999)
639 bacillamide A 2011 Bacillus sp. Masan Bay, Korea. (Zou et al., 2011)
640 petrobactin sulfonate 2004 Marinobacter hydrocarbonoclasticus (Hickford et al., 2004)
641 gliocladin A 2004 Gliocladium sp. Coast of Kata, Wakayama Prefecture, Japan (Yoshihide Usami, 2004)
642 gliocladin B 2004
643 glioperazine 2004
644 2,5-dimethyl-3-(methylsulfanyl) pyrazine 2005 Alphaproteobacteria Loktanella sp. North Sea (Dickschat et al., 2005)
645 N-propionyl-desacetyl-mycothiol 2008 MAR2 strain CNQ703 Guam (Newton et al., 2008)
646 lodopyridone 2009 Saccharomonospora sp. La Jolla, California (Maloney et al., 2009)
647 neobacillamide A 2009 Bacillus vallismortis Sanya island, South China Sea (Yu et al., 2009)
648 bacillamide C 2009
649 ammosamide A 2009 Streptomyces sp. Bahamas (Hughes et al., 2009)
650 pulicatin A 2010 Streptomyces sp. Mactan island, Cebu, Philippines (Lin et al., 2010)
651 pulicatin B 2010
652 pulicatin C 2010
653 pulicatin D 2010
654 pulicatin E 2010
655 aerugine 2010
656 pulicatin F 2010
657 pulicatin G 2010
658 watasemycin A 2010
659 watasemycin B 2010
660 bacillamide B 2009 Bacillus endophyticus Sanya island, South China Sea (Yu et al., 2009),(Sun et al., 2015)
661 benzoxacystol 2011 Streptomyces griseus deep sea sediment, Canary Basin (Nachtigall et al., 2011)
662 erythrazole A 2011 Erythrobacter sp. Trinity Bay, Galveston, Texas, U.S.A. (Hu and MacMillan, 2011)
663 erythrazole B 2011
664 heronamycin A 2012 Streptomyces sp. Heron island, Queensland, Australia (Raju et al., 2012)
665 cyanosporaside F 2013 Streptomyces sp. Bahamas (Lane et al., 2013)
666 (−)-homoseongomycin 2013 Salinispora pacifica DPJ-0019 (Woo et al., 2013)
667 nitrosporeusine A 2013 Streptomyces nitrosporeus Arctic Chukchi Sea (Yang et al., 2013)
668 nitrosporeusine B 2013
669 tetroazolemycin A 2013 Streptomyces olivaceus southwest Indian Ocean (Liu et al., 2013)
670 tetroazolemycin B 2013
671 forazoline A 2014 Actinomadura sp. WMMB-499 Florida, U.S.A. (Wyche et al., 2014)
672 forazoline B 2014
673 dermacozine J 2014 Dermacoccus abyssi Challenger Deep, Mariana Trench (Wagner et al., 2014)
674 echoside D 2014 Streptomyces sp. Jimei, China (Deng et al., 2014)
675 echoside E 2014
676 anithiactin A 2014 Streptomyces sp. Jaebu island, South Korea (Kim et al., 2014b)
677 anithiactin B 2014
678 anithiactin C 2014
679 streptcytosine B 2014 Streptomyces sp. Iriomote island, Japan (Bu et al., 2014)
680 collismycin B 2014
681 SF2738 C 2014
682 spithioneine A 2015 Streptomyces spinoverrucosus Bahamas (Fu and MacMillan, 2015a)
683 spithioneine B 2015
684 N-acetyl-S-(((1R,2S,3S,4aS,8aS)-2,3-dihydroxy-5,5,8a-trimethyl-1-((E)-3-methylpenta-2,4-dien-1-yl)decahydronaphthalen-2-yl)methyl)-L-cysteine 2015 Streptomyces sp. Parangipettai, India (Shanthi et al., 2015)
685 sulfadixiamycin A 2015 Streptomyces sp. (Baunach et al., 2015)
686 sulfadixiamycin B 2015
687 sulfadixiamycin C 2015
688 thiasporine A 2015 Actinomycetospora chlora Vava’u, Tonga (Fu and MacMillan, 2015b),(Seitz et al., 2016)
689 thiasporine B 2015
690 thiasporine C 2015
691 ulbactin F 2016 Brevibacillus sp. Ohtsuchi, Iwate, Japan (Igarashi et al., 2016)
692 ulbactin G 2016
693 4-(1H-indol-3-yl-sulfanyl)phenol 2016 Vibrio splendidus S. Orkney island (Nair et al., 2016)
694 N-isobutylmethanesulfinamide 2017 Salinispora pacifica Fiji (Harig et al., 2017)
695 N-isopentylmethanesulfinamide 2017
696 3-acetylamino-N-2-thienyl-propanamide 2017 Streptomyces sp. Q24 Zhuhai, Guangdong, China (Ye et al., 2017)
697 holomycin 2017 Streptomyces sp. DT-A37 Dongtou, Wenzhou, Zhejiang Province, P. R. China (Ding et al., 2017)
698 (1Z)-S,S'-dimethyldihydroholomycin 2017
699 holomycin A 2017
700 streptopertusacin A 2017 Streptomyces sp. HZP-2216E Turtle Islet located,South China Sea (Zhang et al., 2017b)
701 lodopyridone B 2017 Saccharomonospora sp. La Jolla Submarine Canyon, California (Le et al., 2017)
702 lodopyridone C 2017
703 8-hydroxythiomarinol C 2017 Pseudoalteromonas sp. (Gao et al., 2017)
704 6,7-diketothiomarinol C 2017
705 6,7-diketothiomarinol A 2017
706 7-ketothiomarinol C 2017
707 7-ketothiomarinol A 2017
708 8-epi-7-ketothiomarinol C 2017
709 8-epi-7-ketothiomarinol A 2017
710 8-epi-7-epi-6-ketothiomarinol A 2017
711 1-methyl-4-methylthio-β-carboline 2017 Pseudomonas benzenivorans California State Beaches (Lorig-Roach et al., 2017)
712 (2-(3-hydroxyquinolin-2-yl)oxazole-4-carbonyl)-L-cysteine 2018 Streptomyces cyaneofuscatus M−157 Avilés Canyon, Cantabrian Sea (Ortiz-López et al., 2018)
713 (2R,2′R)-3,3′-disulfanediylbis(2-(2-(3-hydroxyquinolin-2-yl)oxazole-4-carboxamido)propanoic acid) 2018
714 thymidine-3-mercaptocarbamic acid 2019 Streptomyces sp. Red Sea (Shaala et al., 2019)
715 thymidine-3-thioamine 2019
716 nocarterphenyl A 2019 Nocardiopsis sp. OUCMDZ-4936 Dongzhaigang Mangrove Reserve, China (Wang et al., 2019)
717 nocarterphenyl B 2019
718 nocarterphenyl D 2021 Nocardiopsis sp. HDN154086 South China Sea (Chang et al., 2021)
719 2,5-bis(5-tert-butyl-2-benzoxazolyl)thiophene 2019 Streptomyces sp. G278 Cu Lao Cham - Quang Nam, Vietnam (Cao et al., 2019a)
720 questiomycin C 2019 Alteromonas sp. D Hiroshima-bay, Hiroshima, Japan (Umetsu et al., 2019)
721 questiomycin D 2019
722 mindapyrrole B 2019 Pseudomonas aeruginosa Sultan Kudarat, Mindanao, Philippines (Lacerna et al., 2019)
723 mindapyrrole C 2019
671 forazoline A 2020 Actinomadura sp. WMMB-499 (Zhang et al., 2020a)
724 sungeidine A 2020 Micromonospora sp. Sungei Buloh Wetland Reserve, Singapore (Low et al., 2020)
725 sungeidine B 2020
726 sungeidine C 2020
727 sungeidine D 2020
728 sungeidine E 2020
729 sungeidine F 2020
730 sungeidine G 2020
731 sungeidine H 2020
732 monathioamide A 2020 Pseudomonas sp. ZZ820R Zhoushan Archipelago, Zhejiang, China (Yi et al., 2020a)
733 levesquamide 2020 Streptomyces sp. RKND-216 Burnt Point, PE, Canada (Liang et al., 2020)
734 streptothiazomycin A 2020 Streptomyces sp. SY1965 Mariana Trench (Yi et al., 2020b)
735 thiolopyrrolone A 2022 Streptomyces sp. BTBU20198885 Xiamen, China (Song et al., 2022)
736 2,2-dioxidothiolutin 2022
737 thiolutin 2022

1.3.4

1.3.4 Marine fungi

The distribution of fungi in the ocean mainly depended on the distribution of hosts. According to their habitat habits, marine fungi could be divided into four basic ecological types: (1) woody fungi. The largest number and most widely distributed higher fungi in marine waters is saprophytic life. (2) Parasitic algae fungi. It accounted for about 1/3 of the number of marine fungal species, most of which were ascomycetes. (3) Seaweed fungi. The number of seaweed fungi was small and mostly inhabited the leaves. (4) Parasitic animal fungi. Only parasitic in the exoskeleton and shell. Marine fungi participate in the decomposition of marine organic matter and the regeneration of inorganic nutrients and continuously provide effective nutrition for marine plants.

197 (738934) sulphur-containing alkaloids were reported from marine fungi (Fig. 15 and Table 12). It’s worth noting that leptosins, amphiepicoccins (912921), penicisulfuranols (869874), gliotoxins and chetracins E, F, C (875, 876, 877) all are epipolythiodioxopiperazines (ETPs) which are a class of biologically active fungi secondary metabolites characterized by a unique bridged disulfide or polysulfide dioxopiperazine six-membered ring (Gardiner et al., 2005). These compounds occur in many fungi. And due to their broad spectra of bioactivities, ETPs have drawn wide attention in recent years (Jiang and Guo, 2011). Moreover, graphiumins A-J (814823), rostratins A-D (767–770), aranotins (777, 781783, 904) and eutypellazines A-S (849866) all are thiodiketopiperazine alkaloids. Among them, eutypellazines N-P (861863) are characteristic of unique spirocyclic skeletons. Meanwhile, eutypellazines N-O bearing a spirocyclic tetrahydro- benzothiophene motif is found in wide-type fungus for the first time (Niu et al., 2017b). In summary, thiodioxopiperazines are the main type of sulphur-containing alkaloids in fungi.

Sulphur-containing alkaloids from marine fungi.
Fig. 15
Sulphur-containing alkaloids from marine fungi.
Table 12 Sulphur-containing alkaloids from marine fungi.
No. Compounds Time From Location Ref.
Marine fungi
738 leptosin A 1994 Leptosphueriu sp. Tanabe Bay, Japan (Takahashi et al., 1994)
739 leptosin B 1994
740 leptosin C 1994
741 leptosin D 1994
742 leptosin E 1994
743 leptosin F 1994
744 leptosin G 1995 (Takahashi et al., 1995b)
745 leptosin G1 1995
746 leptosin G2 1995
747 leptosin H 1995
748 leptosin K 1995 (Takahashi et al., 1995a)
749 leptosin K1 1995
750 leptosin K2 1995
751 11,11′-dideoxyverticillin A 1999 Penicillium sp. CNC-350 (John, 1999)
752 11′-deoxyverticillin A 1999
753 flavochristamide A 2000 Flavobacterium sp. lshikari Bay, Hokkaido (Kohayashi et al., 1995)
754 flavochristamide B 2000
755 leptosin M 2002 Leptosphaeria sp. Tanabe Bay, Japan (Yamada et al., 2002)
756 leptosin M1 2002
757 leptosin N 2002
758 leptosin N1 2002
759 fusaperazine A 2002 Fusarium chlamydosporum (Blunt et al., 2004)
760 fusaperazine B 2002
761 Sch 54,794 1993 (Chu et al., 1993)
762 Sch 54,796 1993
763 leptosin O 2004 Leptosphaeria sp. Tanabe Bay, Japan (Takeshi Yamada, 2004)
764 leptosin P 2004
765 leptosin Q 2004
766 leptosin R 2004
767 rostratin A 2004 Exserohilum rostratum Lanai Island, Hawaii (Tan et al., 2004)
768 rostratin B 2004
769 rostratin C 2004
770 rostratin D 2004
771 dehydroxybisdethiobis(methylthio)gliotoxin 2006 Pseudallescheria sp. Uljin, Gyeongbuk, Korea (Li et al., 2006)
772 bilain A 2007 Penicillium bilaii Huon estuary, Tasmania (Capon et al., 2007)
773 bilain B 2007
774 bilain C 2007
775 (Z)-6-benzylidene-3-hydroxymethyl-1,4-dimethyl-3-methylsulfanylpiperazine-2,5-dione 2008 Order Pleosporales CRIF2 Surin Island (Prachyawarakorn et al., 2008)
776 alternarosin A 2009 Alternaria raphani Qingdao, China (Wang et al., 2009)
777 bisdethiobis(methylthio)acetylaranotin 2009
778 plectosphaeroic acid A 2009 Plectosphaerella cucumerina Barkley Sound, British Columbia (Carr et al., 2009)
779 plectosphaeroic acid B 2009
780 plectosphaeroic acid C 2009
781 deoxyapoaranotin 2011 Arthrinium versicolor East Sea, Korea (Choi et al., 2011)
782 acetylaranotin 2011
783 acetylapoaranotin 2011
784 luteoalbusin A 2012 Acrostalagmus luteoalbus South China Sea (Wang et al., 2012a)
785 luteoalbusin B 2012
786 T988A 2012
787 gliocladines C 2012
788 gliocladines D 2012
789 chetoseminudin B 2012
790 chetoseminudin C 2012
791 spirogliotoxin 2012 Aspergillus fumigatus YK-7 Yingkou, China (Wang et al., 2012b)
792 gliotoxin
793 bisdethiobis(methylthio)gliotoxin
794 didehydrobisdethiobis(methylthio)gliotoxin
795 bis(dethio)-10a-methylthio-3a-deoxy-3,3a-didehydrogliotoxin 2012 Penicillium sp. Suruga Bay, Japan (Sun et al., 2012)
796 6-deoxy-5a,6-didehydrogliotoxin 2012
797 bis(dethio)bis(methylthio)-5a,6-didehydrogliotoxin 2012
798 5a,6-didehydrogliotoxin 2012
799 gliotoxin G 2012
800 penilumamide 2014 Aspergillus sp. Xisha islands,South China Sea (Reddy et al., 2017)
801 penilumamide B 2014
802 penilumamide C 2014
803 reduced gliotoxin 2014 Neosartorya pseudofischeri Hainan Sanya National Coral Reef Reserve, China (Liang et al., 2014)
804 acetylgliotoxin
805 bis-N-norgliovictin
806 6-acetylbis(methylthio)gliotoxin
807 chartarutine C 2014 Stachybotrys chartarum Beibuwan Bay, China (Li et al., 2014)
808 chartarutine D 2014
809 cladosporin A 2015 Cladosporium sp. Yangshashan Bay, Ningbo, Zhejiang, China (Gu et al., 2015)
810 cladosporin B 2015
811 6-acetylmonodethiogliotoxin 2015 Dichotomomyces cejpii Bare island, Sydney, Australia (Harms et al., 2015)
812 6-acetylbisdethiobis(methylthio)gliotoxin 2015
813 5a,6-anhydrobisdethiobis(methylthio)-gliotoxin 2015
814 graphiumin A 2015 Graphium sp. Ishigaki island, Okinawa, Japan (Fukuda et al., 2015)
815 graphiumin B 2015
816 graphiumin C 2015
817 graphiumin D 2015
818 graphiumin E 2015
819 graphiumin F 2015
820 graphiumin G 2015
821 graphiumin H 2015
822 graphiumin I 2015
823 graphiumin J 2015
824 adametizine A 2015 Penicillium adametzioides Hainan island, China (Liu et al., 2015b)
825 adametizine B 2015
826 peniciadametizine A 2015 Penicillium adametzioides Wenchang, Hainan, China (Liu et al., 2015c)
827 peniciadametizine B 2015
828 pseudellone A 2015 Pseudallescheria ellipsoidea F42 − 3 National Coral Reef Reserve, Hainan, China (Liu et al., 2015a)
829 pseudellone B 2015
830 stachybotrin G 2015 Stachybotrys chartarum MXH-X73 Xisha island, China (Ma et al., 2015)
831 DC1149B 2015 Trichoderma cf. brevicompactum Palau (Yamazaki et al., 2015a)
832 iododithiobrevamide 2015
833 DC1149R 2015
834 chlorotrithiobrevamide 2015 (Yamazaki et al., 2015b)
835 acetylgliotoxin G 2015 Dichotomomyces cejpii Pecém’s offshore port, Ceará, Brazil (Rodrigues et al., 2015)
836 acaromyester A 2016 Acaromyces ingoldii South China Sea (Gao et al., 2016)
837 dichotocejpin A 2016 Dichotomomyces cejpii FS110 South China Sea (Fan et al., 2016)
838 pretrichodermamide D 2016 Penicillium sp. KMM 4672 Vietnam, South China Sea (Yurchenko et al., 2016)
839 pretrichodermamide E 2016
840 pretrichodermamide F 2016
841 pseuboydone C 2016 Pseudallescheria boydii Hainan Sanya National Coral Reef Reserve, China (Lan et al., 2016)
842 pseuboydone D 2016
843 lasiodipline F 2016 Pseudallescheria ellipsoidea F42-3 (Wang et al., 2016)
844 pseudellone D 2016
845 dithioaspergillazine A 2016 Trichoderma cf. brevicompactum Palau (Yamazaki et al., 2016)
846 dichocerazine A 2017 Dichotomomyces cejpii F31-1 Hainan Sanya National Coral Reef Reserve, China (Chen et al., 2017b)
847 dichocerazine B 2017
848 haematocin 2017
849 eutypellazine A 2017 Eutypella sp. MCCC 3A00281 South Atlantic Ocean (Niu et al., 2017a)
850 eutypellazine B 2017
851 eutypellazine C 2017
852 eutypellazine D 2017
853 eutypellazine E 2017
854 eutypellazine F 2017
855 eutypellazine G 2017
856 eutypellazine H 2017
857 eutypellazine I 2017
858 eutypellazine J 2017
859 eutypellazine K 2017
860 eutypellazine L 2017
861 eutypellazine N 2017 (Niu et al., 2017b)
862 eutypellazine O 2017
863 eutypellazine P 2017
864 eutypellazine Q 2017
865 eutypellazine R 2017
866 eutypellazine S 2017
867 gliomastin B 2017 Gliomastix sp. Ain El-Sokhna, Eygpt (Elnaggar et al., 2017)
868 scedapin C 2017 Scedosporium apiospermum Hainan Sanya National Coral Reef Reserve, China (Huang et al., 2017)
869 penicisulfuranol A 2017 Penicillium janthinellum HDN13-309 Hainan, China (Zhu et al., 2017)
870 penicisulfuranol B 2017
871 penicisulfuranol C 2017
872 penicisulfuranol D 2017
873 penicisulfuranol E 2017
874 penicisulfuranol F 2017
875 chetracin E 2018 Acrostalagmus luteoalbus HDN13-530 Liaodong Bay, China (Yu et al., 2018)
876 chetracin F 2018
877 chetracin C 2018
878 altenusinoide A 2018 Alternaria sp. SCSIOS02F49 Xuwen County, Guangdong, China
879 altenusinoide B 2018
880 methyl 2-(6-hydroxybenzothiazol-4-yl) acetate 2018
881 violaceimide A 2018 Aspergillus violaceus South China Sea (Yin et al., 2018)
882 violaceimide B 2018
883 violaceimide C 2018
884 violaceimide D 2018
885 violaceimide E 2018
886 geospallin A 2018 Geosmithia pallida FS140 (Sun et al., 2018)
887 geospallin B 2018
888 geospallin C 2018
889 (+)-acrozine A 2019 Acrostalagmus luteoalbus TK-43 Sinop, Turkey (Cao et al., 2019b)
890 (–)-acrozine A 2019
891 (+)-acrozine B 2019
892 (–)-acrozine B 2019
893 acrozine F 2021 (Cao et al., 2021)
894 acrozine G 2021
895 dechdigliotoxin A 2019 Dichotomomyces cejpii South China Sea (Liu et al., 2019b)
896 dechdigliotoxin B 2019
897 dechdigliotoxin C 2019
898 fusaperazine F 2019 Penicillium crustosum HDN153086 Prydz Bay, Antarctica (Liu et al., 2019a)
899 pseudboindole B 2019 Pseudallescheria boydii F44-1 Hainan Sanya National Coral Reef Reserve, China (Yuan et al., 2019)
900 emestrin L 2020 Aspergillus terreus Weizhou coral reefs, South China Sea (Wu et al., 2020)
901 emestrin M 2020
902 emethacin C 2020
903 emethacin B 2020
904 bisdethiobis(methylsulfanyl)acetylapoaranotin 2020
905 spiroepicoccin A 2020 Epicoccum nigrum (Li et al., 2020d)
906 7-dehydroxyepicoccin H 2020 Epicoccum nigrum SD-388 Western Pacific (Chi et al., 2020b)
907 7-hydroxyeutypellazine F 2020
908 5′-hydroxy-6′-ene-epicoccin G 2020 (Chi et al., 2020a)
909 7-methoxy-7′-hydroxyepicoccin G 2020
910 8′-acetoxyepicoccin D 2020
911 7′-demethoxyrostratin C 2020
912 amphiepicoccin A 2020 Epicoccum nigrum HDN17-88 Western Pacific (Wang et al., 2020)
913 amphiepicoccin B 2020
914 amphiepicoccin C 2020
915 amphiepicoccin D 2020
916 amphiepicoccin E 2020
917 amphiepicoccin F 2020
918 amphiepicoccin G 2020
919 amphiepicoccin H 2020
920 amphiepicoccin I 2020
921 amphiepicoccin J 2020
922 citriperazine A 2020 Penicillium sp. KMM 4672 South China Sea (Yurchenko et al., 2020)
923 citriperazine B 2020
924 citriperazine C 2020
925 scetryptoquivaline A 2020 Scedosporium apiospermum F41-1 Hainan Sanya National Coral Reef Reserve, China (Li et al., 2020a)
926 5-epi-pretrichodermamide A 2020 Trichoderma cf. brevicompactum Palau (Yamazaki et al., 2020)
927 5-epi-trithiopretrichodermamide A 2020
928 pensulfonamide 2021 Penicillium aculeatum Red Sea (Egypt) (Hawas et al., 2022)
929 secoemestrin C 2021 Aspergillus quadrilineatus FJJ093 Jeju Island, Republic of Korea (Hwang et al., 2021)
930 emestrin 2021
931 emestrin B 2021
932 talaromanloid A 2022 Talaromyces mangshanicus BTBU20191089 (Zhang et al., 2022)
933 ochraceopetalin 2021 Aspergillus ochraceopetaliformis (Park et al., 2021b)
934 aspergillazine A 2005 Spicaria elegans Jiaozhou Bay, China (Liu et al., 2005)

