10.8
CiteScore
 
5.3
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Corrigendum
Current Issue
Editorial
Erratum
Full lenth article
Original Article
Research article
Review
Review Article
SPECIAL ISSUE: ENVIRONMENTAL CHEMISTRY
10.8
CiteScore
5.3
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Corrigendum
Current Issue
Editorial
Erratum
Full lenth article
Original Article
Research article
Review
Review Article
SPECIAL ISSUE: ENVIRONMENTAL CHEMISTRY
View/Download PDF

Translate this page into:

Original article
2021
:14;
202104
doi:
10.1016/j.arabjc.2021.103055

Quantification of macro, micro and trace elements, and antimicrobial activity of medicinal herbs and their products

Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
Department of Medical Lab Technology, University of Haripur, Haripur 22060, Khyber Pakhtunkhwa, Pakistan

⁎Corresponding author at: Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan. nargisjamila@sbbwu.edu.pk (Nargis Jamila)

⁎⁎Corresponding author at: Department of Chemistry, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan. nkhan812@gmail.com (Naeem Khan),

Disclaimer:
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.

Abstract

Abstract

  • Macro, micro, and essential elements of 13 herbs and their products from Pakistan.

  • Microwave assisted digestion, ICP-OES, and ICP-MS analysis.

  • Toxic elements content determination of herbs and products.

  • Antimicrobial potential of herbs and products.

  • Toxic elements within the permissible limits.

Abstract

The study describes the content of macro, micro, and trace essential and toxic elements in thirteen medicinal herbs and their products including Acorus calamus, Blepharis edulis, Caesalpinia bonducella, Curculigo orchioides, Helicteres isora, Holarrhena pubescens, Pastinaca sativa, Pistacia integerrima, Quercus infectoria, Rauwolfia serpentina, Saussurea lappa, Teucrium stocksianum, and Xanthium strumarium available in the local markets of Pakistan. The elemental content were analyzed with the techniques of inductively coupled plasma (ICP) optical emission spectroscopy (OES) and ICP-mass spectrometry (MS). Furthermore, their antibacterial and antifungal activities were evaluated against the selected microbial pathogens including Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis and Escherichia coli, Candida albicans, Candida krusei, Aspergillus flavus, and Trichophyton mentagrophytes. Among macro elements, K and Ca showed the highest content, micro elements were in the order of Rb85/ Sr87 > Zn64/Cu63 > Ni60, and among essential trace elements, the content of Cr52/Cr53 and Co59 were high. The content of the analyzed toxic elements were lower than the permissible standard values. The antimicrobial activities against the subject strains were significant with inhibition zones of 7.0-19.0 mm in disc diffusion procedure, and 62.5–1000 µg/mL in minimum inhibitory concentration method. Hence, the presence of nutritional elements at appreciable concentrations, toxic elements within permissible ranges, and significant antimicrobial potential assume the subject herbs as promising nutritional and therapeutic remedies.

Keywords

Herbs
Pakistan
Trace elements
Inductively coupled plasma-optical emission spectroscopy
Antimicrobial
1

1 Introduction

Plants, either herbs, fruits or vegetables in the form of food and supplement are the main source of bioactive components and inorganic elements, and traditionally used to cure different diseases (Dall'Acqua et al., 2009; Billah et al., 2013; Peng et al., 2014; Jamila et al., 2016). In today’s market, a large number of medicinal herbs and their formulations are available to treat various diseases. For example, the species; Acorus calamus, Blepharis edulis, Caesalpinia Bonducella, Cuculigo orchioides, Helicteres isora, Holarrhena pubescens, Pastinaca sativa, Pistacia integrima, Quercus infectoria, Rauwolfia serpentina, Sassurea lappa, Teucrium stocksianum, and Xantium stumarium and their products are found in the Pansaar/Hakeems’ shops throughout Pakistan, which are used by the local people for the treatment of ulcer, diarrhea, digestive disorders, asthma, cough, diabetes, cardiovascular and as tonic (Table S1, supplementary material). Medicinal herbs are cost effective and easily accessible, and therefore a large number of Pakistani population specifically local segments, rely on these medicinal herbs. A. calamus is an aromatic plant playing significant role in the nervous system disorders, removal of fat, hemorrhoids, nasal problems, colic pain, diabetes, bronchitis, and skin diseases having anti-inflammatory, antidiabetic, and antimicrobial properties (Kim et al., 2009; Wu et al., 2009). B. edulis distributed throughout Pakistan, Iran, Afghanistan, and India is sold in markets as diuretic, expectorant, and wounds healing agent, showing significant antimicrobial, anticancer, and antiplatelet aggregation activities (Mahboubi et al., 2013). C. bonducella is utilized to cure tumors, inflammation, and liver disorders possessing antidiarrheal, antimicrobial, antidiabetic, antitumor, anti-inflammatory, and antioxidant properties (Billah et al., 2013). C. orchioides is locally used for jaundice, asthma, male sex dysfunction, bleeding, injuries, and to regulate menstrual cycle and possesses hepatoprotective, cytotoxic, and anticonvulsive properties (Wu et al., 2005; Dall'Acqua et al., 2009; Nie et al., 2013). H. isora is used to treat diarrhea, snake biting, and constipation (Kumar and Singh, 2014). H. pubescens is useful in amoebic dysentery, spleen and chest infections (Tuntiwachwuttikul et al., 2007; Yang et al., 2012). P. sativa is known as tonic, anti-inflammatory, and carminative (Waksmundzka-Hajnos et al., 2004). P. integerrima has been reported to reduce inflammation and gastrointestinal disorder having anticancer, anti-inflammatory, and leishmanicidal activities (Ahmad et al., 2008; Rauf et al., 2014). Q. infectoria is used as wound healing, in digestive disorders, kidneys, dental, and vaginal tightening in Asia (Fan et al., 2014; Kaur et al., 2004). R. serpentina is widely utilized as antihypertensive and tranquilizing agent to cure schizophrenia, cholera, colic, and snakebite (Bharti et al., 2017). S. lappa is used to cure skin allergies, asthma, carminative, and anthelmintic (Robinson et al., 2008; Julianti et al., 2011). T. stocksianum has been used in stomachic, diarrhea, diabetes, gastrointestinal ailments, and sore throat having anti-inflammatory activity (Bakhtiari and Asgarpanah, 2015; Shah and Shah, 2015). X. strumariam is taken in asthma, nasal sinusitis, and headache (Han et al., 2007; Peng et al., 2014). The detailed phytochemical and pharmacological profile of these medicinal herbs is given in Table S1, supplementary material.

Plants are the main source of several elements, which are essential for human beings. The elements when present in large quantity (100 mg/g) are known as macronutrients/major elements, those in small amounts (>1 µg/g) referred as micronutrients or minor elements or those present in trace amount (<1 µg/g) are called trace elements. These elements have major functions in metabolic cycles and inhibition of diseases within their recommended and permissible ranges. Therefore, to fulfil the nutritional requirement, plants and herbs should be used in the daily diet. In addition, consumers have increased interest to choose the diet having high nutrient levels, preferably from natural sources (Asioli et al., 2017). However, nowadays, the use of fertilizers and pesticides have been considerably contributed to the increased level of non-biodegradable toxic metals such as arsenic, cadmium, lead, and mercury in the soil and crops, which are accumulated by vegetables, fruits and medicinal plants/herbs (Chen et al., 2014; Bloise et al., 2016, 2020). In products formulation and synthesis, various processes including extraction, dehydration, refrigeration, preservation, packaging and storage can cause contamination of the products with toxic metals (Abbasi et al., 2020). For example, several Indian and Chinese herbal medicines contained lead, arsenic, and mercury more than the permissible limits, which caused poisoning to human (Saeed et al., 2011; Shen et al., 2012). The excessive accumulation of these metals in food and herbal medicine may pose serious health risks to humans upon consumption. Hence, besides the market quality attributes, the determination of content levels (permissible/impermissible) of toxic metals, and safety of the medicinal herbs and their products need to be investigated.

Different analytical techniques such as atomic absorption spectrometry, inductively coupled plasma optical emission spectroscopy (ICP-OES), and inductively coupled plasma mass spectrometry (ICP-MS) have been applied for content determination of trace essential and toxic elements in environmental and biological samples (Huang et al., 2007; Ivanova-Petropulos et al., 2015; Park et al., 2018). Among these methods, ICP-MS and ICP-OES are efficient and accurate techniques with low detection limits and wider linear dynamic range (Park et al., 2018; Jamila et al., 2019, 2020).

Considering the scientific and consumers’ demand predominantly the toxicity associated with heavy metals, the present study aimed to analyze medicinal herbs including A. calamus, B. edulis, C. Bonducella, C. orchioides, H. isora, H. pubescens, P. sativa, P. integerrima, Q. infectoria, R. serpentina, S. lappa, T. stocksianum, X. strumarium, and their products available in the local markets of Khyber Pakhtunkhwa, Pakistan. The content of macronutrients (Al, Ca, Fe, K, Mg, Na, P, S), micronutrients (Cu, Ni, Rb, Sr, Zn), trace essential nutrients (Co, Cr, Se, V), trace non-toxic (Ga, Li), and toxic elements (As, Ba, Be, Cd, Cs, In, Pb, Tl, U) were determined. The applied ICP-OES and ICP-MS techniques were validated by quality parameters; limits of detection (LOD), limits of quantification (LOQ), precision (%RSD), spiking recovery tests, analyzing the certified reference materials (NIST-1570a, spinach leaves), and by participation in accredited laboratory proficiency test (inter laboratories calibrations) organized by Food Analysis Performance Assessment Scheme (FAPAS). Plants are the potential sources of antimicrobial drugs against microbial pathogens (Shin et al., 2018; Hammerbacher et al., 2019). Therefore, the current study in addition to the elemental content determination, reports the antibacterial and antifungal activities of the subject medicinal herbs ad their related products.