1.3.5

1.3.5 Mangroves bacteria, fungi and other marine microorganism

Mangrove is a special ecosystem for the transition from land to sea. In recent years, mangrove bacteria and fungi have gradually become the focus of research. 2 (935936) and 34 (937968, 767, 909) sulphur-containing alkaloids were reported from mangroves bacteria and fungi, respectively. Brocazines A-F (937942), phomazines A-C (943945), epicorazines A-C (946948), penicibrocazines A-E (955959) and penispirozines A-D (964967) all are thiodiketopiperazines alkaloids. Moreover, epicoccins A-E (949953) are epipolythiodioxopiperazines. This shows that thiodioxopiperazines are the main type of sulphur-containing alkaloids in fungi again. Notably, spirobrocazines A-B (961962) are characteristic of a unique spirocyclic skeleton (Meng et al., 2016) and penispirozine B (965) possesses a 6/5/6/5/6 pentacyclic ring system with two rare spirocyclic centers (Zhu et al., 2020). In addition, penispirozine A (964) has an unusual pyrazino[1,2]oxazadecaline coupled with a thiophane ring system and trichodermamide G (968) has a similar cyclic system. In addition, 4 (969972) sulphur-containing alkaloids, new pigments with an unprecedented skeleton, were reported from marine ciliates Pseudokeronopsis riccii (Fig. 16 and Table 13).

Sulphur-containing alkaloids from mangroves bacteria, fungi, other marine microorganism.
Fig. 16
Sulphur-containing alkaloids from mangroves bacteria, fungi, other marine microorganism.
Table 13 Sulphur-containing alkaloids from mangroves bacteria, fungi and other marine microorganism.
No. Compounds Time From Location Ref.
Mangroves bacteria
935 9-((2R,3R,4S,5S)-3,4-dihydroxy-5-((methylthio)methyl)tetrahydrofuran-2-yl)-6-hydroxy-9H-purin-3-ium 2014 Micromonospora sp. K310 Butre river, Ghana (Kyeremeh et al., 2014)
936 bagremycin C 2017 Streptomyces sp. Q22 Qiao Mangrove Forest, Zhuhai City, Guangdong, China (Chen et al., 2017a)
Mangroves fungi
937 brocazine A 2014 Penicillium brocae MA-231 Hainan island, China (Meng et al., 2014)
938 brocazine B 2014
939 brocazine C 2014
940 brocazine D 2014
941 brocazine E 2014
942 brocazine F 2014
943 phomazine A 2014 Phoma sp. OUCMDZ-1847 Wenchang, China (Kong et al., 2014)
944 phomazine B 2014
945 phomazine C 2014
946 epicorazine A 2014
947 epicorazine B 2014
948 epicorazine C 2014
949 epicoccin A 2014
950 epicoccin B 2014
951 epicoccin C 2014
952 epicoccin D 2014
953 epicoccin E 2014
954 exserohilone A 2014
767. rostratin A 2014
955 penicibrocazine A 2015 Penicillium brocae Hainan island, China (Meng et al., 2015)
956 penicibrocazine B 2015
957 penicibrocazine C 2015
958 penicibrocazine D 2015
959 penicibrocazine E 2015
960 analog 2015
961 spirobrocazine A 2016 Penicillium brocae MA-231 (Meng et al., 2016)
962 spirobrocazine B 2016
963 brocazine G 2016
964 penispirozine A 2020 Penicillium janthinellum HDN13-309 (Zhu et al., 2020)
965 penispirozine B 2020
966 penispirozine C 2020
967 penispirozine D 2020
968 trichodermamide G 2020 Trichoderma harzianum D13 (Zhao et al., 2020)
909. aspergillazine A 2020
Other marine microorganism
969 keronopsamide B 2010 Pseudokeronopsis riccii Tyrrhenian Coast, Sardinia, Italy (Guella et al., 2010)
970 keronopsamide C 2010
971 keronopsin A1 2010
972 keronopsin A2 2010

1.4

1.4 Bioactivities of Marine-Derived Sulphur-containing alkaloids

The biological activities of marine-derived sulphur-containing alkaloids have been studied extensively. As listed in Table 14, marine-derived sulphur-containing alkaloids had a broad range of bioactive properties including cytotoxicity, antibacteria, antifungi, antimitotic, antiviral, and other activities.

In summary, while research on the biological activity of marine sulphur-containing alkaloids has explored a wide range of directions, the primary focus remains on their cytotoxicity against tumour cells. Over the past four decades, numerous compounds with potent cytotoxic properties have been discovered, displaying strong efficacy against various types of tumour cells. Here, we have summarized the compounds with superior activity according to the type of tumour they target.

1.5

1.5 Cytotoxicity

1.5.1

1.5.1 Leukemia

Leukemia is a collection of malignant tumours that affect the blood system. Clonal leukemia cells undergo uncontrolled proliferation and accumulate in the bone marrow and other haematopoietic tissues due to impaired differentiation, apoptosis, and other mechanisms, ultimately inhibiting normal haematopoietic function. (Whiteley et al., 2021). Several marine sulphur-containing alkaloids have demonstrated cytotoxicity against different types of leukemia cells. For instance, prianosin A (22), C (29), D (30), varamine A (370), B (371), diplamine (372), and eudistomidin J (455) exhibited IC50 values of 0.037, 0.15, 0.18, 0.03, 0.05, 0.02, and 0.047 μg/ml, respectively, against L1210 cells. (Kobayashi et al., 1987; Cheng et al., 1988; Molinski and Ireland, 1989; Charyulu et al., 1989; Suzuki et al., 2011). Similarly, compounds such as discorhabdin B (32), discorhabdin W (145), (6R,8S)-1-thiomethyldiscorhabdin G*/I (184), 16a,17a-dehydrodiscorhabdin W (185), discorhabdin G*/I (146), discorhabdin A (31), dercitin (27), curacin E (518), agrochelin (638), eudistomidin J (455), pateamine (93) have been reported to inhibit P388 cells with IC50 values of 0.084, 0.087, 0.28, 0.45, 0.6, 0.13, 0.11, 0.081, 0.02, 0.053 µM and 43, 0.15 ng/ml, respectively. (Lang et al., 2005; Grkovic and Copp, 2009; Burres et al., 1989; Suzuki et al., 2011; Northcote et al., 1991; Ueoka et al., 2016; Cañedo et al., 1999). Meanwhile, compounds such as perfragilins B (545), leptosin A (738), B (739), C (740), D (741), E (742), F (743), G (744), G1 (745), G2 (746), H (747), K (748), K1 (749) and K2 (750), N (757), N1 (758) and P (764) exhibited EC50 values of 70, 1.85, 2.40, 1.75, 86, 46, 56, 4.6, 4.3, 4.4, 3.0, 3.8, 2.2, 2.1 180, 190 and 100 ng/ml, respectively, against P388 cells. (Choi et al., 1993; Takahashi et al., 1994; Takahashi et al., 1995b; Takahashi et al., 1995a; Yamada et al., 2002; Takeshi Yamada, 2004). Among them, shishijimicin A (431), B (432), C (433) and namenamicin (434) have shown excellent cytotoxicity against P388 cells with IC50 values of 0.47, 2.0, 1.7 and 3.3 pg/ml, respectively. (Oku et al., 2003).

Moreover, chetracin E (875) exhibited IC50 values of 0.4 μM against K562 cells. (Yu et al., 2018). Moreover, somocystinamide A (601) and 14-methyleudistomidin C (418) exhibited IC50 values of 60 nM and 0.57 μg/ml against Molt4 cells, and compound 601 also inhibited CEM cells with an IC50 of 14 nM. (Wrasidlo et al., 2008; Rashid et al., 2001). It is worth noting that dercitin (27) demonstrated cytotoxicity against HL-60 and HL-60/AR cells by reducing DNA replication, with IC50 values of 0.15 and 0.24 μM, respectively. (Burres et al., 1989). Meanwhile, somocystinamide A (601) exhibited cytotoxicity against Jurkat cells with an IC50 value of only 3 nM. (Wrasidlo et al., 2008).

1.5.2

1.5.2 Lymphomas

Lymphomas are a heterogeneous group of malignant tumors that originate from the lymphatic hematopoietic system. Although these tumors typically arise in the lymph nodes, the distribution of the lymphatic system allows them to spread throughout the body and invade nearly any tissue or organ. (Jiang et al., 2017). Prianosin A (22), C (29), and D (30) exhibited strong cytotoxicity against L5178Y cells with IC50 values of 0.014, 0.024, and 0.048 μg/mL, respectively. (Kobayashi et al., 1987; Cheng et al., 1988).

1.5.3

1.5.3 Colorectal cancer

Colorectal cancer is a prevalent malignant tumor that includes colon and rectal cancers. Tumor cells can metastasize to lymph nodes through lymphatic vessels or to the liver, lungs, and bones through the bloodstream. The primary treatment regimen is currently a combination of chemotherapy, with chemotherapeutic agents such as 5-fluorouracil, oxaliplatin, irinotecan, and other drugs. (Biller et al., 2021). HCT116 cells are a commonly used in vitro model of colorectal cancer. Discorhabdin A (31), (-)-(1R,2R,6R,8S,6′S)-discorhabdin B dimer (316), latrunculone A (168), patellazole A (360), B (361), C (362), acetylgliotoxin (804), reduced gliotoxin (803), chetracin E (875), C (877), epicorazine A (946) and rostratin C (769) have been reported to inhibit HCT116 cells with IC50 values of 7, 160, 480, 0.62, 0.39, 4.7, 0.66, 0.62, 5.6, 890, 430, 400, 300, 330 nM and 0.76 μg/ml, respectively. (Antunes et al., 2004; Li et al., 2020b; Amagata et al., 2008; Richardson et al., 2005; Liang et al., 2014; Liang et al., 2014; Yu et al., 2018; Tan et al., 2004). In addition, compound 360, 361 and 362 also exhibited IC50 values of 0.66, 0.62 and 5.6 nM against HCT 116 cells p53–/–. Meanwhile, discorhabdin I (131), L (132), tanjungide A (473), agrochelin (638), dercitin (27), latrunculin A (16), ecteinascidin 743 (376), 729 (375), 597 (393), 583 (394) and 594 (395) exhibited cytotoxicity against HT-29 cells with GI50 values of 0.35, 0.12 and 0.19 µM and IC50 values of 0.268, 0.063 µM, 60, 0.5, 0.5, 2.0, 10 and 25 ng/ml, respectively. (Reyes et al., 2004; Murcia et al., 2014; Cañedo et al., 1999; Burres et al., 1989; Longley et al., 1993; Sakai et al., 1996).

RKO cells and COLO-205 cells are two other in vitro cellular models of colon cancer. A study showed that gliotoxin (792) and reduced gliotoxin (803) were cytotoxic to RKO cells (IC50 values of 0.8 and 0.41 µM, respectively), while 14-methyleudistomidin C (418) was cytotoxic to COLO-205 cells (IC50= 0.42μg/ml). (Liang et al., 2014; Rashid et al., 2001).

1.5.4

1.5.4 Pancreatic cancer

Pancreatic cancer is a highly prevalent malignant disease of the gastrointestinal tract with a very low survival rate. Patients with untreated pancreatic cancer typically have a survival time of approximately four months. (Park et al., 2021a). In vitro studies have shown that discorhabdin T (156), U (157), and DC1149B (831) are effective inhibitors of PANC-1 cells, with IC50 values of 0.7, 0.069 and 0.02 µM, respectively. (Gunasekera et al., 2003; Tang et al., 2020).

1.5.5

1.5.5 Breast cancer

Breast cancer is a common malignant tumor that affects women. It occurs due to the uncontrolled proliferation of epithelial cells in the breast, influenced by various carcinogenic factors. Common early symptoms include breast lumps, nipple discharge, and swollen lymph nodes in the armpits, while in advanced stages, cancer cells can metastasize to distant organs, leading to life-threatening multi-organ lesions. (Harbeck et al., 2019). Kuanoniamine C (82) and A (381) have demonstrated cytotoxicity against MCF-7 cells with GI50 values of 0.81 and 0.12 nM, respectively, as well as against MDA-MB-231 cells with GI50 values of 10.23 and 0.73 nM, respectively. (Kijjoa et al., 2007). Curacin A (519), B (591), D (594), Luteoalbusin A (784), B (785), T988A (786), Gliocladine C (787) and D (788) were reported to inhibit MCF-7 cells with IC50 values of 0.038, 0.32, 0.34, 0.23, 0.25, 0.91, 0.23, and 0.65 µM, respectively. (Verdier-Pinard et al., 1998; Márquez et al., 1998; Wang et al., 2012a).

1.5.6

1.5.6 Lung cancer

Lung cancer is a malignant tumor that originates in the lining or glands of the bronchi in the lungs. It is one of the fastest-growing malignancies in terms of morbidity and mortality and poses a serious threat to public health. Currently, there are two main classifications of lung cancer: small cell lung cancer and non-small cell lung cancer, which can be further divided into adenocarcinoma, squamous cell carcinoma, large cell carcinoma, bronchoalveolar carcinoma, and others depending on the pathology. (Hirsch et al., 2017). Several compounds have been reported to inhibit lung cancer cell growth. Dercitin (27), somocystinamide A (601), ecteinascidin 743 (376), latrunculin A (16), ecteinascidin 729 (375), 597 (393), 583 (394), 594 (395), agrochelin (638), chetracin E (875), and C (877) have been reported to inhibit A549 cells with IC50 of 7, 160, 480, 0.62, 0.39, 4.7, 0.66, 0.62, 5.6, 890, 430, 400, 300, 330 nM and 0.76 μg/ml, respectively. (Burres et al., 1989; Wrasidlo et al., 2008; Simoens et al., 2003; Longley et al., 1993; Sakai et al., 1996; Cañedo et al., 1999; Yu et al., 2018). Lyngbyabellin E-I (603607) have also been shown to inhibit NCI-H460 cells, with IC50 values ranging from 0.2 to 2.2 µM. (Williams et al., 2003). Meanwhile, kuanoniamine C (82) and A (381) demonstrated cytotoxicity against MCF-7 cells, with GI50 values of 0.81 and 0.12 nM, respectively. (Kijjoa et al., 2007). Additionally, Chetracin E (875) and C (877) exhibited IC50 values of 0.2 and 0.8 μM, respectively, against NCI-H1975 cells. (Yu et al., 2018). Notably, compound 376 showed significant inhibition of NCI-H292 cells with an IC50 value of 1.1 nM. (Simoens et al., 2003).

1.5.7

1.5.7 Cervical cancer

Cervical cancer is a prevalent malignancy in women, and persistent high-risk HPV infection is a well-established major risk factor for the disease. More than 90% of cervical cancers are associated with high-risk HPV infection. (Cohen et al., 2019). In vitro, Hela cells are widely used as a model for cervical cancer. Among tested compounds, iejimalide C (539), caldorazole (626), and iezoside (627) exhibited IC50 values of 2.7, 23, and 6.8 nM, respectively, against HeLa cells. Compound 626 also inhibited HeLa S3 and HeLa S3Mer- cells, with IC50 values of 44 and 48 nM, respectively. (Kazami et al., 2014; Ohno et al., 2022; Kurisawa et al., 2022). Notably, shishijimicin A (431), B (432), C (433), and namenamicin (434) showed excellent cytotoxicity against HeLa cells, with IC50 values of 1.8, 3.3, 6.3, and 43 pg/ml, respectively. (Oku et al., 2003).

1.5.8

1.5.8 Melanoma

Melanoma is a highly malignant tumor that develops from melanocytes commonly found in the skin. Due to its aggressive nature, melanoma is prone to infiltrative growth and metastasis, making it one of the deadliest types of skin cancer. (Schadendorf et al., 2018). Agrochelin (638), ecteinascidin 743 (376), 729 (375), 597 (393), 583 (394), and 594 (395) have been reported to inhibit MEL-28 cells with IC50 values of 0.268 µM, 5.0, 5.0, 2.0, 5.0, and 25 ng/ml, respectively (Cañedo et al., 1999; Sakai et al., 1996).

1.5.9

1.5.9 Ovarian cancer

Ovarian cancer is a malignant tumor that grows on the ovary, with 90% to 95% of cases being primary ovarian cancers. Despite having a lower incidence rate than cervical and endometrial cancers, ovarian cancer has the highest mortality rate among gynecological cancers, ranking first. (Matulonis et al., 2016). 14-methyleudistomidin C (418) and aulosirazole A-B (623624) demonstrated IC50 values of 0.98 μg/ml, 0.301, and 0.6 µM, respectively, against OVCAR-3 cells (Davis et al., 2022; Rashid et al., 2001). Additionally, brocazine G (963) exhibited inhibition of A2780 and A2780 CisR cells with IC50 values of 664 and 661 nM, respectively (Meng et al., 2016).

1.5.10

1.5.10 Others

In addition to their activity against the aforementioned tumour cells, sulphur-containing marine alkaloids have demonstrated promising cytotoxic properties against other types of cancer cells. For instance, luteoalbusin A (784), B (785), T988A (786), gliocladine C (787) and D (788) were reported to inhibit the growth of SF-268 and HepG-2 cells, with IC50 values ranging from 0.46 to 2.49 µM. Moreover, kuanoniamine C (82) and A (381) exhibited excellent cytotoxicity against SF-268 cells, with IC50 values of 33.16 and 4.67 nM, respectively. (Kijjoa et al., 2007). Of particular note, shishijimicin A (431), B (432), C (433) and namenamicin (434) displayed potent cytotoxicity against 3Y1 cells, with IC50 values of 2.0, 3.1, 4.8 and 13 pg/ml. (Oku et al., 2003).

1.5.11

1.5.11 Structure-activity relationships of the cytotoxicity

It is noteworthy that discorhabdins, curacins, tanjungides, leptosins, and latrunculins exhibit better cytotoxicity than any other reported compounds. Thus, the structure–activity relationships of the cytotoxicity of these compounds have been summarized for further investigation.

As depicted in Fig. 17a, the cytotoxicity of discorhabdins is decreased when there is a double bond between C-4 and C-5 of discorhabdins, which is also confirmed in Fig. 17b. When there is a hydroxyl substitution at C-3′, the cytotoxicity of the compound is increased. Fig. 17c reveals that the presence of substituents at C-2′ affects the cytotoxicity of the compound, and the degree of influence is related to the nature of the substituents, as confirmed in Fig. 17d. Simultaneously, Fig. 17c also shows that replacing the carbonyl group at C4′ with more hydroxyl groups does not affect the cytotoxicity, indicating that the presence of a carbonyl group does not affect cytotoxicity. Fig. 17d shows that the cytotoxicity of the compound is reduced when there is a double bond between C-5′ and C-6′, and converting the N atom at the C-6 position to NH+ also reduces the cytotoxicity. The cytotoxicity of latrunculins is strongly related to the configuration at C-18. When C-18 has an R-configuration, the cytotoxicity of the compounds increases, and when it has an S-configuration, the cytotoxicity decreases (Fig. 17e). When the hydroxyl group at C-17 is replaced by methoxy, the toxicity of the compound is also weakened. In addition, we found that as the lactone ring of these compounds becomes larger, their cytotoxicity increases, which may be related to the increase in the number of hydroxyl groups on the lactone ring.

Structure-activity relationships of the cytotoxicity.
Fig. 17
Structure-activity relationships of the cytotoxicity.

The cytotoxicity of curacins and tanjungides is related to the configuration of the double bond in their structures. When the double bond is of the E-type, the cytotoxicity of the compounds increases, and when it is of the Z-type, it decreases. If there is a methyl group at C-9 of curacins, the cytotoxicity of the compound also increases (Fig. 17f). The cytotoxicity of leptosins is related to the number of sulfur atoms in the sulfur bridge. As the number of sulfur atoms increases, the cytotoxicity is attenuated, but if the sulfur bridge is missing, the cytotoxicity of leptosins is greatly reduced. It can be seen that the sulfur bridge is an important cytotoxic basis of leptosins. Cytotoxicity is reduced in the presence of methyl group at C-7, and increased in the presence of hydroxymethyl groups. Cytotoxicity is similarly reduced in the presence of hydroxyl groups in C-3. (Fig. 17g). In addition, the configuration of the hydroxyl groups at the C-3 and C-3′ positions will affect the cytotoxicity. The cytotoxicity will decrease when both are S-configurations, and it will increase when both are R-configurations. (Fig. 17h).

2

2 Conclusions and outlook

This review summarized current research regarding the chemical and bioactivity diversity of marine-derived sulphur-containing alkaloids from 1992 to 2022. More than 972 sulphur-containing alkaloids have been isolated and identified from the marine. Meanwhile, modern pharmacological research revealed that the sulphur-containing alkaloids have significant pharmacological properties including cytotoxicity, anti-proliferation, anti-virus, anti-inflammatory, antioxidant, antibacteria, antifungal, anti-malarial, antiparasitic and enzyme inhibitory activity. Regardless, there are still several aspects that need to be concerned in the further development of marine-derived sulphur-containing alkaloids.

Firstly, as shown in Fig. 1, sponges are the dominant producer of marine-derived sulphur-containing alkaloids, yielding 316 of these 972 compounds (32.51%). Marine animal tunicates also produce massive sulphur-containing alkaloids with a combined percentage of 16.26%. In addition, marine fungi and bacteria are also important sources, producing 20.27% and 11.32%, respectively, of the alkaloids reviewed. It can be seen that almost 80.36% of marine-derived sulphur-containing alkaloids are from marine sponges, fungi, tunicates and bacteria. This suggests that we can focus more on marine sponges, fungi, tunicates and bacteria in the search for more marine-derived sulphur-containing alkaloids.

Secondly, sulphur-containing alkaloids obtained from sponges have fallen since 2010, while microbes, especially fungi, have grown to be important producers (Fig. 2). There may be two reasons for this. (1) with the increasing demand for new bioactive substances, the attraction of terrestrial fungi in drug screening has gradually decreased. Scientists began to pay attention to marine fungi living in complex environments such as high pressure, high salt and low temperature. Meanwhile, the complex environment makes the secondary metabolites of marine fungi have diverse structures and unique biological activities, which attracts scientists to increase the research and development of marine fungi. (2) Biochemists have begun to generally acknowledge that sampling slow-growing sessile organisms to identify natural products is not an economical and environmentally friendly approach. Fungi can reproduce indefinitely under suitable conditions, and their genomes can be easily mined for targeted metabolites. This also makes fungi get more attention.

Thirdly, sulphur-containing alkaloids have been shown to have a variety of biological activities such as cytotoxicity, anti-proliferation, anti-virus, anti-inflammatory, antioxidant, antibacteria, antifungal, anti-malarial, antiparasitic and enzyme inhibitory activity. Of them, ecteinascidin 743 (yondelis) has been approved by the European Union in October 2007 for the treatment of advanced soft tissue tumors, which became the first modern marine drug (Menchaca et al., 2003). Thiomarinols, a kind of naturally occurring double-headed antibiotic, usually have excellent antibacterial activity and can even be effective against MRSA (Shiozawa et al., 1995). But more sulphur-containing alkaloids with various activities also need to be found in the marine. Of course, it can not be ignored that monomeric compounds with outstanding pharmacological activities can be considered the source of new drugs with excellent therapeutic effects. For example, shishijimicin A (431), B (432), C (433) and namenamicin (434) exhibited extremely cytotoxic to 3Y1, HeLa and P388 cells with IC50 values from 0.47 to 43 pg/ml. Gliotoxin (792), acetylgliotoxin (804) and reduced gliotoxin (803) have been reported to inhibit HCT-116 and RKO cells with IC50 values from 0.41 to 4.49 µM. Chetracin E (875), F (876) and C (877) also have cytotoxicity against A549, HCT116, K562, H1975 cells with GI50 from 0.2 to 3.6 μM.

Fourth, although many compounds with excellent activity have been found in sulphur-containing alkaloids, only a few components have been fully and deeply studied, and a large number of active components have only been tested for simple biological activity. This may be related to active compounds being too few to support a more in-depth study of the mechanism. Such problems usually need to be solved by chemical synthesis, but it is not realistic to synthesize each compound without purpose. At present, it is proposed to simulate the combination of active components and target receptors by molecular docking technology to achieve preliminary screening of active compounds, which may be a method to reduce the workload (Chen et al., 2020). All in all, it is still necessary to further study the mechanism of active sulphur-containing alkaloids to provide a scientific basis for the development of new drugs.

Fifth, the remarkable chemical diversity and biological activities of marine-derived sulphur-containing alkaloids make them attractive candidates for drug discovery and development. With the continued development of advanced techniques for marine natural product isolation, structure elucidation, and biosynthesis studies, we can expect to discover even more diverse and potent sulphur-containing alkaloids.The future impact of marine-derived sulphur-containing alkaloids in the drug discovery avenue will be more significant too.

Finally, the ocean is a huge treasure house of medicine awaiting human exploration. Among the natural marine products, sulphur-containing alkaloids are important potential drugs that deserve further research and development. This review could be a useful tool in assisting researchers in the selection of interesting species or isolated compounds for further studies, as well as expand the research of marine-derived sulphur-containing alkaloids.

Author contributions

Z.L. Zhang, Y.Z. Li, W. Wang and Y. Sun searched and collected literature; Z.L. Zhang and Y.Z. Li carried out the writing work; X.M. Song and D.D. Zhang designed this review. All authors have read and agreed to the published version of the manuscript.

Acknowledgements

We thank the foundations of the National Natural Science Foundation of China (82104368) and Shaanxi Provincial Science and Technology Department Project (2021JQ-744) for financial support of this study.