2

2 Materials and methods

2.1

2.1 Samples collection

A. calamus (root), B. edulis (seeds), C. Bonducella (seeds), C. orchioides (root), H. isora (fruit), H. pubescens (seeds), P. sativa (root), P. integerrima (fruit), Q. infectoria (galls), R. serpentina (root), S. lappa (root), T. stocksianum (aerial part), and X. strumarium (leaves) and their products (P1-P39) in triplicate, were collected and procured from three different markets of Peshawar, Khyber Pakhtunkhwa, during January-June 2019. The samples were identified by a Taxonomist from Kohat University of Science and Technology, Kohat, and the voucher specimen are deposited at the Herbarium of Department of Botany.

2.2

2.2 Chemicals and instrumentation

Chemicals for the samples digestion and elemental analysis; nitric acid (HNO3), hydrogen peroxide (H2O2), ultra-pure deionized water (>18.0 MΩ.cm), multi-element standards (1000 mg/L and 10 mg/L), and standard reference material (SRM-1570a, spinach leaves) were purchased from Dongwoo, Fine-Chem (Korea), Millipore (Bedford, MA, USA), Perkin Elmer (CT, USA), and National Institute of Standards and Technology, NIST (Gaithersburg, MD, USA). For samples digestion and elemental profile, a microwave reaction system (Analytik Jena Topwave 3000, Austria), an ICP-OES (Optima 8000), and ICP-MS (300D) were used under the conditions established by our laboratory (Park et al., 2018; Jamila et al., 2019). Microbial strains; Staphylococcus aureus (ATCC 29213), Bacillus subtilis (ATCC 19659), Pseudomonas aeruginosa (ATCC 17588), Escherichia coli (ATCC 25922), Candida albicans (ATCC90029), Candida krusei (ATCC6258), Aspergillus flavus (ATCC9807), and Trichophyton mentagrophytes (ATCC40004), nutrient agar (Muller Hinton Broth), p-iodonitrotetrazolium chloride (INT), vancomycin, streptomycin, fluconazole, and amphotericin were purchased from Oxoid (England) and Sigma-Aldrich (USA).

2.3

2.3 Samples preparation for elemental analysis and antimicrobial activity

For elemental analysis, the dried powdered samples were digested using microwave digestion system and decomposition procedures (Park et al., 2018; Jamila et al., 2019) in which 0.5 g of the samples were mixed with 1.0 mL H2O2 (30%, v/v) and 7.0 mL HNO3 (70%) in microwave polytetrafluoroethylene digestion vessels. The system was operated at 1000 W and different temperature as; 80 °C, 5 min; 120 °C, 5 min; 150 °C, 5 min; 180 °C, 20 min; and cooling at 40 °C. After decomposition, the combusted samples after dilution with deionized water up to 20.0 g were filtered and subjected to elemental analysis. For antimicrobial activity, the ethanolic extracts of the subject samples were prepared by extracting dried grinded samples (10 g) in Soxhlet extractor with ethanol (100 mL) and evaporation through rotary evaporator.

2.4

2.4 Elemental analysis and validation of ICP-OES and ICP-MS techniques

Macronutrients; Al, Ca, Fe, K, Mg, Na, P and S were analyzed by ICP-OES whereas micro (Cu, Ni, Rb, Sr, Zn), trace essential (Co, Cr, Se, V), trace non-toxic (Li, Ga) and trace toxic (As, Ba, Be, Cd, Cs, In, Os, Pb, Tl, U) elements were determined by ICP-MS technique. The methods were validated through linearity, limits of detection and quantification (LOD, LOQ), precision, accuracy, and analysis of certified reference material (Park et al., 2018; Jamila et al., 2019). The LOD and LOQ were calculated as three and ten times standard deviations (3xSD and 10xSD) from ten replicates of blank per slope of the calibration curve, respectively.

2.5

2.5 Antimicrobial activity assessments of herbs and their products

Antimicrobial activity was determined using disc diffusion (DD) and micro-dilution (MD) methods against S. aureus, B. subtilis, P. aeruginosa, E, coli, C, albicans, C. krusei, A. flavus, and T. mentagrophytes using Muller-Hinton agar (MHA) and broth (MHB) micro-dilution methods (Jamila et al., 2020). In DD assay, an inoculum of 100 μL was streaked on the Mueller–Hinton agar surface using a sterile cotton swab. Then, sterile paper disc impregnated with 20 μL of 2000 μg/mL (2 mg extract per 1 mL of ethanol) extracts of each herb and product sample, and the standards including streptomycin, vancomycin, fluconazole, and amphotericin were kept on inoculated agar. The samples were incubated at 37 °C overnight, and after that, the diameters of inhibition zone (mm) were measured. In MD assay, a concentration range of 1000–31.25 µg/mL using sterile flat-bottom 96-well plate was performed. The bacterial strains were Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa whereas yeasts included Candida albicans, Candida krusei, Aspergillus flavus, and Trichophyton mentagrophytes.

2.6

2.6 Statistical analysis

The obtained results are reported as means ± standard deviations (n = 3). The mean significant differences (represented by superscript letters) between the obtained values were analyzed using ANOVA along with Tukey’s HSD test in SPSS, version 20.0 (SPSS Inc., Chicago, USA). Data are expressed with a significance level of p < 0.05.

3

3 Results and discussion

3.1

3.1 Validation of ICP-OES and ICP-MS techniques

The validation results obtained are given in Table S2, supplementary material. The values of relative standard deviation (%RSD) for precision were below 3%, and spike recovery (%) obtained was ranging from 94 to 104%. The recoveries of reference material; NIST SRM-1573a, tomato leaves analysis for accuracy are given in Table S3, supplementary material. In the inter laboratories calibrations by FAPAS, the results of the proficiency test were successfully achieved within 0.5 Z-score. Hence, the applied techniques for the elemental analysis of the subject herbs fulfill the required standards of Association of Official Analytical Chemists (AOAC, 2012).

3.2

3.2 Elemental content analysis of herbs and their products

A large segment of the developing countries still relies on the traditional medicine due to their efficacy and accessibility. However, contamination of medicinal herbs and their products with heavy metals, which ultimately affect their safety and quality, is one of the most pressing threats to human health as well as the pharmaceutical industries (Asgari et al., 2017). The results (mean ± standard deviation, µg/g) of macro, micro and essential trace nutrients are enlisted as Tables 1–6. From the result of the elemental analysis, it was found that the content of the macronutrients are in the order of: K > P > Ca > Na > S > Mg > Fe > Al (A. calamus), K > Ca > P > Mg > Al > Fe > S > Na (B. edulis), K > P > Ca > Mg > S > Fe > Al > Na (C. bonducella), Ca > K > Al > Mg > P > Na > S > Fe (C. orchioides), K > Ca > Mg > P > S > Na > Fe > Al (H. isora), K > Ca > P > Mg > S > Fe > Al > Na (H. pubescens), K > P > Ca > Mg > S > Al > Na > Fe (P. integerrima), K > Ca > Mg > P > Fe > Al > S > Na (P. sativa), K > Ca > P > Mg > S > Na > Al > Fe (Q. infectoria), K > Ca > P > Mg > Al > Fe > S > Na (R. serpentina), Ca > K > Mg > S > P > Fe > Al > Na (S. lappa), K > Ca > Mg > Fe > Al > P > Na > S (T. stocksianum), and K > Ca > Mg > Al > Fe > P > S > Na (X. strumarium). All the herbs except C. orchioides and S. lappa showed the highest content of K followed by Ca. Overall, the analyzed herbs were preferably the rich sources of K, Ca, P, and Mg. An inconsistency and variations were found in the content of macronutrients, when compared to the literature, which might be attributed to geographical variations. For example, in Q. infectoria of Turkish origin, the content of K and Fe analyzed by atomic absorption spectroscopy, were present as 8326 µg/g and 19 µg/g, respectively. In A. calamus, the content of Ca, K, Al, and Fe were 2658 µg/g, 11447 µg/g, 979 µg/g, and 707 µg/g, respectively (Özcan and Bayçu, 2005; Özcan and Akbulut, 2008). Regarding the macro elements content, on the whole, Ca, K, Mg and Na were the dominating macronutrients in almost all the products whereas S and P were present at lower concentrations (Table 2).

Table 1 Mean concentration (µg/g, dry weight basis) of macro, micro, trace essential, nontoxic, and toxic elements in the medicinal herbs used in Pakistan.
Elements A. calamus B. edulis C. Bonducella C. orchioides H. isora H. pubescens P. integerrima P. sativa Q. infectoria R. serpentina S. lappa T. stocksianum X. strumarium
Macro elements
Al 308 ± 21.3 33.1 ± 6.26 24.8 ± 6.39 3188.5 ± 152.7 2.5 ± 0.68 853.6 ± 197.6 114.8 ± 18.6 728.6 ± 24.6 32.4 ± 8.7 785.7 ± 46.0 174.5 ± 24.3 2712.3 ± 448.3 893.6 ± 211.1
Ca 4634.9 ± 136.2 155.2 ± 11.6 1181.0 ± 44.6 16293.6 ± 293.3 141.9 ± 1.44 9409.0 ± 221.6 1918.5 ± 37.0 6306.3 ± 46.0 1426.0 ± 12.4 6515.8 ± 562.3 14984.7 ± 765.8 12569.3 ± 741.6 6012.8 ± 284.8
Fe 758.3 ± 34.5 29.9 ± 2.16 56.2 ± 1.97 225.3 ± 126.2 2.85 ± 0.408 1063.5 ± 230.2 39.8 ± 5.39 776.6 ± 17.3 16.6 ± 2.45 630.7 ± 37.3 234.9 ± 16.2 3067.2 ± 554.0 733.8 ± 76.4
K 29748.0 ± 970.5 400.4 ± 1.48 15887.6 ± 244.0 10249.1 ± 384.1 523.6 ± 13.7 10336.5 ± 233.2 24556.5 ± 616.2 8180.8 ± 193.7 6821.6 ± 76.5 10256.4 ± 492.1 7591.0 ± 283.8 15509.6 ± 735.2 7341.1 ± 143.6
Mg 1291.0 ± 26.5 68.2 ± 1.45 1015.9 ± 32.0 2728.8 ± 84.9 104.5 ± 6.87 3048.7 ± 31.6 727.8 ± 50.4 1549.8 ± 145.7 411.9 ± 2.29 1157.1 ± 33.6 2771.3 ± 189.6 3143.4 ± 207.8 1382.3 ± 26.5
Na 2439.6 ± 105.8 8.96 ± 0.770 14.0 ± 3.62 428.3 ± 36.5 2.99 ± 0.586 94.3 ± 12.4 79.2 ± 25.8 76.5 ± 8.2 73.5 ± 0.403 196.3 ± 23.0 29.9 ± 7.08 1515.9 ± 84.9 177.6 ± 82.5
P 6372.6 ± 77.9 114.7 ± 4.45 2653.5 ± 91.5 1105.9 ± 26.7 67.5 ± 6.58 5586.3 ± 233.2 2737.7 ± 57.9 999.7 ± 40.9 565.4 ± 12.4 2131.2 ± 159.0 1495.4 ± 49.2 2045.6 ± 83.7 725.6 ± 5.85
S 1385.9 ± 35.5 14.8 ± 0.415 362.7 ± 7,03 282.5 ± 9.70 11.0 ± 0.841 1111.2 ± 12.1 188.2 ± 5.70 242.7 ± 20.2 80.9 ± 4.75 573.4 ± 26.3 1754.5 ± 102.4 616.8 ± 32.9 178.3 ± 0.858
Micro elements
Ni60 1.30 ± 0.052 0.095 ± 0.016 2.01 ± 0.129 7.17 ± 0.171 0.080 ± 0.019 8.21 ± 0.760 0.8500.061± 4.94 ± 0.382 3.01 ± 0.278 7.09 ± 0.042 4.61 ± 0.246 6.36 ± 0.613 5.93 ± 0.507
Cu63 8.21 ± 0.137 0.554 ± 0.045 9.30 ± 0.305 6.90 ± 0.230 0.206 ± 0.022 10.5 ± 0.764 2.60 ± 0.088 4.78 ± 0.127 4.36 ± 0.194 9.48 ± 0.442 0.824 ± 0.007 8.03 ± 0.092 9.59 ± 0.213
Zn64 17.1 ± 0.968 0.856 ± 0.024 23.2 ± 0.813 50.8 ± 0.830 0.861 ± 0.086 41.2 ± 1.30 7.91 ± 2.89 23.2 ± 1.89 3.91 ± 1.45 20.23 ± 0.779 9.53 ± 0.453 31.2 ± 0.524 26.9 ± 0.676
Sr87 162.8 ± 7.23 0.649 ± 0.043 122.9 ± 2.05 416.1 ± 10.7 8.68 ± 0.342 180.0 ± 15.0 184.2 ± 11.2 62.4 ± 25.4 113.7 ± 5.74 164.5 ± 7.79 417.1 ± 15.1 140.6 ± 2.45 192.1 ± 8.43
Rb85 83.7 ± 4.75 1.45 ± 0.309 137.5 ± 2.75 284.0 ± 5.56 8.18 ± 0.290 145.7 ± 13.6 215.9 ± 11.9 6.79 ± 0.186 124.1 ± 7.37 13.1 ± 7.77 80.3 ± 1.63 67.4 ± 2.18 106.5 ± 5.55
Trace essential elements
V51 0.95 ± 0.03 0.10 ± 0.002 0.09 ± 0.001 5.78 ± 0.386 0.01 ± 0.0009 2.84 ± 0.482 0.10 ± 0.003 2.57 ± 0.16 0.12 ± 0.002 1.73 ± 0.089 0.722 ± 0.119 5.25 ± 0.880 2.54 ± 0.31
Cr52 1.21 ± 0.090 0.295 ± 0.108 3.70 ± 0.529 7.957 ± 0.365 0.040 ± 0.004 89.2 ± 15.3 0.777 ± 0.144 5.62 ± 0.037 0.526 ± 0.127 33.7 ± 6.97 1.60 ± 0.120 8.08 ± 0.857 3.76 ± 0.430
Cr53 1.13 ± 0.092 0.214 ± 0.004 2.40 ± 0.552 8.66 ± 0.412 0.032 ± 0.004 21.0 ± 3.70 0.506 ± 0.130.6 5.83 ± 0.395 0.445 ± 0.137 10.7 ± 0.772 1.45 ± 0.108 7.87 ± 0.926 3.27 ± 0.404
Co59 0.697 ± 0.015 0.011 ± 0.001 0.418 ± 0.004 1.359 ± 0.084 0.003 ± 0.0003 0.496 ± 0.039 0.025 ± 0.0004 0.461 ± 0.028 0.087 ± 0.021 0.506 ± 0.042 0.171 ± 0.049 0.736 ± 0.128 0.771 ± 0.033
Se82 0.033 ± 0.010 0.001 ± 0.0002 0.051 ± 0.003 1.44 ± 0.194 0.0006 ± 0.0001 0.052 ± 0.008 0.010 ± 0.001 0.190 ± 0.041 0.051 ± 0.011 0.178 ± 0.037 0.088 ± 0.018 0.833 ± 0.224 0.016 ± 0.009
Trace non toxic elements
Li7 0.196 ± 0.012 0.051 ± 0.003 0.167 ± 0.008 3.20 ± 0.224 0.006 ± 0.0006 0.702 ± 0.151 0.070 ± 0.002 3.61 ± 0.211 4.45 ± 0.424 2.20 ± 0.144 0.427 ± 0.101 7.12 ± 1.12 1.74 ± 0.281
Ga69 0.738 ± 0.049 0.013 ± 0.002 0.117 ± 0.009 2.63 ± 0.041 0.005 ± 0.0003 0.626 ± 0.030 0.110 ± 0.023 1.79 ± 0.045 0.273 ± 0.067 0.698 ± 0.048 0.889 ± 0.058 0.756 ± 0.136 2.86 ± 0.207
Trace toxic elements
As75 0.212 ± 0.044 0.008 ± 0.002 0.026 ± 0.002 0.189 ± 0.012 0.001 ± 0.00008 0.091 ± 0.005 0.018 ± 0.002 0.221 ± 0.017 0.040 ± 0.008 0.168 ± 0.020 0.063 ± 0.015 0.899 ± 0.127 0.159 ± 0.042
Cd111 0.021 ± 0.001 0.0004 ± 0.00004 0.014 ± 0.001 0.028 ± 0.008 0.0008 ± 0.000004 0.019 ± 0.002 0.002 ± 0.0009 0.025 ± 0.003 0.022 ± 0.003 0.021 ± 0.001 0.041 ± 0.009 0.088 ± 0.0002 0.052 ± 0.002
In115 0.009 ± 0.004 0.0002 ± 0.00004 0.0001 ± 0.00001 0.004 ± 0.0001 0.0003 ± 0.000001 0.011 ± 0.0001 0.012 ± 0.00002 0.002 ± 0.0003 0.071 ± 0.006 0.008 ± 0.002 0.054 ± 0.011 0.003 ± 0.0007 0.010 ± 0.0002
Cs133 0.019 ± 0.001 0.008 ± 0.00003 0.027 ± 0.0002 0.526 ± 0.021 0.005 ± 0.0003 0.182 ± 0.057 0.355 ± 0.131 0.236 ± 0.011 0.367 ± 0.020 0.295 ± 0.018 0.171 ± 0.0008 0.506 ± 0.088 266.8 ± 0.035
Ba138 418.8 ± 9.72 3.25 ± 0.085 5.35 ± 0.315 1086.0 ± 187.9 3.83 ± 0.166 375.7 ± 44.2 5.18 ± 1.02 772.3 ± 34.2 102.0 ± 5.60 205.4 ± 15.3 680.5 ± 23.1 182.5 ± 22.0 1829.9 ± 67.8
Be9 0.003 ± 0.0006 0.0004 ± 0.00007 0.0009 ± 0.0002 0.044 ± 0.002 0.00005 ± 0.000008 0.016 ± 0.002 0.00004 ± 0.00001 0.018 ± 0.001 0.025 ± 0.003 0.016 ± 0.0009 0.017 ± 0.003 0.038 ± 0.0007 0.016 ± 0.004
Tl205 0.028 ± 0.008 0.0003 ± 0.00004 0.005 ± 0.0002 0.043 ± 0.001 0.0006 ± 0.0001 0.007 ± 0.001 0.007 ± 0.0001 0.015 ± 0.0004 0.080 ± 0.016 0.033 ± 0.002 0.057 ± 0.090 0.020 ± 0.003 0.024 ± 0.001
Pb206 2.99 ± 0.260 0.051 ± 0.006 4.58 ± 0.465 1.24 ± 0.069 0.040 ± 0.022 0.872 ± 0.068 0.429 ± 0.060 1.98 ± 0.168 0.917 ± 0.242 0.638 ± 0.064 2.15 ± 0.061 4.51 ± 0.937 1.84 ± 0.190
Pb208 3.03 ± 0.274 0.051 ± 0.005 4.86 ± 0.461 1.28 ± 0.067 0.039 ± 0.023 0.833 ± 0.077 0.419 ± 0.063 2.04 ± 0.189 0.933 ± 0.241 0.638 ± 0.060 2.14 ± 0.051 4.80 ± 1.12 1.82 ± 0.199
U238 0.038 ± 0.004 0.002 ± 0.00008 0.002 ± 0.0001 0.047 ± 0.002 0.000009 ± 0.000009 0.181 ± 0.015 0.005 ± 0.0003 0.059 ± 0.007 0.0001 ± 0.00003 0.091 ± 0.008 0.002 ± 0.0009 0.004 ± 0.001 0.038 ± 0.009
Table 2 Mean concentration (µg/g, dry weight basis) of macro elements of the analyzed herbal products available in local markets of Pakistan.
Herb Product Al Ca K Fe Mg Na P S
A. calamus P1 18.7 ± 1.44 196.7 ± 6.08 219.7 ± 8.19 116.8 ± 1.01 186.3 ± 1.17 179.5 ± 3.03 39.3 ± 0.173 138.9 ± 2.78
P2 93.7 ± 3.17 119.4 ± 2.09 210.0 ± 1.43 104.9 ± 0.91 389.2 ± 11.9 215.8 ± 6.49 59.8 ± 1.60 219.7 ± 10.5
P3 29.5 ± 3.02 194.3 ± 11.6 307.1 ± 7.91 148.4 ± 5.79 201.8 ± 5.19 172.4 ± 3.82 48.7 ± 1.03 176.0 ± 5.29
B. edulis P4 28.3 ± 1.16 186.4 ± 7.18 227.9 ± 5.05 167.2 ± 5.19 56.9 ± 0.91 17.6 ± 0.59 38.9 ± 1.00 85.3 ± 1.03
P5 50.5 ± 2.15 169.2 ± 3.19 257.7 ± 4.41 94.7 ± 1.04 79.0 ± 3.17 37.6 ± 1.49 50.3 ± 1.03 106.8 ± 4.19
P6 38.3 ± 0.916 119.4 ± 3.00 301.2 ± 11.0 108.9 ± 1.38 84.0 ± 2.11 28.9 ± 1.11 41.7 ± 1.16 95.0 ± 1.93
C. bonducella P7 101.8 ± 1.59 69.6 ± 3.10 206.7 ± 11.9 17.9 ± 0.917 191.4 ± 8.29 95.7 ± 5.82 71.5 ± 1.72 18.5 ± 0.617
P8 104.6 ± 7.13 58.4 ± 1.53 147.1 ± 11.3 42.8 ± 4.19 115.8 ± 4.72 100.6 ± 5.16 25.9 ± 2.91 32.6 ± 1.88
P9 131.7 ± 1.34 37.2 ± 1.10 151.5 ± 5.07 15.0 ± 1.93 93.7 ± 4.03 69.3 ± 3.07 17.5 ± 1.03 11.3 ± 1.08
C. orchioides P10 73.2 ± 1.88 232.2 ± 7.93 531.7 ± 16.1 104.9 ± 6.17 128.4 ± 11.8 39.0 ± 5.09 48.1 ± 5.08 101.6 ± 11.0
P11 91.9 ± 1.13 159.6 ± 4.45 363.8 ± 12.9 248.4 ± 15.9 164.4 ± 16.9 61.8 ± 3.81 79.9 ± 7.16 90.0 ± 4.79
P12 58.6 ± 6.10 139.7 ± 13.7 293.1 ± 9.15 293.2 ± 21.7 175 ± 11.9 64.4 ± 5.23 91.9 ± 7.86 106.9 ± 12.2
H. isora P13 2.10 ± 5.43 347.2 ± 15.3 229.5 ± 14.1 115.9 ± 15.8 188.3 ± 29.0 371.7 ± 28.3 19.0 ± 1.15 97.6 ± 19.5
P14 3.27 ± 0.941 323.1 ± 16.0 199.2 ± 7.88 110.8 ± 12.3 200.7 ± 10.7 314.3 ± 21.6 26.3 ± 1.63 99.3 ± 16.0
P15 5.51 ± 1.16 286.9 ± 13.9 217.3 ± 2.05 91.7 ± 7.65 214.6 ± 3.76 165.2 ± 12.6 23.2 ± 1.83 114.7 ± 11.7
H. pubescens P16 5.99 ± 1.34 84.9 ± 1.41 277.8 ± 5.49 127.6 ± 9.51 381.1 ± 4.79 193.7 ± 10.2 181.3 ± 8.45 93.7 ± 9.89
P17 4.29 ± 1.61 94.8 ± 0.858 191.8 ± 11.3 113.5 ± 7.32 279.3 ± 13.4 178.3 ± 4.99 172.8 ± 11.7 113.5 ± 11.9
P18 9.17 ± 2.70 110.1 ± 14.3 266.9 ± 18.9 98.9 ± 9.94 237.3 ± 12.6 160.5 ± 12.9 235.2 ± 27.3 87.5 ± 8.39