References

  1. , , , , , , , . Alkaloids from the Tunicate Polycarpa aurata from Chuuk Atoll. J. Org. Chem.. 1996;61:2709-2712.
    [CrossRef] [Google Scholar]
  2. , , . Nordehydrocyclodercitin, a hexacyclic pyridoacridine alkaloid from the marine ascidian, Aplidium sp. Natural Product Res.. 2007;21:782-786.
    [CrossRef] [Google Scholar]
  3. , , , , , , , , , . Latrunculin with a highly oxidized thiazolidinone ring: structure assignment and actin docking. Org. Lett.. 2007;9:4773-4776.
    [CrossRef] [Google Scholar]
  4. , , , , , , , . Conicaquinones A and B, two novel cytotoxic terpene quinones from the mediterranean ascidian Aplidium conicum. Eur. J. Org. Chem.. 2003;2003:898-900.
    [CrossRef] [Google Scholar]
  5. , , , , , , , . Novel bioactive bromopyrrole alkaloids from the Mediterranean sponge Axinella verrucosa. Bioorg. Med. Chem.. 2006;14:17-24.
    [CrossRef] [Google Scholar]
  6. , , , , , , , , . Palyosulfonoceramides A and B: Unique Sulfonylated Ceramides from the Brazilian Zoanthids Palythoa caribaeorum and Protopalyhtoa variabilis. Mar. Drugs 2012:2846-2860.
    [CrossRef] [Google Scholar]
  7. , , , , , , . Evaluation of new sesquiterpene quinones from two Dysidea sponge species as inhibitors of protein tyrosine kinase. J. Org. Chem.. 1992;57:6604-6607.
    [CrossRef] [Google Scholar]
  8. , , , , , , , , , . Interrogating the bioactive pharmacophore of the Latrunculin Chemotype by investigating the metabolites of two taxonomically unrelated sponges. J. Med. Chem.. 2008;51:7234-7242.
    [CrossRef] [Google Scholar]
  9. , , , , , , , , . Cytotoxic Pyrroloiminoquinones from Four New Species of South African Latrunculid Sponges. J. Nat. Prod.. 2004;67:1268-1276.
    [CrossRef] [Google Scholar]
  10. , , . Kottamide E, the first example of a natural product bearing the amino acid 4-amino-1,2-dithiolane-4-carboxylic acid (Adt) Tetrahedron Lett.. 2003;44:8963-8965.
    [CrossRef] [Google Scholar]
  11. , , , , , . Isodiplamine, cystodytin K and lissoclinidine: novel bioactive alkaloids from the New Zealand ascidian Lissoclinum notti. Tetrahedron. 2002;58:9779-9783.
    [CrossRef] [Google Scholar]
  12. , , . Brominated tyrosine metabolites from an unidentified sponge. J. Org. Chem.. 1987;52:3584-3586.
    [CrossRef] [Google Scholar]
  13. , , . Thiazole and imidazole metabolites from the ascidian Aplydium pliciferum. Tetrahedron Lett.. 1988;29:1099-1102.
    [CrossRef] [Google Scholar]
  14. , , , , , , . Nagelamides K and L, Dimeric Bromopyrrole Alkaloids from Sponge Agelas species. Org. Lett.. 2008;10:2099-2102.
    [CrossRef] [Google Scholar]
  15. , , , , , , . Nagelamides Q and R, Novel Dimeric Bromopyrrole Alkaloids from Sponges Agelas sp. Org. Lett.. 2009;11:1785-1788.
    [CrossRef] [Google Scholar]
  16. , , , , , , , , . Dragonamide E, a Modified Linear Lipopeptide from Lyngbya majuscula with Antileishmanial Activity. J. Nat. Prod.. 2010;73:60-66.
    [CrossRef] [Google Scholar]
  17. , , , , , . Defensive 2-Alkylpyrrole Sulfamates from the Marine Annelid Cirriformia tentaculata. J. Nat. Prod.. 2003;66:1110-1112.
    [CrossRef] [Google Scholar]
  18. , , , . Lipid composition of the gram-negative, budding, seawater bacterium Hyphomonas jannaschiana lacking in phospholipids. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism. 1996;1303:39-46.
    [CrossRef] [Google Scholar]
  19. , , , , . Bacterial synthesis of unusual sulfonamide and sulfone antibiotics by flavoenzyme-mediated sulfur dioxide capture. Angew. Chem. Int. Ed.. 2015;54:13279-13283.
    [CrossRef] [Google Scholar]
  20. , , , , , , , , . Trichothiazole A, a dichlorinated polyketide containing an embedded thiazole isolated from Trichodesmium blooms. Tetrahedron Lett.. 2017;58:4066-4068.
    [CrossRef] [Google Scholar]
  21. , , , . Antillatoxin and kalkitoxin, ichthyotoxins from the tropical cyanobacterium Lyngbya majuscula, induce distinct temporal patterns of NMDA receptor-mediated neurotoxicity. Toxicon. 1999;37:1645-1648.
    [CrossRef] [Google Scholar]
  22. , , . Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325:669-685.
    [CrossRef] [Google Scholar]
  23. , , , , . Two sulfur-containing isoquinoline alkaloids from the bryozoan Biflustra perfragilis. J. Aust. J. Chem.. 1993;46:213-220.
    [CrossRef] [Google Scholar]
  24. , , , , , , . On the chemistry of Latrunculins A and B. Liebigs Ann. Chem.. 1989;1989:1171-1188.
    [CrossRef] [Google Scholar]
  25. , , , , . The stereochemistry of Eudistomins C, K, E, F AND L. Tetrahedron Lett.. 1987;28:1825-1826.
    [CrossRef] [Google Scholar]
  26. , , , , , . Marine natural products. Nat. Prod. Rep.. 2004;21:1-49.
    [CrossRef] [Google Scholar]
  27. , , , , , . Marine natural products. Nat. Prod. Rep.. 2006;23:26-78.
    [CrossRef] [Google Scholar]
  28. , , , , , , , . Synthesis and intracellular redox cycling of natural quinones and their analogues and identification of Indoleamine-2,3-dioxygenase (IDO) as potential target for anticancer activity. Angew. Chem. Int. Ed.. 2015;54:8740-8745.
    [CrossRef] [Google Scholar]
  29. , , , , , , . Structures and antimicrobial activities of pyridoacridine alkaloids isolated from different chromotypes of the Ascidian Cystodytes dellechiajei. J. Nat. Prod.. 2010;73:1044-1048.
    [CrossRef] [Google Scholar]
  30. , , , , , . Additional cytotoxic pyridoacridine alkaloids from the ascidian cystodytes violatinctus and biogenetic considerations. J. Nat. Prod.. 2013;76:1801-1805.
    [CrossRef] [Google Scholar]
  31. , , , , , , , , , , . Expanding the described metabolome of the marine cyanobacterium moorea producens JHB through orthogonal natural products workflows. PLoS ONE. 2015;10:e0133297.
    [CrossRef] [Google Scholar]
  32. , , , . A new β-carboline alkaloid isolated from the marine sponge Hyrtios erecta. Tetrahedron Lett.. 1996;37:3457-3460.
    [CrossRef] [Google Scholar]
  33. , , , , , , , , . Lamellarin Sulfates from the Pacific Tunicate Didemnum ternerratum. J. Nat. Prod.. 2019;82:2000-2008.
    [CrossRef] [Google Scholar]
  34. , , , , . New pyridoacridine alkaloids from the purple morph of the ascidian Cystodytes dellechiajei. Tetrahedron Lett.. 2011;52:3041-3044.
    [CrossRef] [Google Scholar]
  35. , , , , . Anti-Mycobacterial Nucleoside Antibiotics from a Marine-Derived Streptomyces sp. TPU1236A. Marine Drugs 2014:6102-6112.
    [Google Scholar]
  36. , , , , . Antitumor activity and nucleic acid binding properties of dercitin, a new acridine alkaloid isolated from a marine Dercitus species sponge. Cancer Res. 1989;49:5267-5274.
    [Google Scholar]
  37. , , , , , , , , . Nebulosins: Trisubstituted Thiolane Natural Products from the Northeastern Atlantic Annelid Eupolymnia nebulosa. J. Org. Chem.. 2020;85:14026-14041.
    [CrossRef] [Google Scholar]
  38. , , , , , , . Agrochelin, a new cytotoxic alkaloid from the marine bacteria Agrobacterium sp. Tetrahedron Lett.. 1999;40:6841-6844.
    [CrossRef] [Google Scholar]
  39. , , , , , . Halenaquinone and xestoquinone derivatives, inhibitors of Cdc25B phosphatase from a Xestospongia sp. Bioorg. Med. Chem.. 2005;13:999-1003.
    [CrossRef] [Google Scholar]
  40. , , , , , , , . Isolation and characterization of three pairs of indolediketopiperazine enantiomers containing infrequent N-methoxy substitution from the marine algal-derived endophytic fungus Acrostalagmus luteoalbus TK-43. Bioorg. Chem.. 2019;90:103030
    [CrossRef] [Google Scholar]
  41. , , , , , , . Uncommon N-Methoxyindolediketopiperazines from Acrostalagmus luteoalbus, a Marine Algal Isolate of Endophytic Fungus. Chin. J. Chem .. 2021;39:2808-2814.
    [CrossRef] [Google Scholar]
  42. , , , , , , , , , . Antimicrobial metabolites from a marine-derived Actinomycete Streptomyces sp. G278. Nat. Prod. Res.. 2019;33:3223-3230.
    [CrossRef] [Google Scholar]
  43. , , , , , . Citromycetins and Bilains A-C: new Aromatic Polyketides and Diketopiperazines from Australian Marine-Derived and Terrestrial Penicillium spp. J. Nat. Prod.. 2007;70:1746-1752.
    [CrossRef] [Google Scholar]
  44. , , , , , , . Occurrence of a taurine derivative in an antarctic glass sponge. Nat. Product Commun.. 2014;9 1934578X1400900408
    [CrossRef] [Google Scholar]
  45. , , , , , , . Plectosphaeroic Acids A, B, and C, Indoleamine 2,3-Dioxygenase Inhibitors Produced in Culture by a Marine Isolate of the Fungus Plectosphaerella cucumerina. Org. Lett.. 2009;11:2996-2999.
    [CrossRef] [Google Scholar]
  46. , , . Leptoclinidamines A−C, Indole Alkaloids from the Australian Ascidian Leptoclinides durus. J. Nat. Prod.. 2009;72:696-699.
    [CrossRef] [Google Scholar]
  47. , , , , , , , , , , , . Dysinosin A: a novel inhibitor of Factor VIIa and thrombin from a new genus and species of australian sponge of the family Dysideidae. J. Am. Chem. Soc.. 2002;124:13340-13341.
    [CrossRef] [Google Scholar]
  48. , , . Kuanoniamines A, B, C, and D: pentacyclic alkaloids from a tunicate and its prosobranch mollusk predator Chelynotus semperi. J. Org. Chem.. 1990;55:4426-4431.
    [CrossRef] [Google Scholar]
  49. , , , , . A second shermilamine alkaloid from a tunicate Trididemnum sp. J. Org. Chem.. 1989;54:4231-4232.
    [CrossRef] [Google Scholar]
  50. , , , . The unique 6-(p-hydroxyphenyl)-2H-3,4-dihydro-1,1-dioxo-1,4-thiazine and the new tripeptide l-glu-gly-4-hydroxystirylamine from the marine sponge anchinoe tenacior. Tetrahedron Lett.. 1994;35:2421-2422.
    [CrossRef] [Google Scholar]
  51. , , , , , , , , . Chemical investigation of the Indonesian Tunicate Polycarpa aurata and evaluation of the effects against schistosoma mansoni of the novel alkaloids Polyaurines A and B. Mar. Drugs 2019
    [CrossRef] [Google Scholar]
  52. , , , , , , , . Indoleamine 2,3-Dioxygenase inhibitors isolated from the sponge xestospongia vansoesti: structure elucidation, analogue synthesis, and biological activity. Org. Lett.. 2014;16:6480-6483.
    [CrossRef] [Google Scholar]
  53. , , , , , , , , , , . Antibacterial p-Terphenyl with a Rare 2,2′-Bithiazole Substructure and Related Compounds Isolated from the Marine-Derived Actinomycete Nocardiopsis sp. HDN154086. J. Nat. Prod.. 2021;84:1226-1231.
    [CrossRef] [Google Scholar]
  54. , , , , , , , . Dihydroxystyrene Metabolites from an Association of the Sponges Poecillastra wondoensis and Jaspis sp. J. Nat. Prod.. 2008;71:779-783.
    [CrossRef] [Google Scholar]
  55. , , , . Diplamine, a cytotoxic polyaromatic alkaloid from the tunicate diplosoma sp. Tetrahedron Lett.. 1989;30:4201-4202.
    [CrossRef] [Google Scholar]
  56. , , , , , , . Cytotoxic Bagremycins from Mangrove-Derived Streptomyces sp. Q22. J. Nat. Prod.. 2017;80:1450-1456.
    [CrossRef] [Google Scholar]
  57. , , , . Recent advances in molecular docking for the research and discovery of potential marine drugs. Mar. Drugs 2020
    [CrossRef] [Google Scholar]
  58. , , , , , , , , , . Diverse secondary metabolites from the marine-derived fungus Dichotomomyces cejpii F31–1. Mar. Drugs 2017
    [CrossRef] [Google Scholar]
  59. , , , , , , , . Prianosins B, C, and D, novel sulfur-containing alkaloids with potent antineoplastic activity from the Okinawan marine sponge Prianos melanos. J. Org. Chem.. 1988;53:4621-4624.
    [CrossRef] [Google Scholar]
  60. , , , , , . Cytotoxic thiodiketopiperazine derivatives from the deep sea-derived fungus Epicoccum nigrum SD-388. Mar. Drugs 2020
    [CrossRef] [Google Scholar]
  61. , , , , . New antibacterial thiodiketopiperazines from the deep sea sediment-derived fungus Epicoccum nigrum SD-388. Chem. Biodivers.. 2020;17:e2000320.
    [Google Scholar]
  62. , , , , . Violatinctamine, a new heterocyclic compound from the marine tunicate Cystodytes cf. violatinctus. Tetrahedron Lett.. 2004;45:7925-7928.
    [CrossRef] [Google Scholar]
  63. , , , , , . Lyngbyabellins K-N from two palmyra atoll collections of the marine cyanobacterium Moorea bouillonii. Eur. J. Org. Chem.. 2012;2012:5141-5150.
    [CrossRef] [Google Scholar]
  64. , , , , . Perfragilins A and B, Cytotoxic Isoquinolinequinones from the Bryozoan Membranipora perfragilis. J. Nat. Prod.. 1993;56:1431-1433.
    [CrossRef] [Google Scholar]
  65. , , , , , , , . Apoptosis-inducing effect of diketopiperazine disulfides produced by Aspergillus sp. KMD 901 isolated from marine sediment on HCT116 colon cancer cell lines. J. Appl. Microbiol.. 2011;110:304-313.
    [CrossRef] [Google Scholar]
  66. , , , , , , , , . Two novel diketopiperazines isolated from the fungus Tolypocladium sp. Tetrahedron Lett.. 1993;34:7537-7540.
    [CrossRef] [Google Scholar]
  67. , , . A novel chlorinated ketide amino acid, herbamide A, from the marine sponge Dysidea herbacea. Tetrahedron Lett.. 1995;36:1185-1188.
    [CrossRef] [Google Scholar]
  68. , , , , , , , , . Discovery of new pyridoacridine alkaloids from Lissoclinum cf. badium that inhibit the ubiquitin ligase activity of Hdm2 and stabilize p53. Bioorganic Medicinal Chem.. 2008;16:10022-10028.
    [CrossRef] [Google Scholar]
  69. , , , , . Cervical cancer. Lancet. 2019;393:169-182.
    [CrossRef] [Google Scholar]
  70. , , , , . Shermilamine A: A pentacyclic alkaloid from a tunicate. J. Org. Chem.. 1988;53:4619-4620.
    [CrossRef] [Google Scholar]
  71. , , , , . A biologically active 1,2,3-trithiane derivative from the New Zealand ascidain Aplidium sp D. Tetrahedron Lett.. 1989;30:3703-3706.
    [CrossRef] [Google Scholar]
  72. , , , . Mycothiazole, a polyketide heterocycle from a marine sponge. J. Am. Chem. Soc.. 1988;110:4365-4368.
    [CrossRef] [Google Scholar]
  73. , , , . The marine sponge Agelas citrina as a source of the new pyrrole–imidazole alkaloids citrinamines A-D and N-methylagelongine. Beilstein J. Org. Chem.. 2015;11:2029-2037.
    [CrossRef] [Google Scholar]
  74. , , , , , , , , , . Cytotoxic and Protein Kinase Inhibiting Nakijiquinones and Nakijiquinols from the Sponge Dactylospongia metachromia. J. Nat. Prod.. 2014;77:218-226.
    [CrossRef] [Google Scholar]
  75. , , , , . New Lamellarin Alkaloids from the Australian Ascidian, Didemnum chartaceum. J. Nat. Prod.. 1999;62:419-424.
    [CrossRef] [Google Scholar]
  76. , , , , , . Thiaplakortones A-D: antimalarial thiazine alkaloids from the australian marine sponge Plakortis lita. J. Org. Chem.. 2013;78:9608-9613.
    [CrossRef] [Google Scholar]
  77. , , , , , , . Aulosirazoles B and C from the Cyanobacterium Nostoc sp. UIC 10771: analogues of an Isothiazolonaphthoquinone Scaffold that Activate Nuclear Transcription Factor FOXO3a in Ovarian Cancer Cells. J. Nat. Prod.. 2022;85:540-546.
    [CrossRef] [Google Scholar]
  78. , , , , , , , , , . Exiguaquinol: a novel pentacyclic hydroquinone from Neopetrosia exigua that inhibits helicobacter pylori MurI. Org. Lett.. 2008;10:2585-2588.
    [CrossRef] [Google Scholar]
  79. , , , , , , , , , , . Coscinolactams A and B: new nitrogen-containing sesterterpenoids from the marine sponge Coscinoderma mathewsi exerting anti-inflammatory properties. Tetrahedron. 2009;65:2905-2909.
    [CrossRef] [Google Scholar]
  80. , , , , , , . Neamphine, a sulfur containing aromatic heterocycle isolated from the marine sponge neamphius huxleyi. Tetrahedron Lett.. 1991;32:2707-2710.
    [CrossRef] [Google Scholar]
  81. , , , , , . Corallistine, a new polynitrogen compound from the sponge Corallistes fulvodesmus L. & L. Tetrahedron Lett.. 1989;30:1534-1538.
    [CrossRef] [Google Scholar]
  82. , , , , , , . Isolation and Structure Elucidation of New and Unusual Saxitoxin Analogues from Mussels. J. Natural Products. 2008;71:1518-1523.
    [CrossRef] [Google Scholar]
  83. , , , , , , , , . p-Terphenyl O-β-glucuronides, DNA topoisomerase inhibitors from Streptomyces sp. LZ35ΔgdmAI. Bioorg. Med. Chem. Lett.. 2014;24:1362-1365.
    [CrossRef] [Google Scholar]
  84. , , , , , , , , , . Alisiaquinones and Alisiaquinol, dual inhibitors of plasmodium falciparum enzyme targets from a new caledonian deep water sponge. J. Nat. Prod.. 2008;71:1189-1192.
    [CrossRef] [Google Scholar]
  85. , , , , , , , , , , . Bromotryptamine and imidazole alkaloids with anti-inflammatory activity from the bryozoan Flustra foliacea. J. Nat. Prod.. 2020;83:2854-2866.
    [CrossRef] [Google Scholar]
  86. , , , , . Novel Pyrazines from the Myxobacterium Chondromyces crocatus and Marine Bacteria. Eur. J. Org. Chem.. 2005;2005:4141-4153.
    [CrossRef] [Google Scholar]
  87. , , , , , , . A new discorhabdin from two sponge genera. J. Nat. Prod.. 1999;62:636-637.
    [CrossRef] [Google Scholar]
  88. , , , , . Derivatives of holomycin and cyclopropaneacetic acid from streptomyces sp. DT-A37. Chem. Biodivers.. 2017;14:e1700140.
    [Google Scholar]
  89. , , , , , , . Structures and mechanisms of antitumor agents: Xestoquinones uncouple cellular respiration and disrupt HIF signaling in human breast tumor cells. J. Nat. Prod.. 2012;75:1553-1559.
    [CrossRef] [Google Scholar]
  90. , , , , , . New chlorinated metabolites from the tropical marine sponge Dysidea herbacea. J. Aust. J. Chem.. 1997;50:139-144.
    [CrossRef] [Google Scholar]
  91. , , , , , . Enzymatic Basis of “Hybridity” in Thiomarinol Biosynthesis. Angew. Chem. Int. Ed.. 2015;54:5137-5141.
    [CrossRef] [Google Scholar]
  92. , , , , , , , , , . Bioactive Pyridoacridine Alkaloids from the Micronesian Sponge Oceanapia sp. J. Nat. Prod.. 1998;61:301-305.
    [CrossRef] [Google Scholar]
  93. , , , . Bioactive Natural and Semisynthetic Latrunculins. J. Nat. Prod.. 2006;69:219-223.
    [CrossRef] [Google Scholar]
  94. , , , . Sulfur-Containing Polybromoindoles from the Formosan Red Alga Laurencia brongniartii. J. Nat. Prod.. 2005;68:815-817.
    [CrossRef] [Google Scholar]
  95. , , . Discorhabdins revisited: cytotoxic alkaloids from southern australian marine sponges of the genera higginsia and spongosorites. J. Nat. Prod.. 2009;72:460-464.
    [CrossRef] [Google Scholar]
  96. , , , , , , , , , , . Hydroquinone derivatives from the marine-derived fungus Gliomastix sp. RSC Adv.. 2017;7:30640-30649.
    [CrossRef] [Google Scholar]
  97. , , , , , , , , , . Nagelamides A−H, New Dimeric Bromopyrrole Alkaloids from Marine Sponge Agelas Species. J. Nat. Prod.. 2004;67:1262-1267.
    [CrossRef] [Google Scholar]
  98. , , , , , , , , . Chlorinated Thiazole-Containing Polyketide-Peptides from the Caribbean Sponge Smenospongia conulosa: Structure Elucidation on Microgram Scale. Eur. J. Org. Chem.. 2016;2016:2871-2875.
    [CrossRef] [Google Scholar]
  99. , , , , , , , , , , , . Baculiferins A-O, O-sulfated pyrrole alkaloids with anti-HIV-1 activity, from the Chinese marine sponge Iotrochota baculifera. Bioorg. Med. Chem.. 2010;18:5466-5474.
    [CrossRef] [Google Scholar]
  100. , , , , , , , . Dichotocejpins A-C: New Diketopiperazines from a Deep-Sea-Derived Fungus Dichotomomyces cejpii FS110. Mar. Drugs 2016
    [CrossRef] [Google Scholar]
  101. , , , , , , , , , , . Bioactivities of Lyngbyabellins from Cyanobacteria of Moorea and Okeania Genera. Molecules 2020
    [CrossRef] [Google Scholar]
  102. , , . Two novel pyrrole-imidazole alkaloids from the Mediterranean sponge Agelas oroides. Tetrahedron Lett.. 2000;41:9917-9922.
    [CrossRef] [Google Scholar]
  103. , . Marine natural products. Nat. Prod. Rep.. 1986;3:1-33.
    [CrossRef] [Google Scholar]
  104. , . Marine natural products. Nat. Prod. Rep.. 1988;5:613-663.
    [CrossRef] [Google Scholar]
  105. , . Marine natural products. Nat. Prod. Rep.. 1995;12:223-269.
    [CrossRef] [Google Scholar]
  106. , , . Discorhabdin R: A New Antibacterial Pyrroloiminoquinone from Two Latrunculiid Marine Sponges, Latrunculia sp. and Negombata sp. J. Nat. Prod.. 2000;63:1527-1528.
    [CrossRef] [Google Scholar]
  107. , , , , , , , , , , , . 2-Guanidinoethanesulfonyl sesquiterpenes from the marine sponge Agelas nakamurai. Tetrahedron Lett.. 2022;103:153964
    [CrossRef] [Google Scholar]
  108. , , . Spithioneines A and B, Two New Bohemamine Derivatives Possessing Ergothioneine Moiety from a Marine-Derived Streptomyces spinoverrucosus. Org. Lett.. 2015;17:3046-3049.
    [CrossRef] [Google Scholar]
  109. , , . Thiasporines A-C, Thiazine and Thiazole Derivatives from a Marine-Derived Actinomycetospora chlora. J. Nat. Prod.. 2015;78:548-551.
    [CrossRef] [Google Scholar]
  110. , , , , , , , . Graphiumins, new thiodiketopiperazines from the marine-derived fungus Graphium sp. OPMF00224. J. Antibiot.. 2015;68:620-627.
    [CrossRef] [Google Scholar]
  111. , , , , , , . Secondary Metabolites from the Deep-Sea Derived Fungus Acaromyces ingoldii FS121. Molecules 2016
    [CrossRef] [Google Scholar]
  112. , , , , , , , , , , , , , . Selected Mutations Reveal New Intermediates in the Biosynthesis of Mupirocin and the Thiomarinol Antibiotics. Angew. Chem. Int. Ed.. 2017;56:3930-3934.
    [CrossRef] [Google Scholar]
  113. , , , . The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action. functions and biosynthesis.. 2005;151(1021–1032)
    [CrossRef] [Google Scholar]
  114. , , , , , , , , , , , , , , , . Screening and Biological Effects of Marine Pyrroloiminoquinone Alkaloids: Potential Inhibitors of the HIF-1α/p300 Interaction. J. Nat. Prod.. 2016;79:1267-1275.
    [CrossRef] [Google Scholar]
  115. , , , , , . Orbicularisine: A Spiro-Indolothiazine Isolated from Gills of the Tropical Bivalve Codakia orbicularis. J. Nat. Prod.. 2017;80:1693-1696.
    [CrossRef] [Google Scholar]
  116. , , , , , . Psammaplin Metabolites New and Old: An NMR Study Involving Chiral Sulfur Chemistry %J. Aust. J. Chem.. 2010;63(867–872)
    [CrossRef] [Google Scholar]
  117. , , . New natural products in the discorhabdin A- and B-series from New Zealand-sourced Latrunculia spp. sponges. Tetrahedron. 2009;65:6335-6340.
    [CrossRef] [Google Scholar]
  118. , , , , , , . Isolation and Characterization of Diastereomers of Discorhabdins H and K and Assignment of Absolute Configuration to Discorhabdins D, N, Q, S, T, and U. J. Nat. Prod.. 2010;73:1686-1693.
    [CrossRef] [Google Scholar]
  119. , , , , , , . Bioactive Metabolites from the Caribbean Sponge Aka coralliphagum. J. Nat. Prod.. 2007;70:504-509.
    [CrossRef] [Google Scholar]
  120. , , , , , , , , , , . Preparative Separation of Sulfur-Containing Diketopiperazines from Marine Fungus Cladosporium sp. Using High-Speed Counter-Current Chromatography in Stepwise Elution Mode. Mar. Drugs 2015:354-365.
    [CrossRef] [Google Scholar]
  121. , , , , , , , , . Keronopsamides, a New Class of Pigments from Marine Ciliates. Eur. J. Org. Chem.. 2010;2010:427-434.
    [CrossRef] [Google Scholar]
  122. , , , , , , , . Isolation and Structure Elucidation of 34-Sulfatobastadin 13, an Inhibitor of the Endothelin A Receptor, from a Marine Sponge of the Genus Ianthella. J. Nat. Prod.. 1993;56:1613-1617.
    [CrossRef] [Google Scholar]
  123. , , , , , . Discorhabdins S, T, and U, New Cytotoxic Pyrroloiminoquinones from a Deep-Water Caribbean Sponge of the Genus Batzella. J. Nat. Prod.. 2003;66:1615-1617.
    [CrossRef] [Google Scholar]
  124. , , , . New cytotoxic acridine alkaloids from two deep water marine sponges of the family Pachastrellidae. Tetrahedron Lett.. 1989;30:4359-4362.
    [CrossRef] [Google Scholar]
  125. , , , , , , . Pyridoacridine alkaloids from deep-water marine sponges of the family Pachastrellidae: structure revision of dercitin and related compounds and correlation with the kuanoniamines. J. Org. Chem.. 1992;57:1523-1526.
    [CrossRef] [Google Scholar]
  126. , , , , , , , . Selective cytotoxic activity of the marine-derived batzelline compounds against pancreatic cancer cell lines. Anticancer Drugs. 2009;20
    [CrossRef] [Google Scholar]
  127. , , , , , . Dinoflagellate neurotoxins related to saxitoxin: Structures of toxins C3 and C4, and confirmation of the structure of neosaxitoxin. Tetrahedron Lett.. 1984;25:3537-3538.
    [CrossRef] [Google Scholar]
  128. , , , , , , , , . A new bioactive sesquiterpenoid quinone from the mediterranean sea marine sponge Dysidea avara. Nat. Prod. Commun.. 2013;8
    [CrossRef] [Google Scholar]
  129. , , , , , , . Isolation and structure of five lyngbyabellin derivatives from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. Tetrahedron. 2005;61:11723-11729.
    [CrossRef] [Google Scholar]
  130. , , , , , , , , , . Breast cancer. Nature Reviews Disease primers. 2019;5:66.
    [CrossRef] [Google Scholar]
  131. , , , , , , . Nitrogen-Containing Volatiles from Marine Salinispora pacifica and Roseobacter-Group Bacteria. J. Nat. Prod.. 2017;80:3289-3295.
    [CrossRef] [Google Scholar]
  132. , , , , , , . Epipolythiodiketopiperazines from the Marine Derived Fungus Dichotomomyces cejpii with NF-κB Inhibitory Potential. Mar. Drugs 2015:4949-4966.
    [CrossRef] [Google Scholar]
  133. , , , , , , , , , , , , . Preclinical Evaluation of Discorhabdins in Antiangiogenic and Antitumor Models. Mar. Drugs 2018
    [CrossRef] [Google Scholar]
  134. , , , , , . New Alkaloids from the Mediterranean Sponge Hamigera hamigera. J. Organic Chem.. 2004;2:88-100.
    [CrossRef] [Google Scholar]
  135. , , , , . Bioactive sulfonyl metabolites from the Red Sea endophytic fungus Penicillium aculeatum. Nat. Product Res.. 2022;36:2713-2721.
    [CrossRef] [Google Scholar]
  136. , , , , . A new imidazole alkaloid from the marine sponge Leucetta microrhaphis. J. Org. Chem.. 1992;57:2176-2178.
    [CrossRef] [Google Scholar]
  137. , , , , , , , , . Novel Adociaquinone Derivatives from the Indonesian Sponge Xestospongia sp. Mar. Drugs 2015:2617-2628.
    [CrossRef] [Google Scholar]
  138. , , , , , , . Hainanerectamines A-C. Alkaloids from the Hainan Sponge Hyrtios erecta.. 2014;12:3982-3993.
    [Google Scholar]
  139. , , , , , . Nouveau derive indolique du thiadiazole-1,2,4, isole d'un tunicier (Dendrodoa grossularia) Tetrahedron Lett.. 1980;21:1457-1458.
    [CrossRef] [Google Scholar]
  140. , , , , , , , , . Alkaloids from marine organisms. Part 8: Isolation of bisdemethylaaptamine and bisdemethylaaptamine-9-O-sulfate from an Indonesian Aaptos sp. marine sponge. Tetrahedron. 2004;60:6101-6104.
    [CrossRef] [Google Scholar]
  141. , , , , , , , , , , . From anti-fouling to biofilm inhibition: New cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorg. Med. Chem.. 2010;18:1297-1311.
    [CrossRef] [Google Scholar]
  142. , , , , , , . Petrobactin Sulfonate, a New Siderophore Produced by the Marine Bacterium Marinobacter hydrocarbonoclasticus. J. Nat. Prod.. 2004;67:1897-1899.
    [CrossRef] [Google Scholar]
  143. , , , , , , , . Thiomarinol, a new hybrid antimicrobial antibiotic produced by a marine bacterium. J. Antibiot.. 1993;46:1834-1842.
    [CrossRef] [Google Scholar]
  144. , , . Thiomarinols D, E, F and G, New Hybrid Antimicrobial Antibiotics Produced by a Marine Bacterium; Isolation, Structure, and Antimicrobial Activity. J. Antibiot.. 1997;50:449-452.
    [CrossRef] [Google Scholar]
  145. , , , , , , , . Thiomarinols B and C, New Antimicrobial Antibiotics Produced by a Marine Bacterium. J. Antibiot.. 1995;48:907-909.
    [CrossRef] [Google Scholar]
  146. , , , , , , . Tedaniophorbasins A and B—Novel Fluorescent Pteridine Alkaloids Incorporating a Thiomorpholine from the Sponge Tedaniophorbas ceratosis. Mar. Drugs 2021
    [CrossRef] [Google Scholar]
  147. , , , , , , , . Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389:299-311.
    [CrossRef] [Google Scholar]
  148. , , . Erythrazoles A-B, Cytotoxic Benzothiazoles from a Marine-Derived Erythrobacter sp. Org. Lett.. 2011;13:6580-6583.
    [CrossRef] [Google Scholar]
  149. , , , , , . A New N-Acyl Taurine from the South China Sea Marine Sponge Callyspongia sp. Chem. Nat. Compd.. 2015;51:540-541.
    [CrossRef] [Google Scholar]
  150. , , , , , . Carbamate derivatives and sesquiterpenoids from the South China Sea gorgonian Melitodes squamata. Beilstein J. Org. Chem.. 2012;8:170-176.
    [CrossRef] [Google Scholar]
  151. , , , , , , , , , . A New 1,4-Diazepine from. South China Sea Marine Sponge Callyspongia Species.. 2010;15(871–877)
    [Google Scholar]
  152. , , , , , . A new taurine derivative from South China Sea marine sponge Axinella sp. Nat. Prod. Res.. 2013;27:1537-1541.
    [CrossRef] [Google Scholar]
  153. , , , , , , , , , , . Amino Acid-Directed Strategy for Inducing the Marine-Derived Fungus Scedosporium apiospermum F41–1 to Maximize Alkaloid Diversity. Org. Lett.. 2017;19:4888-4891.
    [CrossRef] [Google Scholar]
  154. , , , , , . The Ammosamides: Structures of Cell Cycle Modulators from a Marine-Derived Streptomyces Species. Angew. Chem. Int. Ed.. 2009;48:725-727.
    [CrossRef] [Google Scholar]
  155. , , , , , , , , . Inhibitory Effects of Epipolythiodioxopiperazine Fungal Metabolites on Isocitrate Lyase in the Glyoxylate Cycle of Candida albicans. Mar. Drugs 2021
    [CrossRef] [Google Scholar]
  156. , , , , , , . Ulbactins F and G, Polycyclic Thiazoline Derivatives with Tumor Cell Migration Inhibitory Activity from Brevibacillus sp. Org. Lett.. 2016;18:1658-1661.
    [CrossRef] [Google Scholar]
  157. , , , , , , , , . Gesashidine A, a β-Carboline Alkaloid with an Imidazole Ring from a Thorectidae Sponge. J. Nat. Prod.. 2005;68:1109-1110.
    [CrossRef] [Google Scholar]
  158. , , , , , , , , . Reticulatins A and B and hyrtioreticulin F from the marine sponge Hyrtios reticulatus. Tetrahedron. 2013;69:7051-7055.
    [CrossRef] [Google Scholar]
  159. , , , , , , , . Isolation of Ciliatamide D from a Marine Sponge Stelletta sp. and a Reinvestigation of the Configuration of Ciliatamide A. J. Nat. Prod.. 2013;76:755-758.
    [CrossRef] [Google Scholar]
  160. , , , , , , . Three new sesquiterpene aminoquinones from a Vietnamese Spongia sp. and their biological activities. J. Nat. Med.. 2018;72:298-303.
    [CrossRef] [Google Scholar]
  161. , , , . Salvadenosine, a 5′-Deoxy-5′-(methylthio) Nucleoside from the Bahamian Tunicate Didemnum sp. J. Org. Chem.. 2014;79:9992-9997.
    [CrossRef] [Google Scholar]
  162. , , , , , . Metabolites from an Antarctic Sponge-Associated Bacterium, Pseudomonas aeruginosa. J. Nat. Prod.. 1996;59:293-296.
    [CrossRef] [Google Scholar]
  163. , , , , , , , , . Discorhabdins from the Korean Marine Sponge Sceptrella sp. J. Nat. Prod.. 2010;73:258-262.
    [CrossRef] [Google Scholar]
  164. , , , , , . Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate. Cochlodinium polykrikoides. Tetrahedron Letters. 2003;44:8005-8007.
    [CrossRef] [Google Scholar]
  165. , , , . Lymphoma classification update: T-cell lymphomas, Hodgkin lymphomas, and histiocytic/dendritic cell neoplasms. Expert Rev. Hematol.. 2017;10:239-249.
    [CrossRef] [Google Scholar]
  166. , , . Epipolythiodioxopiperazines from Fungi: Chemistry and Bioactivities. Mini-Rev. Med. Chem.. 2011;11:728-745.
    [CrossRef] [Google Scholar]
  167. , . Marine Natural Products in Medicinal Chemistry. ACS Med. Chem. Lett.. 2018;9:959-961.
    [CrossRef] [Google Scholar]
  168. , , . Novel marine sponge derived amino acids 13. Additional psammaplin derivatives from Psammaplysilla purpurea. Tetrahedron. 1991;47:2097-2102.
    [CrossRef] [Google Scholar]
  169. , , . Mauritamide A and accompanying oroidin alkaloids from the sponge agelas mauritiana. Tetrahedron Lett.. 1994;35:1375-1378.
    [CrossRef] [Google Scholar]
  170. , , . New Lipopeptides from the Caribbean Cyanobacterium Lyngbya majuscula. J. Nat. Prod.. 2001;64:200-203.
    [CrossRef] [Google Scholar]
  171. , , , , , , . Halichondria sulfonic acid, a new HIV-1 inhibitory guanidino-sulfonic acid, and halistanol sulfate isolated from the marine sponge Halichondria rugosa Ridley & Dendy. Nat. Prod. Res.. 2006;20:1129-1135.
    [CrossRef] [Google Scholar]
  172. , . Marine natural products. Nat. Prod. Rep.. 1999;16:155-198.
    [CrossRef] [Google Scholar]
  173. , , , , . Potent antioxidant activity of a dithiocarbamate-related compound from a marine hydroid. Biochem. Pharmacol.. 1999;58:1313-1319.
    [CrossRef] [Google Scholar]
  174. , , , , , , . The Unexpected Isolation of CTP-431, a Novel Thiopyrone from the Sponge Cacospongia mycofijiensis. J. Org. Chem.. 2008;73:7255-7259.
    [CrossRef] [Google Scholar]
  175. , , , , , , , . Wondonin, a novel compound, inhibits hypoxia-induced angiogenesis through hypoxia-inducible factor 1 alpha. FEBS Lett.. 2007;581:4977-4982.
    [CrossRef] [Google Scholar]
  176. , , , , . Ianthesine E, a new bromotyrosine-derived metabolite from the Great Barrier Reef sponge Pseudoceratina sp. Nat. Prod. Res.. 2008;22:1257-1263.
    [CrossRef] [Google Scholar]
  177. , , . Polycarpine dihydrochloride: A cytotoxic dimeric disulfide alkaloid from the indian ocean ascidian Polycarpa clavata. Tetrahedron Lett.. 1996;37:2369-2372.
    [CrossRef] [Google Scholar]
  178. , , , , , . Latrunculins: NMR study, two new toxins and a synthetic approach. Tetrahedron. 1985;41:1905-1914.
    [CrossRef] [Google Scholar]
  179. , , , , , , . Iejimalide C Is a Potent V-ATPase Inhibitor, and Induces Actin Disorganization. Biol. Pharm. Bull.. 2014;37:1944-1947.
    [CrossRef] [Google Scholar]
  180. , , , , , , , , . Novel Amino Acid Derived Natural Products from the Ascidian Atriolum robustum: Identification and Pharmacological Characterization of a Unique Adenosine Derivative. J. Med. Chem.. 2004;47:2243-2255.
    [CrossRef] [Google Scholar]
  181. , , , , , , , , . Characterization of a Novel Gastropod Toxin (6-Bromo-2-mercaptotryptamine) That Inhibits Shaker K Channel Activity. J. Biol. Chem.. 2003;278:34934-34942.
    [CrossRef] [Google Scholar]
  182. , , , , , , . 2-Debromonagelamide U, 2-Debromomukanadin G, and 2-Debromonagelamide P from Marine Sponge Agelas sp. Heterocycles. 2015;90:425-431.
    [CrossRef] [Google Scholar]
  183. , , , , , . Fisherioside a, a new steroidal glycoside from the starfish Leptasterias fisheri. Chem. Nat. Compd.. 2012;48:806-809.
    [CrossRef] [Google Scholar]
  184. , , , , , , . Six new polyhydroxylated steroids conjugated with taurine, microdiscusols A-F, from the Arctic starfish Asterias microdiscus. Steroids. 2019;150:108458
    [CrossRef] [Google Scholar]
  185. , , , , , , . Anticancer Activity Evaluation of Kuanoniamines A and C Isolated from the Marine Sponge Oceanapia sagittaria, Collected from the Gulf of Thailand. Mar. Drugs 2007:6-22.
    [CrossRef] [Google Scholar]
  186. , , , , . Iejimalides C and D, new antineoplastic 24-membered macrolide sulfates from the okinawan marine tunicate Eudistoma cf. rigida. Tetrahedron Lett.. 1991;32:797-798.
    [CrossRef] [Google Scholar]
  187. , , , , , , . Microxine, a New cdc2 Kinase Inhibitor from the Australian Marine Sponge Microxina Species. J. Nat. Prod.. 2001;64:525-526.
    [CrossRef] [Google Scholar]
  188. , , , , , , , , , . Suvanine Sesterterpenes and Deacyl Irciniasulfonic Acids from a Tropical Coscinoderma sp. Sponge. Journal of Natural Products. 2014;77:1396-1403.
    [CrossRef] [Google Scholar]
  189. , , , , , , , , , , . Meroterpenoids from a Tropical Dysidea sp. Sponge. Journal of Natural Products. 2015;78:2814-2821.
    [CrossRef] [Google Scholar]
  190. , , , , , , , , , . Anithiactins A-C, Modified 2-Phenylthiazoles from a Mudflat-Derived Streptomyces sp. J. Nat. Prod.. 2014;77:2716-2719.
    [CrossRef] [Google Scholar]
  191. , , , , , , , , . Symbioimine Exhibiting Inhibitory Effect of Osteoclast Differentiation, from the Symbiotic Marine Dinoflagellate Symbiodinium sp. J. Am. Chem. Soc.. 2004;126:4794-4795.