P. integerrima P19 11.7 ± 2.46 212.4 ± 9.99 391.2 ± 12.1 194.2 ± 9.18 254.5 ± 11.2 211.2 ± 3.99 283.8 ± 20.7 71.9 ± 10.5
P20 21.2 ± 2.46 194.7 ± 11.0 423.7 ± 16.6 236.8 ± 15.0 326.1 ± 13.7 143.9 ± 12.6 307.5 ± 19.0 94.9 ± 7.91
P21 32.8 ± 4.86 159.5 ± 14.4 352.8 ± 20.3 147.9 ± 16.7 366.4 ± 9.59 217.3 ± 10.5 123.6 ± 13.5 108.6 ± 10.1
P. sativa P22 53.8 ± 2.95 71.5 ± 4.02 472.4 ± 13.6 79.6 ± 8.17 243.5 ± 10.4 154.1 ± 12.8 73.0 ± 6.29 51.9 ± 3.06
P23 63.4 ± 6.15 97.8 ± 7.51 630.5 ± 27.8 49.0 ± 4.52 193.6 ± 12.6 119.4 ± 9.69 105.4 ± 10.2 39.8 ± 3.17
P24 48.7 ± 3.16 104.7 ± 14.3 428.6 ± 28.9 103.7 ± 11.3 236.4 ± 9.93 138.2 ± 12.9 127.2 ± 16.8 51.3 ± 9.74
Q. infectoria P25 58.2 ± 7.98 285.7 ± 13.8 908.7 ± 73.5 197.9 ± 14.5 178.1 ± 15.5 205.6 ± 11.2 155.6 ± 15.3 98.1 ± 9.26
P26 61.9 ± 7.39 158.5 ± 12.9 715.4 ± 71.3 254.1 ± 10.7 213.5 ± 12.3 241.5 ± 28.1 194.2 ± 13.8 139.0 ± 19.4
P27 28.0 ± 2.95 170.3 ± 13.8 594.4 ± 41.8 295.7 ± 21.3 22.9c ± 1.39 50.8d ± 3.98 117.8 ± 9.01 172.6 ± 20.8
R. serpentina P28 104.7 ± 23.9 481.5 ± 63.7 140.5 ± 11.8 194.8 ± 12.6 103.7 ± 9.78 37.7 ± 4.98 59.0 ± 6.44 84.2 ± 10.3
P29 92.3 ± 9.6 355.0 ± 25.0 112.6 ± 19.3 238.9 ± 17.8 117.5 ± 12.7 39.5 ± 3.13 71.3 ± 7.99 67.2 ± 5.87
P30 99.3 ± 7.36 265.6 ± 14.7 116.6 ± 15.8 211.4 ± 16.9 138.3 ± 13.8 45.9 ± 6.70 63.8 ± 8.15 59.9 ± 7.16
S. lappa P31 16.8 ± 0.916 56.8 ± 5.8 271.3 ± 57.3 98.4 ± 11.7 112.2 ± 1.96 51.9 ± 3.73 31.8 ± 1.03 52.9 ± 2.85
P32 37.8 ± 6.82 49.5 ± 2.96 272.5 ± 15.6 127.9 ± 13.8 206.7 ± 26.6 79.9 ± 5.24 27.4 ± 1.58 63.7 ± 7.47
P33 20.6 ± 2.50 91.5 ± 7.85 167.6 ± 17.0 100.5 ± 8.04 203.4 ± 17.6 71.8 ± 5.78 36.9 ± 4.19 50.5 ± 2.03
T. stocksianum P34 105.5 ± 9.33 80.6 ± 6.02 941.9 ± 57.3 73.2 ± 5.81 531.6 ± 65.4 401.9 ± 43.5 137.8 ± 14.6 118.6 ± 11.4
P35 99.6 ± 7.62 104.7 ± 11.3 888.5 ± 94.9 58.3 ± 6.14 396.1 ± 21.8 430.8 ± 37.4 103.7 ± 11.9 144.7 ± 12.9
P36 87.9 ± 9.18 118.3 ± 15.8 885.1 ± 78.6 63.7 ± 7.72 305.3 ± 35.9 413.4 ± 26.9 99.6 ± 9.36 102.7 ± 11.1
X. strumarium P37 116.8 ± 8.26 482.3 ± 86.2 407.6 ± 31.9 79.5 ± 8.16 378.8 ± 27.5 693.7 ± 56.0 72.4 ± 8.13 47.3 ± 4.11
P38 91.7 ± 7.31 493.4 ± 71.9 469.4 ± 87.8 65.8 ± 8.29 329.9 ± 22.69 562.0 ± 35.6 65.0 ± 7.14 39.6 ± 5.11
P39 77.3 ± 6.94 406.4 ± 31.9 519.4 ± 57.8 53.8 ± 7.35 311.6 ± 38.6 650.8 ± 60.2 55.7 ± 6.71 44.8 ± 3.19
Table 3 Mean concentration (µg/g, dry weight basis) of micro elements of the analyzed herbal products available in local markets of Pakistan.
Herb Product Ni60 Cu63 Zn64 Sr87 Rb85
A. calamus P1 1.69 ± 0.111 1.11 ± 0.219 11.3 ± 1.95 59.3 ± 3.87 63.4 ± 4.69
P2 2.00 ± 0.107 1.49 ± 0.404 19.1 ± 1.18 50.1 ± 4.01 68.9 ± 6.19
P3 1.59 ± 0.405 0.915 ± 0.010 12.7 ± 1.67 61.2 ± 11.1 72.4 ± 3.07
B. edulis P4 4.18 ± 0.311 0.518 ± 0.071 3.39 ± 0.017 2.17 ± 0.051 3.06 ± 0.215
P5 3.78 ± 0.401 0.383 ± 0.091 4.59 ± 1.02 3.14 ± 0.072 2.27 ± 0.081
P6 4.97 ± 0.917 0.69 ± 0.039 2.17 ± 0.729 2.73 ± 0.052 2.79 ± 0.471
C. bonducella P7 1.60 ± 0.591 0.911 ± 0.029 9.18 ± 1.83 25.6 ± 1.21 95.8 ± 3.17
P8 2.01 ± 0.715 0.893 ± 0.091 12.8 ± 2.30 29.3 ± 2.17 104.8 ± 9.17
P9 2.06 ± 0.619 1.06 ± 0.431 10.4 ± 1.06 23.4 ± 1.73 110.6 ± 13.8
C. orchioides P10 1.85 ± 0.092 0.557 ± 0.048 21.1 ± 2.79 74.3 ± 7.17 196.9 ± 11.0
P11 1.71 ± 0.094 0.618 ± 0.098 18.2 ± 3.50 79.5 ± 5.18 173.8 ± 10.4
P12 2.10 ± 0.097 1.00 ± 0.059 15.9 ± 1.16 80.3 ± 9.03 205.7 ± 15.6
H. isora P13 0.454 ± 0.016 1.50 ± 0.261 1.75 ± 0.704 10.2 ± 1.00 10.1 ± 0.981
P14 0.706 ± 0.031 1.39 ± 0.906 2.60 ± 0.946 9.44 ± 0.973 9.63 ± 1.03
P15 0.517 ± 0.068 1.10 ± 0.291 3.38 ± 1.19 11.3 ± 2.03 11.7 ± 1.81
H. pubescens P16 0.963 ± 0.031 1.32 ± 0.604 31.3 ± 3.16 90.3 ± 9.01 123.5 ± 9.24
P17 1.18 ± 0.059 1.49 ± 0.439 26.4 ± 2.01 101.1 ± 10.1 134.6 ± 8.24
P18 0.946 ± 0.051 1.68 ± 0.379 34.3 ± 4.15 87.1 ± 7.18 157.9 ± 14.0
P. integerrima P19 2.09 ± 0.712 0.330 ± 0.005 2.50 ± 0.701 130.6 ± 8.83 169.9 ± 12.1
P20 2.01 ± 0.503 0.519 ± 0.073 2.18 ± 0.513 159.9 ± 10.8 193.7 ± 14.9
P21 1.87 ± 0.701 0.364 ± 0.014 3.11 ± 0.241 129.0 ± 6.78 207.7 ± 10.7
P. sativa P22 4.03 ± 1.01 2.21 ± 0.037 4.57 ± 0.735 194.6 ± 14.7 11.5 ± 1.17
P23 4.72 ± 0.872 2.27 ± 0.031 4.44 ± 0.719 117.9 ± 10.0 11.0 ± 0.741
P24 4.43 ± 0.819 1.92 ± 0.043 4.92 ± 0.536 160.7 ± 13.8 9.47 ± 1.10
Q. infectoria P25 2.61 ± 0.771 0.536 ± 0.091 0.971 ± 0.517 52.8 ± 7.93 117.8 ± 14.0
P26 3.01 ± 0.913 0.626 ± 0.017 0.986 ± 0.083 60.1 ± 6.09 126.1 ± 10.1
P27 2.89 ± 0.952 0.654 ± 0.080 1.36 ± 0.075 73.5 ± 9.15 109.6 ± 9.93
R. serpentina P28 1.14 ± 0.089 0.357 ± 0.017 29.3 ± 4.10 103.6 ± 9.00 9.94 ± 1.06
P29 1.25 ± 0.348 0.328 ± 0.041 31.6 ± 2.27 97.6 ± 10.2 12.6 ± 1.59
P30 0.998 ± 0.063 0.295 ± 0.058 27.8 ± 2.96 113.1 ± 15.9 14.8 ± 1.51
S. lappa P31 0.108 ± 0.021 0.009 ± 0.001 7.89 ± 1.01 180.1 ± 20.6 71.4 ± 7.91
P32 0.095 ± 0.009 0.016 ± 0.003 6.94 ± 1.00 203.7 ± 17.1 87.1 ± 11.0
P33 0.122 ± 0.030 0.019 ± 0.002 8.73 ± 0.994 317.9 ± 19.2 76.2 ± 7.38
T. stocksianum P34 5.21 ± 1.26 1.01 ± 0.003 1.59 ± 0.310 103.2 ± 9.03 56.7 ± 12.3
P35 4.57 ± 0.991 1.43 ± 0.053 1.48 ± 0.073 129.8 ± 11.0 49.5 ± 4.67
P36 4.25 ± 1.02 0.937 ± 0.051 1.77 ± 0.094 119.3 ± 9.09 55.4 ± 5.19
X. strumarium P37 1.13 ± 0.039 5.00 ± 0.901 19.9 ± 1.37 100.5 ± 7.11 101.7 ± 9.51
P38 0.986 ± 0.051 4.63 ± 0.994 25.8 ± 1.04 148.0 ± 12.4 92.7 ± 9.90
P39 0.902 ± 0.039 5.31 ± 1.05 20.9 ± 2.03 126.3 ± 11.2 87.2 ± 5.08
Table 4 Mean concentration (µg/g, dry weight basis) of trace essential elements of the analyzed herbal products available in local markets of Pakistan.
Herb Product V51 Cr52 Cr53 Co59 Se82
A. calamus P1 0.882 ± 0.116 1.17 ± 0.092 0.991 ± 0.011 0.658 ± 0.096 0.028 ± 0.006
P2 0.952 ± 0.081 1.19 ± 0.061 1.020 ± 0.089 0.662 ± 0.054 0.019 ± 0.005
P3 1.06 ± 0.045 1.57 ± 0.369 0.967 ± 0.027 0.599 ± 0.046 0.022 ± 0.006
B. edulis P4 0.108 ± 0.017 0.291 ± 0.501 0.024 ± 0.006 0.012 ± 0.004 0.002 ± 0.0003
P5 0.119 ± 0.027 0.310 ± 0.059 0.245 ± 0.004 0.017 ± 0.005 0.001 ± 0.0002
P6 0.959 ± 0.045 0.295 ± 0.061 0.211 ± 0.003 0.019 ± 0.006 0.001 ± 0.0001
C. bonducella P7 1.07 ± 0.034 3.35 ± 0.039 2.01 ± 0.092 0.399 ± 0.098 0.049 ± 0.007
P8 1.01 ± 0.085 3.11 ± 0.062 1.93 ± 0.219 0.364 ± 0.012 0.051 ± 0.006
P9 1.12 ± 0.117 2.69 ± 0.075 2.04 ± 0.322 0.410 ± 0.045 0.041 ± 0.003
C. orchioides P10 4.43 ± 0.749 6.852 ± 0.812 7.75 ± 1.00 0.312 ± 0.008 1.04 ± 0.009
P11 4.347 ± 0.618 7.27 ± 0.948 6.91 ± 0.908 0.336 ± 0.046 1.08 ± 0.009
P12 3.87 ± 0.459 9.13 ± 1.09 7.14 ± 0.993 0.369 ± 0.092 1.12 ± 0.008
H. isora P13 0.073 ± 0.001 0.057 ± 0.007 0.029 ± 0.009 0.004 ± 0.001 0.003 ± 0.0002
P14 0.021 ± 0.004 0.046 ± 0.002 0.020 ± 0.008 0.005 ± 0.001 0.002 ± 0.0003
P15 0.024 ± 0.004 0.039 ± 0.004 0.024 ± 0.004 0.006 ± 0.002 0.001 ± 0.0001
H. pubescens P16 2.18 ± 0.761 82.2 ± 4.51 20.05 ± 1.06 0.427 ± 0.069 0.051 ± 0.011
P17 2.21 ± 0.839 76.9 ± 3.93 18.6 ± 1.10 0.367 ± 0.057 0.049 ± 0.010
P18 1.95 ± 0.617 81.4 ± 6.31 19.0 ± 1.03 0.479 ± 0.061 0.047 ± 0.009
P. integerrima P19 0.172 ± 0.031 0.700 ± 0.039 0.514 ± 0.005 0.019 ± 0.189 0.014 ± 0.006
P20 0.131 ± 0.007 0.753 ± 0.028 0.465 ± 0.039 0.024 ± 0.005 0.009 ± 0.0008
P21 0.127 ± 0.007 0.631 ± 0.044 0.531 ± 0.089 0.019 ± 0.005 0.009 ± 0.003
P. sativa P22 2.18 ± 0.743 4.471 ± 0.615 5.06 ± 0.992 0.496 ± 0.006 0.170 ± 0.006
P23 2.37 ± 0.962 5.49 ± 0.918 4.85 ± 0.836 0.411 ± 0.038 0.182 ± 0.009
P24 3.17 ± 0.949 6.01 ± 0.913 4.14 ± 0.937 0.392 ± 0.096 0.146 ± 0.007
Q. infectoria P25 0.217 ± 0.017 0.473 ± 0.009 0.372 ± 0.011 0.084 ± 0.013 0.058 ± 0.006
P26 0.259 ± 0.089 0.398 ± 0.051 0.420 ± 0.087 0.079 ± 0.018 0.048 ± 0.007
P27 0.214 ± 0.045 0.513 ± 0.041 0.464 ± 0.054 0.076 ± 0.009 0.046 ± 0.009
R. serpentina P28 2.01 ± 0.094 29.5 ± 2.38 9.05 ± 1.03 0.502 ± 0.069 0.179 ± 0.017
P29 2.21 ± 0.072 23.6 ± 1.96 7.94 ± 0.910 0.567 ± 0.009 0.164 ± 0.030
P30 2.59 ± 0.419 27.1 ± 1.14 8.01 ± 0.995 0.479 ± 0.039 0.170 ± 0.089
S. lappa P31 0.792 ± 0.134 1.56 ± 0.077 1.01 ± 0.042 0.119 ± 0.018 0.082 ± 0.006
P32 0.801 ± 0.089 2.03 ± 0.600 0.930 ± 0.092 0.114 ± 0.011 0.075 ± 0.009
P33 0.726 ± 0.074 2.11 ± 0.716 1.19 ± 0.752 0.120 ± 0.009 0.074 ± 0.011
T. stocksianum P34 6.11 ± 1.00 6.44 ± 1.15 6.38 ± 0.905 0.712 ± 0.911 0.740 ± 0.006
P35 5.87 ± 0.762 7.26 ± 1.09 5.84 ± 0.939 0.701 ± 0.717 0.789 ± 0.009
P36 5.07 ± 0.718 8.16 ± 1.05 5.14 ± 0.973 0.699 ± 0.428 0.764 ± 0.007
X. strumarium P37 1.79 ± 0.471 3.75 ± 1.17 3.07 ± 0.719 0.841 ± 0.011 0.015 ± 0.006
P38 2.28 ± 0.051 2.97 ± 0.961 2.78 ± 0.908 0.769 ± 0.095 0.016 ± 0.005
P39 2.41 ± 0.089 1.99 ± 0.847 3.41 ± 0.991 0.696 ± 0.066 0.011 ± 0.004
Table 5 Mean concentration (µg/g, dry weight basis) of trace non-toxic elements of the analyzed herbal products available in local markets of Pakistan.
Herb Product Li7 Ga69
A. calamus P1 0.186 ± 0.009 0.614 ± 0.009
P2 0.167 ± 0.099 0.662 ± 0.073
P3 0.177 ± 0.083 0.602 ± 0.015
B. edulis P4 0.058 ± 0.017 0.014 ± 0.005
P5 0.048 ± 0.012 0.011 ± 0.004
P6 0.052 ± 0.015 0.011 ± 0.003
C. bonducella P7 0.177 ± 0.031 0.101 ± 0.042
P8 0.169 ± 0.048 0.126 ± 0.047
P9 0.182 ± 0.061 0.104 ± 0.011
C. orchioides P10 2.91 ± 0.815 1.68 ± 0.130
P11 3.30 ± 0.727 1.83 ± 0.471
P12 3.47 ± 0.618 2.14 ± 0.536
H. isora P13 0.003 ± 0.001 0.006 ± 0.001
P14 0.005 ± 0.001 0.004 ± 0.001
P15 0.004 ± 0.001 0.007 ± 0.002
H. pubescens P16 0.718 ± 0.061 0.602 ± 0.071
P17 0.721 ± 0.093 0.763 ± 0.191
P18 0.698 ± 0.097 0.700 ± 0.041
P. integerrima P19 0.072 ± 0.022 0.114 ± 0.007
P20 0.069 ± 0.007 0.127 ± 0.009
P21 0.072 ± 0.007 0.119 ± 0.035
P. sativa P22 3.11 ± 0.618 1.81 ± 0.717
P23 2.61 ± 0.467 1.89 ± 0.992
P24 2.19 ± 0.816 1.94 ± 0.990
Q. infectoria P25 4.26 ± 0.051 0.272 ± 0.015
P26 3.99 ± 0.817 0.269 ± 0.091
P27 3.82 ± 0.749 0.264 ± 0.040
R. serpentina P28 2.11 ± 0.911 0.608 ± 0.073
P29 1.93 ± 0.718 0.799 ± 0.093
P30 2.09 ± 0.614 0.707 ± 0.071
S. lappa P31 0.399 ± 0.091 0.801 ± 0.057
P32 0.382 ± 0.071 0.831 ± 0.078
P33 0.429 ± 0.080 0.819 ± 0.693
T. stocksianum P34 7.01 ± 0.901 0.739 ± 0.080
P35 6.19 ± 0.619 0.802 ± 0.201
P36 5.81 ± 0.415 0.700 ± 0.064
X. strumarium P37 1.66 ± 0.417 2.09 ± 0.667
P38 1.69 ± 0.475 2.29 ± 0.887
P39 1.77 ± 0.999 2.11 ± 0.718
Table 6 Mean concentration (µg/g) of toxic elements of the analyzed herbal products available in local markets of Pakistan.
Herb Product As75 Cd111 In115 Cs133 Ba138 Be9 Tl205 Pb206 Pb208 U238
A. calamus P1 0.200 ± 0.005 0.020 ± 0.004 0.008 ± 0.0003 0.017 ± 0.002 121.5 ± 9.05 0.004 ± 0.0001 0.023 ± 0.003 2.82 ± 0.072 2.51 ± 0.042 0.0001 ± 0.00002
P2 0.199 ± 0.016 0.019 ± 0.005 0.008 ± 0.0003 0.015 ± 0.004 148.3 ± 8.10 0.004 ± 0.0001 0.021 ± 0.003 2.75 ± 0.063 2.59 ± 0.091 0.0001 ± 0.00002
P3 0.183 ± 0.082 0.024 ± 0.008 0.006 ± 0.0004 0.013 ± 0.005 137.5 ± 8.09 0.002 ± 0.0001 0.019 ± 0.004 2.68 ± 0.075 2.48 ± 0.593 0.0001 ± 0.00001
B. edulis P4 0.009 ± 0.003 0.0005 ± 0.003 0.0002 ± 0.00004 0.007 ± 0.0003 3.20 ± 0.808 0.0005 ± 0.00003 0.001 ± 0.0001 0.053 ± 0.006 0.059 ± 0.007 0.00002 ± 0.000005
P5 0.008 ± 0.001 0.005 ± 0.001 0.0002 ± 0.00003 0.008 ± 0.0002 3.09 ± 0.091 0.0006 ± 0.00003 0.001 ± 0.0005 0.050 ± 0.007 0.055 ± 0.007 0.00002 ± 0.000003
P6 0.008 ± 0.001 0.0004 ± 0.001 0.0003 ± 0.00003 0.008 ± 0.0007 3.23 ± 0.098 0.0004 ± 0.00002 0.005 ± 0.001 0.046 ± 0.007 0.054 ± 0.007 0.00002 ± 0.000003
C. bonducella P7 0.020 ± 0.004 0.012 ± 0.006 0.004 ± 0.0003 0.0002 ± 0.00007 6.23 ± 1.01 0.001 ± 0.0002 0.006 ± 0.0003 3.74 ± 0.058 3.38 ± 0.059 0.0003 ± 0.0001
P8 0.019 ± 0.006 0.011 ± 0.007 0.004 ± 0.0004 0.022 ± 0.008 5.71 ± 0.974 0.0009 ± 0.0002 0.006 ± 0.00002 3.06 ± 0.576 3.42 ± 0.511 0.0003 ± 0.00002
P9 0.019 ± 0.005 0.015 ± 0.s001 0.005 ± 0.0003 0.029 ± 0.003 4.02 ± 0.902 0.001 ± 0.0002 0.005 ± 0.0001 2.52 ± 0.873 3.27 ± 0.517 0.0002 ± 0.0001
C. orchioides P10 0.193 ± 0.083 0.028 ± 0.001 0.0003 ± 0.0001 0.453 ± 0.004 104.0 ± 10.7 0.049 ± 0.011 0.041 ± 0.016 1.17 ± 0.508 1.10 ± 0.300 0.0003 ± 0.00002
P11 0.203 ± 0.095 0.029 ± 0.001 0.0003 ± 0.0001 0.496 ± 0.043 120.3 ± 9.08 0.058 ± 0.009 0.049 ± 0.012 0.999 ± 0.095 1.09 ± 0.038 0.0002 ± 0.00003
P12 0.200 ± 0.046 0.025 ± 0.003 0.0003 ± 0.0001 0.513 ± 0.068 157.2 ± 10.9 0.041 ± 0.005 0.053 ± 0.009 1.01 ± 0.082 1.13 ± 0.047 0.0001 ± 0.00003
H. isora P13 0.002 ± 0.0004 0.0008 ± 0.0003 0.018 ± 0.0002 0.003 ± 0.0002 3.01 ± 0.065 0.0001 ± 0.00004 0.0006 ± 0.0001 0.035 ± 0.002 0.039 ± 0.007 0.0004 ± 0.0001
P14 0.001 ± 0.0004 0.0008 ± 0.0002 0.013 ± 0.004 0.005 ± 0.001 3.32 ± 0.904 0.0007 ± 0.00001 0.0007 ± 0.0001 0.039 ± 0.003 0.043 ± 0.006 0.0005 ± 0.00009
P15 0.002 ± 0.0005 0.0009 ± 0.0002 0.014 ± 0.004 0.003 ± 0.0005 3.51 ± 0.095 0.0005 ± 0.0001 0.0007 ± 0.0001 0.027 ± 0.002 0.036 ± 0.006 0.0003 ± 0.00001
H. pubescens P16 0.085 ± 0.004 0.0205 ± 0.003 0.013 ± 0.001 0.164 ± 0.057 217.2 ± 11.8 0.019 ± 0.009 0.007 ± 0.0001 0.617 ± 0.076 0.626 ± 0.085 0.0003 ± 0.00002
P17 0.099 ± 0.006 0.019 ± 0.001 0.010 ± 0.002 0.183 ± 0.092 194.9 ± 10.3 0.023 ± 0.007 0.008 ± 0.0005 0.559 ± 0.007 0.619 ± 0.068 0.0002 ± 0.00001
P18 0.088 ± 0.007 0.0 ± 0.001 0.022 ± 0.003 0.173 ± 0.078 199.2 ± 9.19 0.021 ± 0.007 0.008 ± 0.0003 0.643 ± 0.005 0.661 ± 0.069 0.0003 ± 0.00001
P. integerrima P19 0.185 ± 0.005 0.005 ± 0.0006 0.002 ± 0.0004 0.326 ± 0.027 4.23 ± 0.777 0.00015 ± 0.00009 0.008 ± 0.0003 0.385 ± 0.049 0.328 ± 0.027 0.0004 ± 0.00001
P20 0.191 ± 0.067 0.006 ± 0.0003 0.003 ± 0.0004 0.311 ± 0.017 4.16 ± 0.099 0.0003 ± 0.00002 0.008 ± 0.0001 0.318 ± 0.053 0.337 ± 0.032 0.0003 ± 0.00001
P21 0.176 ± 0.054 0.005 ± 0.00001 0.003 ± 0.0004 0.349 ± 0.013 4.05 ± 0.914 0.0001 ± 0.00004 0.006 ± 0.0001 0.399 ± 0.094 0.348 ± 0.037 0.0002 ± 0.0001
P. sativa P22 0.231 ± 0.087 0.024 ± 0.001 0.061 ± 0.002 0.279 ± 0.046 123.4 ± 8.91 0.011 ± 0.003 0.012 ± 0.005 0.993 ± 0.098 0.817 ± 0.059 0.0003 ± 0.000001
P23 0.215 ± 0.096 0.026 ± 0.001 0.074 ± 0.007 0.294 ± 0.053 115.4 ± 7.92 0.009 ± 0.002 0.011 ± 0.002 1.00 ± 0.175 1.37 ± 0.149 0.0002 ± 0.00001
P24 0.207 ± 0.009 0.025 ± 0.003 0.078 ± 0.003 0.271 ± 0.071 121.6 ± 7.19 0.009 ± 0.003 0.013 ± 0.002 1.17 ± 0.047 1.21 ± 0.038 0.0001 ± 0.00001
Q. infectoria P25 0.041 ± 0.008 0.022 ± 0.0003 0.008 ± 0.0004 0.161 ± 0.023 43.4 ± 3.24 0.011 ± 0.004 0.083 ± 0.003 0.785 ± 0.062 0.737 ± 0.039 0.0004 ± 0.00003
P26 0.026 ± 0.009 0.022 ± 0.004 0.008 ± 0.0005 0.174 ± 0.054 39.6 ± 3.13 0.017 ± 0.003 0.089 ± 0.004 0.659 ± 0.033 0.690 ± 0.027 0.0005 ± 0.00002
P27 0.043 ± 0.009 0.022 ± 0.007 0.007 ± 0.001 0.170 ± 0.057 47.6 ± 3.06 0.009 ± 0.002 0.080 ± 0.003 0.584 ± 0.11 0.683 ± 0.091 0.0004 ± 0.0001
R. serpentina P28 0.177 ± 0.083 0.020 ± 0.003 0.057 ± 0.003 0.001 ± 0.0003 116.2 ± 9.10 0.009 ± 0.001 0.031 ± 0.002 0.063 ± 0.006 0.066 ± 0.016 0.0002 ± 0.0001
P29 0.170 ± 0.057 0.009 ± 0.001 0.052 ± 0.003 0.001 ± 0.0002 127.8 ± 7.71 0.010 ± 0.001 0.029 ± 0.003 0.059 ± 0.007 0.069 ± 0.012 0.0002 ± 0.00001
P30 0.188 ± 0.074 0.024 ± 0.001 0.053 ± 0.006 0.0003 ± 0.00007 139.5 ± 7.93 0.011 ± 0.001 0.020 ± 0.003 0.057 ± 0.004 0.077 ± 0.013 0.0002 ± 0.00003
S. lappa P31 0.060 ± 0.016 0.022 ± 0.006 0.003 ± 0.004 0.072 ± 0.007 178.2 ± 11.7 0.012 ± 0.004 0.051 ± 0.009 1.04 ± 0.004 1.17 ± 0.281 0.0004 ± 0.00001
P32 0.067 ± 0.011 0.011 ± 0.007 0.005 ± 0.0003 0.089 ± 0.008 201.0 ± 10.4 0.016 ± 0.004 0.049 ± 0.006 1.59 ± 0.005 1.48 ± 0.351 0.0003 ± 0.00002
P33 0.061 ± 0.009 0.0005 ± 0.00001 0.002 ± 0.0005 0.091 ± 0.003 198.3 ± 10.8 0.014 ± 0.005 0.055 ± 0.005 1.78 ± 0.009 1.71 ± 0.082 0.0004 ± 0.00001
T. stocksianum P34 0.785 ± 0.098 0.0004 ± 0.0001 0.531 ± 0.132 0.009 ± 0.0004 217.6 ± 7.81 0.031 ± 0.007 0.021 ± 0.005 3.31 ± 0.726 3.27 ± 0.648 0.0001 ± 0.00002
P35 0.814 ± 0.095 0.0006 ± 0.00001 0.552 ± 0.094 0.009 ± 0.0003 273.6 ± 9.10 0.039 ± 0.009 0.019 ± 0.002 3.00 ± 0.575 3.16 ± 0.514 0.0001 ± 0.00001
P36 0.807 ± 0.074 0.005 ± 0.0003 0.494 ± 0.093 0.008 ± 0.0006 199.7 ± 10.9 0.029 ± 0.005 0.030 ± 0.005 3.58 ± 0.602 3.16 ± 0.591 0.0001 ± 0.00002
X. strumarium P37 0.148 ± 0.051 0.049 ± 0.003 0.013 ± 0.003 0.221 ± 0.092 316.8 ± 13.7 0.019 ± 0.007 0.023 ± 0.003 1.65 ± 0.715 1.69 ± 0.614 0.0002 ± 0.00001
P38 0.136 ± 0.033 0.055 ± 0.003 0.018 ± 0.003 0.271 ± 0.004 328.3 ± 14.3 0.009 ± 0.001 0.021 ± 0.003 1.78 ± 0.816 1.71 ± 0.375 0.0002 ± 0.00001
P39 0.155 ± 0.087 0.052 ± 0.003 0.011 ± 0.003 0.287 ± 0.056 298.5 ± 11.4 0.013 ± 0.002 0.018 ± 0.003 1.59 ± 0.781 1.53 ± 0.418 0.0002 ± 0.00001