    [CrossRef] [Google Scholar]
  192. , , , , , , , . Symbioimine and neosymbioimine, amphoteric iminium metabolites from the symbiotic marine dinoflagellate Symbiodinium sp. Bioorg. Med. Chem.. 2005;13:5253-5258.
    [CrossRef] [Google Scholar]
  193. , , , , , . Orthoscuticellines A-E, β-Carboline Alkaloids from the Bryozoan Orthoscuticella ventricosa Collected in Australia. J. Nat. Prod.. 2020;83:422-428.
    [CrossRef] [Google Scholar]
  194. , , , , , , , , , . Prianosin A, a novel antileukemic alkaloid from the okinawan marine sponge Prianos melanos. Tetrahedron Lett.. 1987;28:4939-4942.
    [CrossRef] [Google Scholar]
  195. , , , , , , . Eudistomidins B, C, and D: novel antileukemic alkaloids from the Okinawan marine tunicate Eudistoma glaucus. J. Org. Chem.. 1990;55:3666-3670.
    [CrossRef] [Google Scholar]
  196. , , , . Tauroacidins A and B, new bromopyrrole alkaloids possessing a taurine residue from Hymeniacidon sponge. Tetrahedron. 1997;53:16679-16682.
    [CrossRef] [Google Scholar]
  197. , , , , , , . Spongiacysteine, a Novel Cysteine Derivative from Marine Sponge Spongia sp. Chem. Lett.. 2004;33:1262-1263.
    [CrossRef] [Google Scholar]
  198. , , , , , , , . Flavocristamides A and B, new DNA polymerase α inhibitors from a marine bacterium Flavobacterium sp. Tetrahedron. 1995;51:10487-10490.
    [CrossRef] [Google Scholar]
  199. , , , , , . Thiodiketopiperazines from the Marine-Derived Fungus Phoma sp. OUCMDZ-1847. J. Nat. Prod.. 2014;77:132-137.
    [CrossRef] [Google Scholar]
  200. , , , , . Three New Alkaloids from the Marine Tunicate Cystodytes violatinctus. J. Org. Chem.. 1998;63:4601-4603.
    [CrossRef] [Google Scholar]
  201. , , , . Cycloshermilamine D, a New Pyridoacridine from the Marine Tunicate Cystodytes violatinctus. J. Nat. Prod.. 2000;63:830-831.
    [CrossRef] [Google Scholar]
  202. , , , , , , , , , . Phloeodictines A and B: new antibacterial and cytotoxic bicyclic amidinium salts from the new caledonian sponge, Phloeodictyon sp. J. Org. Chem.. 1992;57:3832-3835.
    [CrossRef] [Google Scholar]
  203. , , , , , , . Nagelamides M and N, new bromopyrrole alkaloids from sponge Agelas species. Tetrahedron. 2008;64:10810-10813.
    [CrossRef] [Google Scholar]
  204. , , , . Ircinamine, a Novel Cytotoxic Alkaloid from Ircinia sp. Chem. Lett.. 2002;31:464-465.
    [CrossRef] [Google Scholar]
  205. , , , , , , , . Structural Determination, Total Synthesis, and Biological Activity of Iezoside, a Highly Potent Ca2+-ATPase Inhibitor from the Marine Cyanobacterium Leptochromothrix valpauliae. J. Am. Chem. Soc.. 2022;144:11019-11032.
    [CrossRef] [Google Scholar]
  206. , , , , , , . Bromopyrrole Alkaloids from a Marine Sponge Agelas sp. Chem. Pharm. Bull.. 2014;62:499-503.
    [CrossRef] [Google Scholar]
  207. , , , , . Agelamadin F and tauroacidin E, bromopyrrole alkaloids from an Okinawan marine sponge Agelas sp. Tetrahedron Lett.. 2015;56:4502-4504.
    [CrossRef] [Google Scholar]
  208. , , , , , , , . Butremycin, the 3-Hydroxyl Derivative of Ikarugamycin and a Protonated Aromatic Tautomer of 5′-Methylthioinosine from a Ghanaian Micromonospora sp. K310. Mar. Drugs 2014:999-1012.
    [CrossRef] [Google Scholar]
  209. , , , , , , , , , , , . Mindapyrroles A-C, Pyoluteorin analogues from a shipworm-associated bacterium. J. Nat. Prod.. 2019;82:1024-1028.
    [CrossRef] [Google Scholar]
  210. , , , . Eudistomins from the New Zealand Ascidian Ritterella sigillinoides. J Australian Journal of Chemistry.. 1989;42:1201-1206.
    [CrossRef] [Google Scholar]
  211. , , , , , . Eudistomin K sulfoxide - an antiviral sulfoxide from the New Zealand ascidian Ritterella sigillinoides. Tetrahedron Lett.. 1988;29:2255-2256.
    [CrossRef] [Google Scholar]
  212. , , , . Exploration of the Electrophilic Reactivity of the Cytotoxic Marine Alkaloid Discorhabdin C and Subsequent Discovery of a New Dimeric C-1/N-13-Linked Discorhabdin Natural Product. Mar. Drugs 2020
    [CrossRef] [Google Scholar]
  213. , , , , , , , , , , . Secondary metabolites with chemical diversity from the marine-derived fungus Pseudallescheria boydii F19–1 and their cytotoxic activity. RSC Adv.. 2016;6:76206-76213.
    [CrossRef] [Google Scholar]
  214. , , , , , , , , . Structures and Comparative Characterization of Biosynthetic Gene Clusters for Cyanosporasides, Enediyne-Derived Natural Products from Marine Actinomycetes. J. Am. Chem. Soc.. 2013;135:4171-4174.
    [CrossRef] [Google Scholar]
  215. , , , , . Discorhabdin W, the First Dimeric Discorhabdin. J. Nat. Prod.. 2005;68:1796-1798.
    [CrossRef] [Google Scholar]
  216. , , , , , , , , , , , . Lodopyridones B and C from a marine sediment-derived bacterium Saccharomonospora sp. Bioorg. Med. Chem. Lett.. 2017;27:3123-3126.
    [CrossRef] [Google Scholar]
  217. , , , , , , , . Halenaquinone Derivatives from Tropical Marine Sponge Xestospongia sp. Heterocycles. 2012;85:895-910.
    [CrossRef] [Google Scholar]
  218. , , , , , . In vitro and in vivo anti-Vibrio vulnificus activity of psammaplin A, a natural marine compound. Mol Med Rep. 2016;14:2691-2696.
    [CrossRef] [Google Scholar]
  219. , , , , , , . Ovataline: A Polyketide Isolated from the Benthic Dinoflagellate Ostreopsis cf. ovata with 5α-Reductase Inhibitory Activity in RWPE-1 Prostatic Cells. Org. Lett.. 2022;24:4182-4186.
    [CrossRef] [Google Scholar]
  220. , , , , , , , . Potential Antidiabetic Fumiquinazoline Alkaloids from the Marine-Derived Fungus Scedosporium apiospermum F41–1. J. Nat. Prod.. 2020;83:1082-1091.
    [CrossRef] [Google Scholar]
  221. , , , , , , , , , , , . Stereochemical Elucidation of Natural Products from Residual Chemical Shift Anisotropies in a Liquid Crystalline Phase. J. Am. Chem. Soc.. 2020;142:2301-2309.
    [CrossRef] [Google Scholar]
  222. , , , . New Discorhabdin B Dimers with Anticancer Activity from the Antarctic Deep-Sea Sponge Latrunculia biformis. Mar. Drugs 2020
    [CrossRef] [Google Scholar]
  223. , , , , , , . A New Antibacterial Dioxopiperazine Alkaloid Related to Gliotoxin from a Marine Isolate of the Fungus Pseudallescheria. J. Antibiot.. 2006;59:248-250.
    [CrossRef] [Google Scholar]
  224. , , , , , , , . Epimeric methylsulfinyladenosine derivatives from the marine ascidian Herdmania momus. Bioorg. Med. Chem. Lett.. 2013;23:4701-4704.
    [CrossRef] [Google Scholar]
  225. , , , , , . Isoindolinone-type alkaloids from the sponge-derived fungus Stachybotrys chartarum. Tetrahedron. 2014;70:7010-7015.
    [CrossRef] [Google Scholar]
  226. , , , , . New Discorhabdin Alkaloids from the Antarctic Deep-Sea Sponge Latrunculia biformis. Mar. Drugs 2019
    [CrossRef] [Google Scholar]
  227. , , , , , , . Tridiscorhabdin and Didiscorhabdin, the First Discorhabdin Oligomers Linked with a Direct C-N Bridge from the Sponge Latrunculia biformis Collected from the Deep Sea in Antarctica. J. Nat. Prod.. 2020;83:706-713.
    [CrossRef] [Google Scholar]
  228. , , , , , , , , , , . Unusual anti-inflammatory meroterpenoids from the marine sponge Dactylospongia sp. Org. Biomol. Chem.. 2018;16:6773-6782.
    [CrossRef] [Google Scholar]
  229. , , , , , , . Kalkitoxin Reduces Osteoclast Formation and Resorption and Protects against Inflammatory Bone Loss. Int. J. Mol. Sci. 2021
    [CrossRef] [Google Scholar]
  230. , , , , , , , , , . Discovery of an Isothiazolinone-Containing Antitubercular Natural Product Levesquamide. J. Org. Chem.. 2020;85:6450-6462.
    [CrossRef] [Google Scholar]
  231. , , , , , , , , , , , , . Exploring the Chemodiversity and Biological Activities of the Secondary Metabolites from the Marine Fungus Neosartorya pseudofischeri. Mar. Drugs 2014:5657-5676.
    [CrossRef] [Google Scholar]
  232. , , , . Advances in exploring the therapeutic potential of marine natural products. Pharmacol. Res.. 2019;147:104373
    [CrossRef] [Google Scholar]
  233. , , , , , , , , , , . Pulicatins A−E, Neuroactive Thiazoline Metabolites from Cone Snail-Associated Bacteria. J. Nat. Prod.. 2010;73:1922-1926.
    [CrossRef] [Google Scholar]
  234. , , , , , , , , , , , , . Computationally assisted structure elucidation of new 2-guanidinoethanesulfonyl sesquiterpenoid alkaloids: Agelasidines G-I from the marine sponge Agelas nakamurai. Tetrahedron. 2022;133077
    [CrossRef] [Google Scholar]
  235. , . Tridentatols D−H, Nematocyst Metabolites and Precursors of the Activated Chemical Defense in the Marine Hydroid Tridentata marginata (Kirchenpauer 1864) J. Nat. Prod.. 2002;65:681-684.
    [CrossRef] [Google Scholar]
  236. , , , . Tridentatols A-C, novel natural products of the marine hydroid Tridentata marginata. Tetrahedron Lett.. 1996;37:9131-9134.
    [CrossRef] [Google Scholar]
  237. , , , , , . Lissoclinotoxins: Antibiotic polysulfur derivatives from the tunicate Lissoclinum perforatum. Revised structure of lissoclinotoxin A. Tetrahedron. 1994;50:5323-5334.
    [CrossRef] [Google Scholar]
  238. , , , , , . Dechdigliotoxins A-C, Three Novel Disulfide-Bridged Gliotoxin Dimers from Deep-Sea Sediment Derived Fungus Dichotomomyces cejpii. Mar. Drugs 2019
    [CrossRef] [Google Scholar]
  239. , , , , , . Trichodermamide A and aspergillazine A, two cytotoxic modified dipeptides from a marine-derived fungus Spicaria elegans. Arch Pharm Res. 2005;28:1042-1046.
    [CrossRef] [Google Scholar]
  240. , , , , , , , , . Pseudellones A-C, Three Alkaloids from the Marine-Derived Fungus Pseudallescheria ellipsoidea F42–3. Org. Lett.. 2015;17:5156-5159.
    [CrossRef] [Google Scholar]
  241. , , , , , , , . Bisthiodiketopiperazines and Acorane Sesquiterpenes Produced by the Marine-Derived Fungus Penicillium adametzioides AS-53 on Different Culture Media. J. Nat. Prod.. 2015;78:1294-1299.
    [CrossRef] [Google Scholar]
  242. , , , , , , . Peniciadametizine A, a Dithiodiketopiperazine with a Unique Spiro[furan-2,7'-pyrazino[1,2-b][1,2]oxazine] Skeleton, and a Related Analogue, Peniciadametizine B, from the Marine Sponge-Derived Fungus Penicillium adametzioides. Mar. Drugs 2015:3640-3652.
    [CrossRef] [Google Scholar]
  243. , , , , . Tetroazolemycins A and B, Two New Oxazole-Thiazole Siderophores from Deep-Sea Streptomyces olivaceus FXJ8.012. Mar. Drugs 2013:1524-1533.
    [CrossRef] [Google Scholar]
  244. , , , , , , . Secondary metabolites from Antarctic marine-derived fungus Penicillium crustosum HDN153086. Nat. Prod. Res.. 2019;33:414-419.
    [CrossRef] [Google Scholar]
  245. , , , , . Evaluation of Marine Sponge Metabolites for Cytotoxicity and Signal Transduction Activity. J. Nat. Prod.. 1993;56:915-920.
    [CrossRef] [Google Scholar]
  246. , , , , , , , , . Evaluating Nitrogen-Containing Biosynthetic Products Produced by Saltwater Culturing of Several California Littoral Zone Gram-Negative Bacteria. J. Nat. Prod.. 2017;80:2304-2310.
    [CrossRef] [Google Scholar]
  247. , , , , , , , , , , , . Sungeidines from a Non-canonical Enediyne Biosynthetic Pathway. J. Am. Chem. Soc.. 2020;142:1673-1679.
    [CrossRef] [Google Scholar]
  248. , , , , . Application of marine natural products in drug research. Bioorg. Med. Chem.. 2021;35:116058
    [CrossRef] [Google Scholar]
  249. , , , , , , . Stachybotrin G, a sulfate meroterpenoid from a sponge derived fungus Stachybotrys chartarum MXH-X73. Tetrahedron Lett.. 2015;56:7053-7055.
    [CrossRef] [Google Scholar]
  250. , , . Kuanoniamine C stimulates bortezomib-induced cell death via suppression of glucose-regulated protein 78 in osteosarcoma. Biochem. Biophys. Res. Commun.. 2020;527:289-296.
    [CrossRef] [Google Scholar]
  251. , , , . Structure of (−)-Neodysidenin from Dysidea herbacea. Implications for Biosynthesis of 5,5,5-Trichloroleucine Peptides. Org. Lett.. 2000;2:2721-2723.
    [CrossRef] [Google Scholar]
  252. , , , , , , , . Lodopyridone, a Structurally Unprecedented Alkaloid from a Marine Actinomycete. Org. Lett.. 2009;11:5422-5424.
    [CrossRef] [Google Scholar]
  253. , , , , . Curacin D, aN antimitotic agent from the marine Cyanobacterium Lyngbya majuscula. Phytochemistry. 1998;49:2387-2389.
    [CrossRef] [Google Scholar]
  254. , , , , . 1-O-Sulfatobastadins-1 and -2 from Ianthella basta (Pallas). Antagonists of the yR1-FKBP12 Ca2+. Channel.. 2004;2(176–184)
    [CrossRef] [Google Scholar]
  255. , , , . Thiomycalolides: New Cytotoxic Trisoxazole-Containing Macrolides Isolated from a Marine Sponge Mycale sp. J. Nat. Prod.. 1998;61:663-666.
    [CrossRef] [Google Scholar]
  256. , , , , , , . Ovarian cancer. Nature Reviews Disease primers. 2016;2:16061.
    [CrossRef]
  257. , , , , . Inhibition of Topoisomerase II Catalytic Activity by Pyridoacridine Alkaloids from a Cystodytes sp. Ascidian: A Mechanism for the Apparent Intercalator-Induced Inhibition of Topoisomerase II. J. Med. Chem.. 1994;37:3819-3827.
    [CrossRef] [Google Scholar]
  258. , , , , , , . (–)-Agelasidine A from Agelas clathrodes. Zeitschrift für Naturforschung C. 2006;61:472-476.
    [CrossRef] [Google Scholar]
  259. , , , , , , , , . Synthesis of Natural Ecteinascidins (ET-729, ET-745, ET-759B, ET-736, ET-637, ET-594) from Cyanosafracin B. J. Org. Chem.. 2003;68:8859-8866.
    [CrossRef] [Google Scholar]
  260. , , , , , . Brocazines A-F, Cytotoxic Bisthiodiketopiperazine Derivatives from Penicillium brocae MA-231, an Endophytic Fungus Derived from the Marine Mangrove Plant Avicennia marina. J. Nat. Prod.. 2014;77:1921-1927.
    [CrossRef] [Google Scholar]
  261. , , , , , , , , . Three Diketopiperazine Alkaloids with Spirocyclic Skeletons and One Bisthiodiketopiperazine Derivative from the Mangrove-Derived Endophytic Fungus Penicillium brocae MA-231. Org. Lett.. 2016;18:5304-5307.
    [CrossRef] [Google Scholar]
  262. , , , , . Penicibrocazines, A-E, Five new sulfide diketopiperazines from the marine-derived endophytic fungus penicillium brocae. Mar. Drugs 2015:276-287.
    [CrossRef] [Google Scholar]
  263. , , , , , , , , . Conithiaquinones A and B, Tetracyclic Cytotoxic Meroterpenes from the Mediterranean Ascidian Aplidium conicum. Eur. J. Org. Chem.. 2013;2013:3241-3246.
    [CrossRef] [Google Scholar]
  264. , , , , , , . Unusual Sulfamate Indoles and a Novel Indolo[3,2-a]carbazole from Ancorina sp.1. J. Org. Chem.. 2002;67:6671-6677.
    [CrossRef] [Google Scholar]
  265. , , , , , , , . Saccharothrix algeriensis NRRL B-24137, the first non-Streptomyces actinobacterium, produces holomycin after cystine feeding. Arch. Microbiol.. 2020;202:2509-2516.
    [CrossRef] [Google Scholar]
  266. , , , , , . Diverse Aromatic Metabolites in the Solitary Tunicate Cnemidocarpa irene. J. Nat. Prod.. 2020;83:3156-3165.
    [CrossRef] [Google Scholar]
  267. , , . Varamines A and B, new cytotoxic thioalkaloids from Lissoclinum vareau. J. Org. Chem.. 1989;54:4256-4259.
    [CrossRef] [Google Scholar]
  268. , , , , . Aranazoles: Extensively Chlorinated Nonribosomal Peptide-Polyketide Hybrids from the Cyanobacterium Fischerella sp. PCC 9339. Org. Lett.. 2018;20:5238-5241.
    [CrossRef] [Google Scholar]
  269. , , . (-)-Agelasidine C and (-)-Agelasidine D, Two New Hypotaurocyamine Diterpenoids from the Caribbean Sea Songe Agelas clathrodes. J. Nat. Prod.. 1992;55:389-394.
    [CrossRef] [Google Scholar]
  270. , , , . Analysis of Cyclic Imines in Mussels (Mytilus galloprovincialis) from Galicia (NW Spain) by LC-MS/MS. Int. J. Environ. Res. Public Health 2020
    [CrossRef] [Google Scholar]
  271. , , , , , , , , , , . The marine sponge metabolite mycothiazole: A novel prototype mitochondrial complex I inhibitor. Bioorg. Med. Chem.. 2010;18:5988-5994.
    [CrossRef] [Google Scholar]
  272. , , , , , , , , , . Kalkitoxin Inhibits Angiogenesis, Disrupts Cellular Hypoxic Signaling, and Blocks Mitochondrial Electron Transport in Tumor Cells. Mar. Drugs 2015:1552-1568.
    [CrossRef] [Google Scholar]
  273. , , , , , . A revised structure for the marine bromoindole derivative citorellamine. Tetrahedron Lett.. 1987;28:749-752.
    [CrossRef] [Google Scholar]
  274. , , , . Amaranzoles B−F, Imidazole-2-carboxy Steroids from the Marine Sponge Phorbas amaranthus. C24-N- and C24-O-Analogues from a Divergent Oxidative Biosynthesis. J. Org. Chem.. 2010;75:2453-2460.
    [CrossRef] [Google Scholar]
  275. , , . Euthyroideones, Novel Brominated Quinone Methides from the Bryozoan Euthyroides episcopalis. J. Org. Chem.. 1998;63:9545-9547.
    [CrossRef] [Google Scholar]
  276. , , . Isolation and Structure of Pulcherrimine, a Novel Bitter-Tasting Amino Acid, from the Sea Urchin (Hemicentrotus pulcherrimus) Ovaries. J. Agric. Food Chem.. 2000;48:5557-5560.
    [CrossRef] [Google Scholar]
  277. , , , , , , . Eudistomidins E and F, new β-carboline alkaloids from the okinawan marine tunicate Eudistoma glaucus. Tetrahedron Lett.. 1991;32:3539-3542.
    [CrossRef] [Google Scholar]
  278. , , , , , , , , . Tanjungides A and B: New Antitumoral Bromoindole Derived Compounds from Diazona cf formosa. Isolation and Total Synthesis. Mar. Drugs 2014:1116-1130.
    [CrossRef] [Google Scholar]
  279. , , , , , , , , , , , . Anti-infective Discorhabdins from a Deep-Water Alaskan Sponge of the Genus Latrunculia. J. Nat. Prod.. 2010;73:383-387.
    [CrossRef] [Google Scholar]
  280. , , , , , , , , , , , . Benzoxacystol, a benzoxazine-type enzyme inhibitor from the deep-sea strain Streptomyces sp. NTK 935. J. Antibiot.. 2011;64:453-457.
    [CrossRef] [Google Scholar]
  281. , , , , , , , . Marine Bacteria, XLVII – Psychrotolerant Bacteria from Extreme Antarctic Habitats as Producers of Rare Bis- and Trisindole Alkaloids. Planta Med. 2016;82:910-918.
    [Google Scholar]
  282. , , , , , , , , , , , , . Siladenoserinols A-L: New Sulfonated Serinol Derivatives from a Tunicate as Inhibitors of p53–Hdm2 Interaction. Org. Lett.. 2013;15:322-325.