Most herbs contain several micro and essential elements such as Co, Cr, Cu, Ni, Rb, Se, V, Sr, and Zn in therapeutic concentrations. However, the low and excessive daily intake could lead to deficiency or overload and ultimately severe consequences. From the results (Table 1), it was observed that among micronutrients, Rb85 (1.45, B. edulis to 284 µg/g, C. orchioides) and Sr87 (0.649, B. edulis to 417 µg/g, S. lappa) had the higher content in all the analyzed herbs. The amount of Zn, Cu, and Ni was found to be in similar increasing order after Rb85 and Sr87and trend as Rb85/ Sr87 > Zn64/Cu63 > Ni60. In the analyzed products, in micro elements content, the average levels were in subsequent order of Rb85 ˃ Sr87 ˃ Zn ˃ Ni ˃ Cu (Table 3). Furthermore, the measured levels of micro elements were well below the permissible limits, hence, the subject herbs can be considered safe for consumers’ health.

Other elements; Co, Cr, Mn, Se, and V are essential trace elements, which have key role as cofactors in metabolic processes. Among these elements, all the herbs and products were rich in Cr52/Cr53 followed by Co59, V51, and Se82 (Tables 1 and 4). Hence, these herbs contain appreciable macro and microelements to add on to the nutritional requirements as supplementary food. Some other elements such as Li7 and Ga69 present in the soil are also absorbed by plants and are non-toxic. Among the samples analyzed, the content of Li7 and Ga69 were found high (Tables 1 and 5).

In developing countries, mostly the herbs and the products are directly sold in the market without their safety analysis, which may lead to lethality due to the presence of mycotoxins, pesticides or the presence of some elements such as arsenic, cadmium, lead, and mercury, which are harmful to the human body even when present in very small concentration. Therefore, from therapeutical and safety aspects, it is important to evaluate any herbs or products for toxic elements content. In this study, among the trace toxic elements (Tables 1 and 6), Ba138 and Pb206/Pb208 were present in high levels. It is worth highlighting that the toxic elements content in the analyzed samples, were all well below the safety limits (50 µg/kg/day for As, 0.833 µg/kg/day for Cd, 0.63 µg/kg/day BMDL for adult for Pb) set by Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives, and European Food Safety Authority (JECFA, 2004, 2010; EFSA, 2010). On the basis of obtained trace and toxic elements data for the analyzed samples, the consumption of the analyzed herbs and their products apparently may not have health risks to the consumers.

3.3

3.3 Antimicrobial activity of the herbs and products

Antimicrobial activity of the ethanolic extracts was evaluated against selected microbial pathogens, and the zones of inhibition were compared with that of the standard antibiotics. The bacterial pathogens included S. aureus, B. subtilis, P. aeruginosa, E. coli, and the pathogenic fungi were; C. albicans, C. krusei, A. flavus, and T. mentagrophytes. Most of the herbal extracts significantly inhibited the analyzed microbes (Tables 7 and 8). In DD assay, the zones of inhibition ranged from 7.0 mm to 19.0 mm and MIC values of 62.5 to 1000 µg/mL. Among the analyzed samples, the ethanolic extracts of S. lappa and its products were the most active against both the Gram-positive and negative bacterial strains with inhibition zones 10.0–17.0 mm (herbs) and 9.0 to 18.0 mm (products), and MIC values of 62.5 to 250 µg/mL (herbs) and 62.5 to 500 µg/mL (products). This potent antibacterial activity could be due to the presence of bioactive constituents present in the samples. The detailed values of inhibition zone and MIC are given in Tables 7 and 8. Regarding the antifungal activity described in Tables 7 and 8, X. strumarium, S. lappa, and H. isora and their products exhibited pronounced inhibitory potential against all fungal species.