    [CrossRef] [Google Scholar]
  283. , , , , , . Identification of 3-enol sulfate of Cypridina luciferin, Cypridina luciferyl sulfate, in the sea-firefly Cypridina (Vargula) hilgendorfii. Tetrahedron. 2014;70:2161-2168.
    [CrossRef] [Google Scholar]
  284. , , , , , , , . Agelasidine-A, a novel sesquiterpene possessing antispasmodic activity from the okinawa sea sponge Agelas sp. Tetrahedron Lett.. 1983;24:4105-4108.
    [CrossRef] [Google Scholar]
  285. , , , , , , . Physiologically active marine natural products from Porifera. VIII. Agelasidines. Novel hypotaurocyamine derivatives from the Okinawan sea sponge Agelas nakamurai Hoshino. J. Org. Chem.. 1985;50:2494-2497.
    [CrossRef] [Google Scholar]
  286. , , , , , . Penarolide Sulfates A1 and A2, New α-Glucosidase Inhibitors from a Marine Sponge Penares sp. Tetrahedron. 2000;56:8977-8987.
    [CrossRef] [Google Scholar]
  287. , , , , . Penasulfate A, a New α-Glucosidase Inhibitor from a Marine Sponge Penares sp. J. Nat. Prod.. 2004;67:1346-1350.
    [CrossRef] [Google Scholar]
  288. , , , , . Five New Sulfur-containing Polybrominated Bisindoles from the Red Alga Laurencia brongniartii. Heterocycles. 2005;65:2675-2682.
    [CrossRef] [Google Scholar]
  289. , , , . Structure revision of the rare sponge metabolite echinosulfone A, and biosynthetically related echinosulfonic acids A-D. Tetrahedron Lett.. 2020;61:151651
    [CrossRef] [Google Scholar]
  290. , , , , , . An N-acyl homolog of mycothiol is produced in marine actinomycetes. Arch. Microbiol.. 2008;190:547-557.
    [CrossRef] [Google Scholar]
  291. , , , . Three New Pyridoacridine Type Alkaloids from a Singaporean Ascidian. J. Nat. Prod.. 2002;65:1198-1200.
    [CrossRef] [Google Scholar]
  292. , , , , , . Eutypellazines A-M, thiodiketopiperazine-type alkaloids from deep sea derived fungus Eutypella sp. MCCC 3A00281. RSC Adv.. 2017;7:33580-33590.
    [CrossRef] [Google Scholar]
  293. , , , , , . Eutypellazines N−S, new thiodiketopiperazines from a deep sea sediment derived fungus Eutypella sp. with anti-VRE activities. Tetrahedron Lett.. 2017;58:3695-3699.
    [CrossRef] [Google Scholar]
  294. , , . Somocystinamide A, a Novel Cytotoxic Disulfide Dimer from a Fijian Marine Cyanobacterial Mixed Assemblage. Org. Lett.. 2002;4:1095-1098.
    [CrossRef] [Google Scholar]
  295. , , , . Pateamine: a potent cytotoxin from the New Zealand Marine sponge, mycale sp. Tetrahedron Lett.. 1991;32:6411-6414.
    [CrossRef] [Google Scholar]
  296. , , , , , , , . Stereochemistry of theonezolides A-C. Tetrahedron Lett.. 2013;54:783-787.
    [CrossRef] [Google Scholar]
  297. , , , , , , , , , , , , , . Isolation of Caldorazole, a Thiazole-Containing Polyketide with Selective Cytotoxicity under Glucose-Restricted Conditions. Org. Lett.. 2022;24:4547-4551.
    [CrossRef] [Google Scholar]
  298. , , , . Cylindrospermopsin: a potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. J. Am. Chem. Soc.. 1992;114:7941-7942.
    [CrossRef] [Google Scholar]
  299. , , , , . Ianthesines A-D, Four Novel Dibromotyrosine-Derived Metabolites from a Marine Sponge, Ianthella sp. Tetrahedron. 2000;56:5813-5818.
    [CrossRef] [Google Scholar]
  300. , , , . Shishijimicins A−C, Novel Enediyne Antitumor Antibiotics from the Ascidian Didemnum proliferum. J. Am. Chem. Soc.. 2003;125:2044-2045.
    [CrossRef] [Google Scholar]
  301. , , , , , , , . Antiparasitic Activity of Bromotyrosine Alkaloids and New Analogues Isolated from the Fijian Marine Sponge Aplysinella rhax. Chem. Biodivers.. 2020;17:e2000335.
    [Google Scholar]
  302. , , , , , , , , , , . Inhibition of the Quorum Sensing System, Elastase Production and Biofilm Formation in Pseudomonas aeruginosa by Psammaplin A and Bisaprasin. Molecules 2022
    [CrossRef] [Google Scholar]
  303. , , , , , . Lepadins I-K, 3-O-(3′-Methylthio)acryloyloxy-decahydroquinoline Esters from a Bahamian Ascidian Didemnum sp. Assignment of Absolute Stereostructures. J. Org. Chem.. 2018;83:13670-13677.
    [CrossRef] [Google Scholar]
  304. , , . Barbamide, a Chlorinated Metabolite with Molluscicidal Activity from the Caribbean Cyanobacterium Lyngbya majuscula. J. Nat. Prod.. 1996;59:427-430.
    [CrossRef] [Google Scholar]
  305. , , , , , , , , . New 3-Hydroxyquinaldic Acid Derivatives from Cultures of the Marine Derived Actinomycete Streptomyces cyaneofuscatus M-157. Mar. Drugs 2018
    [CrossRef] [Google Scholar]
  306. , , , . Kinetic Studies of Antioxidant Properties of Ovothiol A. Antioxidants 2021
    [CrossRef] [Google Scholar]
  307. , , . Echinosulfonic Acids A−C and Echinosulfone A: Novel Bromoindole Sulfonic Acids and a Sulfone from a Southern Australian Marine Sponge, Echinodictyum. J. Nat. Prod.. 1999;62:1246-1249.
    [CrossRef] [Google Scholar]
  308. , , , . Pancreatic Cancer: A Review. JAMA. 2021;326:851-862.
    [CrossRef] [Google Scholar]
  309. , , , , , , , , . Ochraceopetalin, a Mixed-Biogenetic Salt of Polyketide and Amino Acid Origins from a Marine-Derived Aspergillus ochraceopetaliformis Fungus. Mar. Drugs 2021
    [CrossRef] [Google Scholar]
  310. , , . Imbricatine, an unusual benzyltetrahydroisoquinoline alkaloid isolated from the starfish Dermasterias imbricata. J. Am. Chem. Soc.. 1986;108:8288-8289.
    [CrossRef] [Google Scholar]
  311. , , , , , . Enantiomeric 1,2,3-Trithiane-Containing Alkaloids and Two New 1,3-Dithiane Alkaloids from New Zealand Ascidians. J. Org. Chem.. 2001;66:8257-8259.
    [CrossRef] [Google Scholar]
  312. , , , , , , , , , , , . Anti-inflammatory Thiazine Alkaloids Isolated from the New Zealand Ascidian Aplidium sp.: Inhibitors of the Neutrophil Respiratory Burst in a Model of Gouty Arthritis. J. Nat. Prod.. 2007;70:936-940.
    [CrossRef] [Google Scholar]
  313. , , , , , , , , , , , , . Antimicrobial Diterpene Alkaloids from an Agelas citrina Sponge Collected in the Yucatán Peninsula. Mar. Drugs 2022
    [CrossRef] [Google Scholar]
  314. , , , , , . New β-Carboline Alkaloids from the Andaman Sea Sponge Dragmacidon sp. J. Nat. Prod.. 2004;67:2113-2116.
    [CrossRef] [Google Scholar]
  315. , , , , . Sargassulfamide A, an Unprecedented Amide Derivative from the Seaweed Sargassum naozhouense. Chem. Nat. Compd.. 2020;56:98-100.
    [CrossRef] [Google Scholar]
  316. Peng C., Gunaherath G.M.K.B., Piggott A.M., Khalil Z., Conte M., and Capon R.J. (2010) 9-(5-Deoxy-5-thio--<sc>d</sc>-xylofuranosyl)adenine Disulfide from the Southern Australian Marine Sponge Trachycladus laevispirulifer: the First Natural Occurrence of a Nucleoside Disulfide %J Australian Journal of Chemistry. 63:873-876. https://doi.org/10.1071/CH09645.
  317. , , , . Cytotoxic pigments from new zealand sponges of the genus latrunculia : discorhabdins a, b and c. Tetrahedron. 1988;44:1727-1734.
    [CrossRef] [Google Scholar]
  318. , , , , . Four New Bromotryptamine Derivatives from the Marine Bryozoan Flustra foliacea. J. Nat. Prod.. 2002;65:1633-1637.
    [CrossRef] [Google Scholar]
  319. , , , , , , , , , , , . Serinolamides and Lyngbyabellins from an Okeania sp. Cyanobacterium Collected from the Red Sea. J. Natural Products. 2017;80:2708-2715.
    [CrossRef] [Google Scholar]
  320. , , , . Isolation of Psammaplin A 11‘-Sulfate and Bisaprasin 11‘-Sulfate from the Marine Sponge Aplysinella rhax. J. Nat. Prod.. 2000;63:393-395.
    [CrossRef] [Google Scholar]
  321. , , , , , , , . New Cytotoxic 1,2,4-Thiadiazole Alkaloids from the Ascidian Polycarpa aurata. Org. Lett.. 2013;15:2230-2233.
    [CrossRef] [Google Scholar]
  322. , , , , , , , , , , , , . Psammaplins from the Sponge Pseudoceratina purpurea: Inhibition of Both Histone Deacetylase and DNA Methyltransferase. J. Org. Chem.. 2003;68:3866-3873.
    [CrossRef] [Google Scholar]
  323. , , , , , , , . Callyspongisines A-D: bromopyrrole alkaloids from an Australian marine sponge, Callyspongia sp. Org. Biomol. Chem.. 2014;12:1579-1584.
    [CrossRef] [Google Scholar]
  324. , , , , , , , . Diketopiperazines and Phthalides from a Marine Derived Fungus of the Order Pleosporales. Planta Med. 2008;74:69-72.
    [Google Scholar]
  325. , , , . New Cytotoxic β-Carboline Alkaloids from the Marine Bryozoan, Cribricellina cribraria. J. Nat. Prod.. 1991;54:1068-1076.
    [CrossRef] [Google Scholar]
  326. , , , , , , , . Sinulasulfoxide and sinulasulfone, sulfur-containing alkaloids from the Indonesian soft coral Sinularia sp. Tetrahedron Lett.. 2012;53:3937-3939.
    [CrossRef] [Google Scholar]
  327. , , . Phenolic constituents of Psammaplysilla. Tetrahedron Lett.. 1987;28:3229-3232.
    [CrossRef] [Google Scholar]
  328. , , , , , , . Novel cytotoxic topoisomerase II inhibiting pyrroloiminoquinones from Fijian sponges of the genus Zyzzya. J. Am. Chem. Soc.. 1993;115:1632-1638.
    [CrossRef] [Google Scholar]
  329. , , , , , . Heronamycin A: a new benzothiazine ansamycin from an Australian marine-derived Streptomyces sp. Tetrahedron Lett.. 2012;53:1063-1065.
    [CrossRef] [Google Scholar]
  330. , , , , , . Marine Natural Products from Tunicates and Their Associated Microbes. Mar. Drugs 2021
    [CrossRef] [Google Scholar]
  331. , , , . New Cytotoxic N-Methylated β-Carboline Alkaloids from the Marine Ascidian Eudistoma gilboverde. J. Nat. Prod.. 2001;64:1454-1456.
    [CrossRef] [Google Scholar]
  332. , , , , . New lamellarin alkaloids from an unidentified ascidian from the Arabian Sea. Tetrahedron. 1997;53:3457-3466.
    [CrossRef] [Google Scholar]
  333. , , , , . A straight forward and first total synthesis of Penilumamides B-D. Tetrahedron Lett.. 2017;58:3347-3349.
    [CrossRef] [Google Scholar]
  334. , , , , , , , , . Lamellarin α 20-Sulfate, an Inhibitor of HIV-1 Integrase Active against HIV-1 Virus in Cell Culture. J. Med. Chem.. 1999;42:1901-1907.
    [CrossRef] [Google Scholar]
  335. , , , . Preclinical pharmacology of ecteinascidin 729, a marine natural product with potent antitumor activity. Cancer Chemother. Pharmacol.. 1996;38:329-334.
    [CrossRef] [Google Scholar]
  336. , , , , , , , , , , , , . Two novel alkaloids from the South China Sea marine sponge Dysidea sp. J. Antibiot.. 2010;63:699-701.
    [CrossRef] [Google Scholar]
  337. , , , , , , , . Discorhabdins I and L, Cytotoxic Alkaloids from the Sponge Latrunculia brevis. J. Nat. Prod.. 2004;67:463-465.
    [CrossRef] [Google Scholar]
  338. , , . Eight-Membered Cyclic 1,2,3-Trithiocane Derivatives from Perophora viridis, an Atlantic Tunicate. Eur. J. Organic Chem. 2002:2400-2404.
    [CrossRef] [Google Scholar]
  339. , , , . The patellazoles inhibit protein synthesis at nanomolar concentrations in human colon tumor cells. Anticancer Drugs. 2005;16
    [CrossRef] [Google Scholar]
  340. , , , , , , , , . Eudistomins A-Q,beta.-carbolines from the antiviral Caribbean tunicate Eudistoma olivaceum. J. Am. Chem. Soc.. 1987;109:3378-3387.
    [CrossRef] [Google Scholar]
  341. , , , , . Cnidarians as a Source of New Marine Bioactive Compounds—An Overview of the Last Decade and Future Steps for Bioprospecting. Mar. Drugs 2011:1860-1886.
    [CrossRef] [Google Scholar]
  342. , , , , , , , , , , , . Bioprospection of Cytotoxic Compounds in Fungal Strains Recovered from Sediments of the Brazilian Coast. Chem. Biodivers.. 2015;12:432-442.
    [CrossRef] [Google Scholar]
  343. , , , . Two bromotyrosine-cysteine derived metabolites from a sponge. Tetrahedron Lett.. 1987;28:4989-4992.
    [CrossRef] [Google Scholar]
  344. , , , , , , . Thelepamide: an unprecedented ketide-amino acid from Thelepus crispus, a Marine Annelid Worm. Org. Lett.. 2014;16:464-467.
    [CrossRef] [Google Scholar]
  345. , , . Highly Polar Spiroisoxazolines from the Sponge Aplysina fulva. J. Nat. Prod.. 2007;70:1191-1194.
    [CrossRef] [Google Scholar]
  346. , , , , . ʟ-Ovothiol A: The Egg Release Pheromone of the Marine Polychaete Platynereis Dumerilii: Annelida. Polychaeta. 1999;54:1145-1174.
    [CrossRef] [Google Scholar]
  347. , , . Citorellamine, a new bromoindole derivative from polycitorella mariae. Tetrahedron Lett.. 1985;26:4303-4306.
    [CrossRef] [Google Scholar]
  348. , , , , , , , . Echinosulfonic acid D: an ESI MS n evaluation of a new cytotoxic alkaloid from the New-Caledonian sponge Psammoclemma sp. Nat. Prod. Res.. 2005;19:75-79.
    [CrossRef] [Google Scholar]
  349. , , , , . Pteridine-, thymidine-, choline- and imidazole-derived alkaloids from the Australian ascidian, Leptoclinides durus. Org. Biomol. Chem.. 2013;11:261-270.
    [CrossRef] [Google Scholar]
  350. , , , , , . Indolo[3,2-a]carbazoles from a Deep-Water Sponge of the Genus Asteropus. J. Nat. Prod.. 2013;76:1989-1992.
    [CrossRef] [Google Scholar]
  351. , , , , , , , , , , , . B-90063, a Novel Endothelin Converting Enzyme Inhibitor Isolated from a New Marine Bacterium, Blastobacter sp. SANK 71894. J. Antibiot.. 1998;51:805-815.
    [CrossRef] [Google Scholar]
  352. , , , , , . Ecteinascidins: Putative Biosynthetic Precursors and Absolute Stereochemistry. J. Am. Chem. Soc.. 1996;118:9017-9023.
    [CrossRef] [Google Scholar]
  353. , , , , , , . Isolations of N-Methyl-d-aspartic Acid-Type Glutamate Receptor Ligands from Micronesian Sponges. J. Nat. Prod.. 2003;66:784-787.
    [CrossRef] [Google Scholar]
  354. , , , , . Batzellines A, B, and C. Novel pyrroloquinoline alkaloids from the sponge Batzella Sp. Tetrahedron Lett.. 1989;30:2517-2520.
    [CrossRef] [Google Scholar]
  355. , , , , , , , , , , , , . Psammaplin A inhibits hepatitis C virus NS3 helicase. J. Nat. Med.. 2013;67:765-772.
    [CrossRef] [Google Scholar]
  356. , , . Sagitol, a pyridoacridine alkaloid from the sponge Oceanapia sagittaria. Tetrahedron Lett.. 1996;37:9147-9148.
    [CrossRef] [Google Scholar]
  357. , , , , , , . Cytotoxic isoquinoline quinones from sponges of the genus Petrosia. Nat. Prod. Res.. 2004;18:89-93.
    [CrossRef] [Google Scholar]
  358. , , , . Ircinamine B, bioactive alkaloid from marine sponge Dactylia sp. Tetrahedron Lett.. 2006;47:7871-7873.
    [CrossRef] [Google Scholar]
  359. , , , , , , , , . Aldose reductase inhibitors from a marine sponge, Dictyodendrilla sp. J. Org. Chem.. 1993;58:7632-7634.
    [CrossRef] [Google Scholar]
  360. , , , , , , , , , . Melanoma. Lancet. 2018;392:971-984.
    [CrossRef]
  361. , , . Xesto- and halenaquinone derivatives from a sponge, Adocia sp., from Truk lagoon. J. Org. Chem.. 1988;53:3922-3925.
    [CrossRef] [Google Scholar]
  362. , , . Didemnolines A-D, new N9-substituted β-carbolines from the marine ascidian Didemnum sp. Tetrahedron. 1995;51:10125-10130.
    [CrossRef] [Google Scholar]
  363. , , . Five new alkaloids from the tropical ascidian, Lissoclinum sp. lissoclinotoxin A is chiral. J. Org. Chem.. 1994;59:6600-6605.
    [CrossRef] [Google Scholar]
  364. , , , . Marine Pyrrole Alkaloids. Mar. Drugs 2021
    [CrossRef] [Google Scholar]
  365. , , , , , , , , . One-Pot Synthesis of 5-Hydroxy-4H-1,3-thiazin-4-ones: Structure Revision, Synthesis, and NMR Shift Dependence of Thiasporine A. Org. Lett.. 2016;18:3070-3073.
    [CrossRef] [Google Scholar]
  366. , , , , , , , . Isolation, Structural Determination and Acute Toxicity of Pinnatoxins E, F and G. J. Agric. Food Chem.. 2010;58:6532-6542.
    [CrossRef] [Google Scholar]
  367. , , , , , . Bioactive Diketopiperazines and Nucleoside Derivatives from a Sponge-Derived Streptomyces Species. Marine Drugs 2019
    [Google Scholar]
  368. , , , , , , , , , . Cheminformatic Insight into the Differences between Terrestrial and Marine Originated Natural Products. J. Chem. Inf. Model.. 2018;58:1182-1193.
    [CrossRef] [Google Scholar]
  369. , , , , . Characterization of a Potential β-Lactamase Inhibitory Metabolite from a Marine Streptomyces sp. PM49 Active Against Multidrug-Resistant Pathogens. Appl. Biochem. Biotechnol.. 2015;175:3696-3708.
    [CrossRef] [Google Scholar]
  370. , , , , , , . New Bromotyrosine Metabolites from the Sponge Aplysinella rhax. Tetrahedron. 2000;56:9071-9077.
    [CrossRef] [Google Scholar]
  371. , , , , , , , . Wondonins A and B, new bis(dihydroxystyryl)imidazoles from a two-sponge association. Tetrahedron Lett.. 2001;42:1965-1968.
    [CrossRef] [Google Scholar]
  372. , , , , , , , , . In vitro interaction between Ecteinascidin 743 (ET-743) and radiation, in relation to its cell cycle effects. Brit. J. Cancer. 2003;89:2305-2311.
    [CrossRef] [Google Scholar]
  373. , , , , , , , , . Biosynthetic Pathway and Origin of the Chlorinated Methyl Group in Barbamide and Dechlorobarbamide, Metabolites from the Marine Cyanobacterium Lyngbya majuscula. Tetrahedron. 2000;56:9103-9113.
    [CrossRef] [Google Scholar]
  374. , , , , , , , . Unique Cyclized Thiolopyrrolones from the Marine-Derived Streptomyces sp. BTBU20218885. Mar. Drugs 2022
    [CrossRef] [Google Scholar]
  375. , , , , , . A Reassignment of (−)-Mycothiazole and the Isolation of a Related Diol. J. Nat. Prod.. 2006;69:145-147.
    [CrossRef] [Google Scholar]
  376. , , , , . Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science. 1983;219:493-495.
    [CrossRef] [Google Scholar]
  377. , , , . Antifungal Diterpene Alkaloids from the Caribbean Sponge Agelas citrina: Unified Configurational Assignments of Agelasidines and Agelasines. Eur. J. Org. Chem.. 2012;2012:5131-5135.
    [CrossRef] [Google Scholar]
  378. , , , . Total synthesis of mycothiazole, a polyketide heterocycle from marine sponges. Tetrahedron. 2003;59:6579-6593.
    [CrossRef] [Google Scholar]
  379. , , , , , , , , , . Geospallins A-C: New Thiodiketopiperazines with Inhibitory Activity against Angiotensin-Converting Enzyme from a Deep-Sea-Derived Fungus Geosmithia pallida FS140. Mar. Drugs 2018
    [CrossRef] [Google Scholar]
  380. , , , , , . Synthesis and structural reconfirmation of bacillamide B. Org. Biomol. Chem.. 2015;13:4271-4277.
    [CrossRef] [Google Scholar]
  381. , , , , . Isobatzellines A, B, C, and D. Cytotoxic and antifungal pyrroloquinoline alkaloids from the marine sponge Batzella sp. J. Org. Chem.. 1990;55:4964-4966.
    [CrossRef] [Google Scholar]
  382. , , , , , , , . Gliotoxin Analogues from a Marine-Derived Fungus, Penicillium sp., and Their Cytotoxic and Histone Methyltransferase Inhibitory Activities. J. Nat. Prod.. 2012;75:111-114.
    [CrossRef] [Google Scholar]
  383. , , . Anti-Inflammatory Activity of Monosubstituted Xestoquinone Analogues from the Marine Sponge Neopetrosia compacta. Antioxidants 2022
    [CrossRef] [Google Scholar]
  384. , , , , , , . Ecteinascidins 770 and 786 from the Thai Tunicate Ecteinascidia thurstoni. J. Nat. Prod.. 2002;65:935-937.
    [CrossRef] [Google Scholar]
  385. , , , . Eudistomidins H-K, new β-carboline alkaloids from the Okinawan marine tunicate Eudistoma glaucus. Bioorg. Med. Chem. Lett.. 2011;21:4220-4223.
    [CrossRef] [Google Scholar]
  386. , , , , , , , , , . S1319: A novel β2-adrenoceptor agonist from a marine sponge Dysidea sp. Bioorg. Med. Chem. Lett.. 1999;9:1361-1364.
    [CrossRef] [Google Scholar]
  387. , , , , , , , , . Psammaplin A, a chitinase inhibitor isolated from the fijian marine sponge Aplysinella rhax. Bioorg. Med. Chem.. 2002;10:1123-1128.
    [CrossRef] [Google Scholar]
  388. , , , , , , . Schulzeines A−C, New α-Glucosidase Inhibitors from the Marine Sponge Penares schulzei1. J. Am. Chem. Soc.. 2004;126:187-193.
    [CrossRef] [Google Scholar]
  389. , , , , . Resolution of the Confusion in the Assignments of Configuration for the Ciliatamides, Acylated Dipeptides from Marine Sponges. J. Nat. Prod.. 2017;80:2845-2849.
    [CrossRef] [Google Scholar]
  390. , , , , . Structural determination of pteriatoxins A, B and C, extremely potent toxins from the bivalve Pteria penguin. Tetrahedron Lett.. 2001;42:3495-3497.
    [CrossRef] [Google Scholar]
  391. , , , , , , . Nakijinamines C-E, New Heteroaromatic Alkaloids from the Sponge Suberites Species. Org. Lett.. 2011;13:3016-3019.
    [CrossRef] [Google Scholar]
  392. , , , , . Ishigadine A, a new canthin-6-one alkaloid from an Okinawan marine sponge Hyrtios sp. Tetrahedron Lett.. 2018;59:4500-4502.
    [CrossRef] [Google Scholar]
  393. , , , , , , , . Leptosins, antitumour metabolites of a fungus isolated from a marine alga. J. Chem. Soc. Perkin Trans.. 1994;1:1859-1864.
    [CrossRef] [Google Scholar]
  394. , , , , , , , , , , . Potent cytotoxic metabolites from a Leptosphaeria species. Structure determination and conformational analysis. Tetrahedron. 1995;51:3483-3498.
    [CrossRef] [Google Scholar]
  395. , , , , , , . Cytotoxic metabolites from a fungal adherent of a marine alga. Phytochemistry. 1995;38:155-158.
    [CrossRef] [Google Scholar]
  396. , , , , , , . Leptosins O-S, Cytotoxic Metabolites of a Strain of Leptosphaeria Sp. Isolated from a Marine Alga. HETEROCYCLES. 2004;63:641-653.
    [CrossRef] [Google Scholar]
  397. , , , , . Isolation and Structure Assignments of Rostratins A−D, Cytotoxic Disulfides Produced by the Marine-Derived Fungus Exserohilum rostratum. J. Nat. Prod.. 2004;67:1374-1382.
    [CrossRef] [Google Scholar]
  398. , , , , . Sulfur-containing polybromoindoles from the red alga Laurencia brongniartii. Tetrahedron. 1989;45:7301-7310.
    [CrossRef] [Google Scholar]
  399. , , , , . New Cytotoxic Macrolides from the Sponge Fasciospongia rimosa. Chem. Lett.. 1996;25:255-256.
    [CrossRef] [Google Scholar]
  400. , , , , , , . Nagelamides U-W, bromopyrrole alkaloids from a marine sponge Agelas sp. Tetrahedron Lett.. 2013;54:3794-3796.
    [CrossRef] [Google Scholar]
  401. , , , , , , . Nagelamides X-Z, Dimeric Bromopyrrole Alkaloids from a Marine Sponge Agelas sp. Org. Lett.. 2013;15:3262-3265.
    [CrossRef] [Google Scholar]
  402. , , , , , , , , . Hyrtimomines D and E, bisindole alkaloids from a marine sponge Hyrtios sp. Tetrahedron Lett.. 2013;54:4038-4040.
    [CrossRef] [Google Scholar]
  403. , , , , , , . Hyrtimomines, indole alkaloids from Okinawan marine sponges Hyrtios spp. Tetrahedron. 2014;70:832-837.
    [CrossRef] [Google Scholar]
  404. , , , , , . Selective cytotoxicity of epidithiodiketopiperazine DC1149B, produced by marine-derived Trichoderma lixii on the cancer cells adapted to glucose starvation. J. Nat. Med.. 2020;74:153-158.
    [CrossRef] [Google Scholar]
  405. , , , , , , , , . Merosesquiterpenes from the marine sponge Spongia pertusa Esper and their antifungal activities. Tetrahedron Lett.. 2022;93:153690
    [CrossRef] [Google Scholar]
  406. , , , , , , , , . Petroquinones: trimeric and dimeric xestoquinone derivatives isolated from the marine sponge Petrosia alfiani. Tetrahedron. 2016;72:5530-5540.
    [CrossRef] [Google Scholar]
  407. , , , , , , , , , . A joint molecular networking study of a Smenospongia sponge and a cyanobacterial bloom revealed new antiproliferative chlorinated polyketides. Org. Chem. Front.. 2019;6:1762-1774.
    [CrossRef] [Google Scholar]
  408. , , , , , , , , . Siladenoserinols M-P, sulfonated serinol derivatives from a tunicate. Tetrahedron. 2018;74:7516-7521.
    [CrossRef] [Google Scholar]
  409. , , , , , . Isolation and Total Synthesis of Stolonines A-C, Unique Taurine Amides from the Australian Marine Tunicate Cnemidocarpa stolonifera. Mar. Drugs 2015:4556-4575.
    [CrossRef] [Google Scholar]
  410. , , , , . Ovothiols, a family of redox-active mercaptohistidine compounds from marine invertebrate eggs. Biochemistry. 1987;26:4028-4036.
    [CrossRef] [Google Scholar]
  411. , , , , , , , . Curacin E from the Brittle Star Ophiocoma scolopendrina. J. Nat. Prod.. 2016;79:2754-2757.
    [CrossRef] [Google Scholar]
  412. , , , , , . Questiomycins, Algicidal Compounds Produced by the Marine Bacterium Alteromonas sp. D and Their Production Cue. Molecules 2019
    [CrossRef] [Google Scholar]
  413. , , , , , , . New polychlorinated amino acid derivatives from the marine sponge Dysidea herbacea. J. Org. Chem.. 1993;58:6336-6343.
    [CrossRef] [Google Scholar]
  414. , . Sagitol D, a New Thiazole Containing Pyridoacridine Alkaloid from a Vietnamese Ascidian. Nat. Prod. Commun.. 2015;10:1934578X1501000915
    [CrossRef] [Google Scholar]
  415. , , , , , , , , , , , , . Structure-Activity Analysis of the Interaction of Curacin A, the Potent Colchicine Site Antimitotic Agent, with Tubulin and Effects of Analogs on the Growth of MCF-7 Breast Cancer Cells. Mol. Pharmacol.. 1998;53:62.
    [CrossRef] [Google Scholar]
  416. , , , , , , , . Dermacozines H-J Isolated from a Deep-Sea Strain of Dermacoccus abyssi from Mariana Trench Sediments. J. Nat. Prod.. 2014;77:416-420.
    [CrossRef] [Google Scholar]
  417. , , , , , , , , . Amphiepicoccins A-J: Epipolythiodioxopiperazines from the Fish-Gill-Derived Fungus Epicoccum nigrum HDN17-88. J. Nat. Prod.. 2020;83:524-531.
    [CrossRef] [Google Scholar]
  418. , , , , , , , , , , , , , . Thiaplakortone B attenuates RANKL-induced NF-κB and MAPK signaling and dampens OVX-induced bone loss in mice. Biomed. Pharmacother.. 2022;154:113622
    [CrossRef] [Google Scholar]
  419. Wang D., Jiang W., Kim C.K., Bokesch H.R., Woldemichael G.M., Gryder B.E., Shern J.F., Khan J., O’keefe B.R., Beutler J.A., and Gustafson K.R. (2021) Neopetrothiazide: An Intriguing Pentacyclic Thiazide Alkaloid from the Sponge Neopetrosia sp. Organic Letters 23:3278-3281. https://doi.org/10.1021/acs.orglett.1c00743.
  420. , , , , , , , , . Cytotoxic indole diketopiperazines from the deep sea-derived fungus Acrostalagmus luteoalbus SCSIO F457. Bioorg. Med. Chem. Lett.. 2012;22:7265-7267.
    [CrossRef] [Google Scholar]
  421. , , , , , , , , , . 2,5-Diketopiperazines from the Marine-Derived Fungus Aspergillus fumigatus YK-7. Chem. Biodivers.. 2012;9:385-393.
    [CrossRef] [Google Scholar]
  422. , , , , , , , , . Three new sulfur-containing alkaloids, polycarpaurines A, B, and C, from an Indonesian ascidian Polycarpa aurata. Tetrahedron. 2007;63:409-412.
    [CrossRef] [Google Scholar]
  423. , , , , , , . Cerebrosides of the Halotolerant Fungus Alternaria raphani Isolated from a Sea Salt Field. J. Nat. Prod.. 2009;72:1695-1698.
    [CrossRef] [Google Scholar]
  424. , , , , , . Cytotoxic p-Terphenyls from a Marine-Derived Nocardiopsis Species. J. Nat. Prod.. 2019;82:3504-3508.
    [CrossRef] [Google Scholar]
  425. , , , , , , , , . Two additional new compounds from the marine-derived fungus pseudallescheria ellipsoidea F42–3. Molecules 2016
    [CrossRef] [Google Scholar]
  426. , , , , . Dictyodendrins A−E, the First Telomerase-Inhibitory Marine Natural Products from the Sponge Dictyodendrilla verongiformis1. J. Org. Chem.. 2003;68:2765-2770.
    [CrossRef] [Google Scholar]
  427. , , , , . Leukaemia: a model metastatic disease. Nat. Rev. Cancer. 2021;21:461-475.
    [CrossRef] [Google Scholar]
  428. , , , , , . Continuing Studies on the Cyanobacterium Lyngbya sp.: Isolation and Structure Determination of 15-Norlyngbyapeptin A and Lyngbyabellin D. J. Nat. Prod.. 2003;66:595-598.
    [CrossRef] [Google Scholar]
  429. , , , , , . Hypalocrinins, Taurine-Conjugated Anthraquinone and Biaryl Pigments from the Deep Sea Crinoid Hypalocrinus naresianus. J. Nat. Prod.. 2019;82:163-167.
    [CrossRef] [Google Scholar]
  430. , , , . Insights into Lomaiviticin Biosynthesis. Isolation and Structure Elucidation of (−)-Homoseongomycin. J. Nat. Prod.. 2013;76:1238-1241.
    [CrossRef] [Google Scholar]
  431. Wrasidlo W., Mielgo A., Torres V.A., Barbero S., Stoletov K., Suyama T.L., Klemke R.L., Gerwick W.H., Carson D.A., Stupack D.G., 2008. The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8. In: Proceedings of the National Academy of Sciences 105:2313-2318. https://doi.org/10.1073/pnas.0712198105.
  432. , , , , , , , , . New Thiodiketopiperazine and 3,4-Dihydroisocoumarin Derivatives from the Marine-Derived Fungus Aspergillus terreus. Mar. Drugs 2020
    [CrossRef] [Google Scholar]
  433. , , , , , , , , , , , , . Forazoline A: Marine-Derived Polyketide with Antifungal In Vivo Efficacy. Angew. Chem. Int. Ed.. 2014;53:11583-11586.
    [CrossRef] [Google Scholar]
  434. , , , , , , , , , , . Leptosins M-N1, cytotoxic metabolites from a Leptosphaeria species separated from a marine alga. Structure determination and biological activities. Tetrahedron. 2002;58:479-487.
    [CrossRef] [Google Scholar]
  435. , , , , , . Induced Production of Halogenated Epidithiodiketopiperazines by a Marine-Derived Trichoderma cf. brevicompactum with Sodium Halides. J. Nat. Prod.. 2015;78:2319-2321.
    [CrossRef] [Google Scholar]
  436. , , , , . Induced production of a new unprecedented epitrithiodiketopiperazine, chlorotrithiobrevamide, by a culture of the marine-derived Trichoderma cf. brevicompactum with dimethyl sulfoxide. Tetrahedron Lett.. 2015;56:6262-6265.
    [CrossRef] [Google Scholar]
  437. , , , , , . Induced production of a new dipeptide with a disulfide bridge by long-term fermentation of marine-derived Trichoderma cf. brevicompactum. Tetrahedron Lett.. 2016;57:5764-5767.
    [CrossRef] [Google Scholar]
  438. , , , , , , , , , . Epipolythiodiketopiperazine and trichothecene derivatives from the NaI-containing fermentation of marine-derived Trichoderma cf. brevicompactum. J. Antibiot.. 2020;73:559-567.
    [CrossRef] [Google Scholar]
  439. , , , , , , , , . Macrophilones from the Marine Hydroid Macrorhynchia philippina Can Inhibit ERK Cascade Signaling. J. Nat. Prod.. 2018;81:1666-1672.
    [CrossRef] [Google Scholar]
  440. , , , , , , , , . Antimicrobial Metabolites from the Paracel Islands Sponge Agelas mauritiana. J. Nat. Prod.. 2012;75:774-778.
    [CrossRef] [Google Scholar]
  441. , , , , , , , , . Nitrosporeusines A and B, Unprecedented Thioester-Bearing Alkaloids from the Arctic Streptomyces nitrosporeus. Org. Lett.. 2013;15:5366-5369.
    [CrossRef] [Google Scholar]
  442. , , , , , . Bioactive Sulfated Sesterterpene Alkaloids and Sesterterpene Sulfates from the Marine Sponge Fasciospongia sp. J. Nat. Prod.. 2009;72:319-323.
    [CrossRef] [Google Scholar]
  443. , , , , . Novel propanamide analogue and antiproliferative diketopiperazines from mangrove Streptomyces sp. Q24. Nat. Prod. Res.. 2017;31:1390-1396.
    [CrossRef] [Google Scholar]
  444. , , , , . New metabolites from the marine-derived bacterium Pseudomonas sp. ZZ820R. Fitoterapia. 2020;143(104555)
    [CrossRef] [Google Scholar]
  445. , , , , . New Antifungal Metabolites from the Mariana Trench Sediment-Associated Actinomycete Streptomyces sp. SY1965. Mar. Drugs 2020
    [CrossRef] [Google Scholar]
  446. , , , , , , , , . Violaceimides A-E, sulfur-containing metabolites from a sponge-associated fungus Aspergillus violaceus. Tetrahedron Lett.. 2018;59:3157-3160.
    [CrossRef] [Google Scholar]
  447. , , , , , . An expeditious total synthesis of kalkitoxins: determination of the absolute stereostructure of natural kalkitoxin. Tetrahedron. 2004;60:6859-6880.
    [CrossRef] [Google Scholar]
  448. , , . Curacins B and C, New Antimitotic Natural Products from the Marine Cyanobacterium Lyngbya majuscula. J. Nat. Prod.. 1995;58:1961-1965.
    [CrossRef] [Google Scholar]
  449. , , . Gliocladins A - C and Glioperazine; Cytotoxic Dioxo- or Trioxopiperazine Metabolites from a Gliocladium Sp. Separated from a Sea Hare. HETEROCYCLES. 2004;63:1123-1129.
    [CrossRef] [Google Scholar]
  450. , , , , , . Neobacillamide A, a Novel Thiazole-Containing Alkaloid from the Marine Bacterium Bacillus vallismortis C89, Associated with South China Sea Sponge Dysidea avara. Helv. Chim. Acta. 2009;92:607-612.
    [CrossRef] [Google Scholar]
  451. , , , , , , , , , , . Chetracins E and F, cytotoxic epipolythiodioxopiperazines from the marine-derived fungus Acrostalagmus luteoalbus HDN13-530. RSC Adv.. 2018;8:53-58.
    [CrossRef] [Google Scholar]
  452. , , , , , , , , . Exploration of Indole Alkaloids from Marine Fungus Pseudallescheria boydii F44–1 Using an Amino Acid-Directed Strategy. Mar. Drugs 2019
    [CrossRef] [Google Scholar]
  453. , , , , , , , , , , , , . Pretrichodermamides D–F from a Marine Algicolous Fungus Penicillium sp. KMM 4672. Marine Drugs 2016
    [CrossRef] [Google Scholar]
  454. , , , , , , , , , , , . Citriperazines A-D produced by a marine algae-derived fungus Penicillium sp. KMM 4672. Nat. Prod. Res.. 2020;34:1118-1123.
    [CrossRef] [Google Scholar]
  455. , , , . Patellazole C: a novel cytotoxic macrolide from Lissoclinum patella. J. Am. Chem. Soc.. 1988;110:7919-7920.
    [CrossRef] [Google Scholar]
  456. , , . Phorbasins D−F: Diterpenyl-taurines from a Southern Australian Marine Sponge, Phorbas sp. Org. Lett.. 2008;10:1959-1962.
    [CrossRef] [Google Scholar]
  457. , , , , , . A unique indolizinium alkaloid streptopertusacin A and bioactive bafilomycins from marine-derived Streptomyces sp. HZP-2216E. Phytochemistry. 2017;144:119-126.
    [CrossRef] [Google Scholar]
  458. , , , , , . A search for kinase inhibitors and antibacterial agents: bromopyrrolo-2-aminoimidazoles from a deep-water Great Australian Bight sponge, Axinella sp. Tetrahedron Lett.. 2012;53:3784-3787.
    [CrossRef] [Google Scholar]
  459. , , , , , , . A new thiodiketopiperzaine from the marine sponge Tedania sp. Nat. Prod. Res.. 2020;34:1113-1117.
    [CrossRef] [Google Scholar]
  460. , , , , . Laucysteinamide A, a Hybrid PKS/NRPS Metabolite from a Saipan Cyanobacterium, cf. Caldora penicillata. Marine Drugs 2017
    [CrossRef] [Google Scholar]
  461. , , , , , , , , , , , , , . MS-Derived Isotopic Fine Structure Reveals Forazoline A as a Thioketone-Containing Marine-Derived Natural Product. Org. Lett.. 2020;22:1275-1279.
    [CrossRef] [Google Scholar]
  462. , , , , , , , . New secondary metabolites from the marine-derived fungus talaromyces mangshanicus BTBU20211089. Marine Drugs 2022
    [Google Scholar]
  463. , , , , , , , . Nitrosporeusine A attenuates sepsis-associated acute kidney injury through the downregulation of IL-6/sIL-6R axis activation-mediated PGC-1α suppression. Biochem. Biophys. Res. Commun.. 2019;515:474-480.
    [CrossRef] [Google Scholar]
  464. , , , , , , , , , . Antifungal nafuredin and epithiodiketopiperazine derivatives from the mangrove-derived fungus Trichoderma harzianum D13. Front. Microbiol.. 2020;11
    [CrossRef] [Google Scholar]
  465. , , , , , , , , , . Penicisulfuranols A-F, Alkaloids from the Mangrove Endophytic Fungus Penicillium janthinellum HDN13-309. J. Nat. Prod.. 2017;80:71-75.
    [CrossRef] [Google Scholar]
  466. , , , , , , , , , , . Penispirozines A-H, Three Classes of Dioxopiperazine Alkaloids with Spirocyclic Skeletons Isolated from the Mangrove-Derived Penicillium janthinellum. J. Nat. Prod.. 2020;83:2647-2654.
    [CrossRef] [Google Scholar]
  467. , , . Atkamine: A New Pyrroloiminoquinone Scaffold from the Cold Water Aleutian Islands Latrunculia Sponge. Org. Lett.. 2013;15:1516-1519.
    [CrossRef] [Google Scholar]
  468. , , , , , , , . Two New Imidazolone-Containing Alkaloids and Further Metabolites from the Ascomycete Fungus Tricladium sp. Chem. Biodivers.. 2011;8:1914-1920.
    [CrossRef] [Google Scholar]
  469. , , , , , , , , , , , , , , . Computationally Assisted Discovery and Assignment of a Highly Strained and PANC-1 Selective Alkaloid from Alaska’s Deep Ocean. J. Am. Chem. Soc.. 2019;141:4338-4344.
    [CrossRef] [Google Scholar]

Appendix A

Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.arabjc.2023.105011.

Appendix A

Supplementary material

The following are the Supplementary data to this article:

Supplementary data 1

Supplementary data 1

Show Sections