Table 7 Antimicrobial activity by disc diffusion (DD) and minimum inhibitory concentration (MIC) methods of the ethanolic extract of selected herbs.
Samples Disk diffusion (mm) Minimum inhibitory concentration method (µg/mL)
S. aureus B. subtilis P. aeruginosa E. coli S. aureus B. subtilis P. aeruginosa E. coli
Acorus calamus 9.0 ± 0.45a 11.0 ± 0.52c 7.0 ± 0.35a 6.0 ± 0.10a 500e 500e 1000c 1000c
Blepharis edulis 11.0c ± 0.26c 13.0 ± 0.42e 9.0 ± 0.32c 8.0 ± 0.41c 250d 250d 500b 500b
Caesalpinia bonducella 10.0 ± 0.22b 11.0 ± 0.24c 9.0 ± 0.30c 9.0 ± 0.38d 250d 250d 500b 500b
Curculigo orchioides 13.0 ± 0.62e 12.0 ± 0.42d 8.0 ± 0.28b 8.0 ± 0.27c 250d 250d 500b 500b
Helicteres isora 14.0 ± 0.51f 15.0 ± 0.40g 8.0 ± 0.33b 6.0 ± 0.20a 125c 62.5b 500b 1000c
Holarrhena pubescens 11.0 ± 0.62c 11.0 ± 0.38c 10.0 ± 0.41d 8.0 ± 0.18c 250d 250d 500b 500b
Pastinaca sativa 13.0 ± 0.10e 10.0 ± 0.21b 8.0 ± 0.32b 7.0 ± 0.14b 250d 250d 500b 1000c
Pistacia integerrima 14.0 ± 0.36f 12.0 ± 0.44d 9.0 ± 0.40c 9.0 ± 0.52d 125c 250d 500b 500b
Quercus infectoria 12.0 ± 0.61d 14.0 ± 0.35f 7.0 ± 0.09a 6.0 ± 0.06a 250d 125c 1000c 1000c
Rauwolfia serpentina 10.0 ± 0.11b 9.0 ± 0.39a 8.0 ± 0.51b 7.0 ± 0.18b 250d 250d 500b 1000c
Saussurea lappa 16.0 ± 0.47g 17.0 ± 0.22h 10.0 ± 0.16d 10.0 ± 0.33e 62.5b 62.5b 250a 250a
Teucrium stocksianum 10.0 ± 0.10b 12.0 ± 0.23d 7.0 ± 0.15a 7.0 ± 0.26b 250d 250d 1000c 1000c
Xanthium strumarium 12.0 ± 0.21d 10.0 ± 0.17b 10.0 ± 0.22d 10.0 ± 0.33e 250d 250d 250a 250a
Vancomycin* 19.0 ± 0.28i 27.0 ± 0.31i 13.0 ± 0.10e 13.0 ± 0.15f 31.25a 31.25a 500b 250a
Streptomycin* 17.0 ± 0.20h 27.0 ± 0.35i 16.0 ± 0.16f 17.0 ± 0.19g 31.25a 31.25a 500b 500b
Antifungal activity
Samples Disk diffusion (mm) Minimum inhibitory concentration method (µg/mL)
C. albicans C. krusei A. flavus T. mentagrophytes C. albicans C. krusei A. flavus T. mentagrophyte
Acorus calamus 11.0 ± 0.32d 8.0 ± 0.21c 10.0 ± 0.23d 8.0 ± 0.42b 250d 1000f 500c 1000e
Blepharis edulis 12.0 ± 0.14e 14.0 ± 0.10f 12.0 ± 0.13e 15.0 ± 0.23g 250d 250d 62.5a 250c
Caesalpinia bonducella 10.0 ± 0.17c 9.0 ± 0.27d 9.0 ± 0.25c 10.0 ± 0.26d 250d 500e 250b 250c
Curculigo orchioides 14.0 ± 0.31f 12.0 ± 0.42e 13.0 ± 0.33f 13.0 ± 0.23f 125c 250 500c 500d
Helicteres isora 14.0 ± 0.11f 16.0 ± 0.37g 12.0 ± 0.62e 9.0 ± 0.10c 125c 125c 250b 250c
Holarrhena pubescens 9.0 ± 0.10b 8.0 ± 0.24c 10.0 ± 0.22d 8.0 ± 0.31b 500e 250d 250b 500d
Pastinaca sativa 9.0 ± 0.27b 7.0 ± 0.16b 8.0 ± 0.33b 10.0 ± 0.21d 500e 500e 500c 250c
Pistacia integerrima 9.0 ± 0.13b 9.0 ± 0.34b 7.0 ± 0.20a 7.0 ± 0.16a 500e 500e 500c 500d
Quercus infectoria 11.0 ± 0.41d 12.0 ± 0.55e 12.0 ± 0.25e 9.0 ± 0.13c 250d 250d 250b 250c
Rauwolfia serpentina 8.0 ± 0.20a 7.0 ± 0.19b 8.0 ± 0.38b 8.0 ± 0.32b 500e 500e 500c 500d
Saussurea lappa 16.0 ± 0.20g 16.0 ± 0.29g 17.0 ± 0.34g 12.0 ± 0.17e 125c 125c 62.5a 250c
Teucrium stocksianum 8.0 ± 0.17a 6.0 ± 0.24a 7.0 ± 0.36a 8.0 ± 0.18b 1000f 1000f 1000 1000e
Xanthium strumarium 17.0 ± 0.26h 17.0 ± 0.16h 18.0 ± 0.23h 19.0 ± 0.19h 62.5b 62.5b 62.5a 62.5b
Fluconazole* 22.0 ± 0.31i 24.0 ± 0.19j 27.0 ± 0.35j 29.0 ± 0.31j 31.25a 31.25a 62.5a 31.25a
Amphotericin* 22.0 ± 0.24i 21.0 ± 0.26i 20.0 ± 0.38i 24.0 ± 0.41i 62.5b 62.5b 62.5a 31.25a

Values are mean ± standard deviations of three (n = 3) measurements.

The superscript letters in columns represent significantly different values (p < 0.05) by Tukey’s and Duncan's multiple range tests.

Represents standard drugs.
Table 8 Antimicrobial activity by disc diffusion (DD) and minimum inhibitory concentration (MIC) methods of the ethanolic extract of selected products.
Samples Disk diffusion (mm) Minimum inhibitory concentration method (µg/mL)
S. aureus B. subtilis P. aeruginosa E. coli S. aureus B. subtilis P. aeruginosa E. coli
P1-P3 7.0–10.0 9.0–11.0 6.0–8.0 6.0–8.0 250–500 250–500 500–1000 500–1000
P4-P6 7.0–12.0 11.0–14.0 8.0–9.0 6.0–9.0 125–250 125–250 250–500 500–1000
P7-P9 7.0–10.0 10.0–12.0 9.0–10.0 8.0–10.0 125–250d 250–500 250–500 500–1000
P10-P12 8.0–12.0 10.0–13.0 7.0–9.0 7.0–9.0 250–500 250–500 500–1000 500–1000
P13-P15 8.0–14.0 13.0–15.0 7.0–9.0 6.0–7.0 125–250 62.5–250 500–1000 500–1000
P16-P18 7.0–10.0 10.0–11.0 10.0–11.0 7.0–9.0 250–500 250–500 500–1000 500–1000
P19-P21 8.0–13.0 9.0–11.0 6.0–8.0 7.0–8.0 125–250 250–500 250–1000 500–1000
P22-P24 10.0–14.0 10.0–13.0 9.0–10.0 8.0–10.0 125–250 250–500 500–1000 250–500
P25-P27 10.0–13.0 11.0–15.0 7.0–9.0 6.0–7.0 250–500 125–500 500–1000 500–1000
P28-P30 7.0–10.0 8.0–10.0 8.0–9.0 6.0–8.0 250–500 250–500 500–1000 500–1000
P31-P33 12.0–16.0 14.0–18.0 10.0–12.0 9.0–11.0 62.5–250 62.5–125 125–250 125–500
P34-P36 7.0–10.0 10.0–13.0 7.0–9.0 7.0–8.0 250–500 250–500 500–1000 500–1000
P37-P39 10.0–13.0 9.0–11.0 10.0–12.0 9.0–11.0 250–500 250–500 125–500 125–250
Vancomycin* 19.0 27.0 ± 0.31 13.0 ± 0.10 13.0 ± 0.15 31.25 31.25 500 250
Streptomycin* 17.0 27.0 ± 0.35 16.0 ± 0.16 17.0 ± 0.19 31.25 31.25 500 500
Antifungal activity
Samples Disk diffusion (mm) Minimum inhibitory concentration method (µg/mL)
C. albicans C. krusei A. flavus T. mentagrophytes C. albicans C. krusei A. flavus T. mentagrophyte
P1-P3 10.0–12.0 7.0–8.0 10.0–11.0 6.0–8.0 250–500 1000 250–500 1000
P4-P6 19.01.0–13.0 13.0–14.0 12.0–14.0 14.0–15.0 125–250 125–250 125–250 125–250
P7-P9 9.0–10.0 8.0–10.0 8.0–9.0 9.0–10.0 250–500 500–1000 250–500 250–500
P10-P12 13.0–15.0 11.0–12.0 12.0–13.0 12.0–14.0 125–250 250–500 125–250 125–250
P13-P15 13.0–15.0 15.0–17.0 12.0–13.0 8.0–11.0 125–250 125–250 125–250 250–500
P16-P18 8.0–9.0 6.0–8.0 9.0–11.0 6.0–9.0 250–500 500–1000 250–500 500–1000
P19-P21 8.0–10.0 6.0–8.0 6.0–8.0 9.0–10.0 250–500 500–1000 500–1000 250–500
P22-P24 8.0–9.0 8.0–9.0 6.0–7.0 6.0–7.0 500–1000 500–1000 500–1000 1000
P25-P27 11.0–12.0 11.0–12.0 11.0–12.0 9.0–10.0 125–250 250–500 250–500 250–500
P28-P30 7.0–9.0 7.0–8.0 7.0–8.0 6.0–8.0 500–1000 500–1000 500–1000 500–1000
P31-P33 15.0–17.0 15.0–17.0 15.0–17.0 11.0–13.0 125–250 125–250 62.5–125 250–500
P34-P36 7.0–8.0 6.0–7.0 6.0–7.0 6.0–8.0 1000 1000 1000 1000
P37-P39 16.0–17.0 15.0–17.0 16.0–18.0 17.0–19.0 62.5–125 62.5–125 62.5–125 62.5–125
Fluconazole* 22.0 ± 0.31 24.0 ± 0.19 27.0 ± 0.35 29.0 ± 0.31 31.25 31.25 62.5 31.25
Amphotericin* 22.0 ± 0.24 21.0 ± 0.26 20.0 ± 0.38 24.0 ± 0.41 62.5 62.5 62.5 31.25
Represents standard drugs.

4

4 Conclusions

The study investigated thirteen medicinal herbs and their products for elemental content and antimicrobial activity. The study revealed that the analyzed samples are the significant sources of K, Ca, Mg, P, S, Co, Ni, Se, V, and Zn. The content of potentially toxic elements are present below the provisional tolerable intake values. Hence, the analyzed herbs and products along with medicinal remedies could also be potential sources of mineral elements. This research further concludes that the evaluated herbs and products are potentially inhibiting the microbial pathogens. Overall, the analyzed samples are effective nutritional as well as safe source against various microbial pathogens. This is the first detailed report on the mineral and toxic elements content of the commonly used medicinal herbs and the products available in the local markets of Peshawar, Pakistan.

Acknowledgements

This research study was supported by the research grant; 8967/KPK/NRPU/R&D/HEC/2017. The authors are thankful to the Higher Education Commission (HEC) for awarding this project.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. , , , , , , , , , . Quantification of heavy metals and health risk assessment in processed fruits’ products. Arab. J. Chem.. 2020;13(12):8965-8978.
    [CrossRef] [Google Scholar]
  2. , , , , , . Pharmacological basis for use of Pistacia integerrima leaves in hyperuricemia and gout. J. Ethnopharmacol.. 2008;117(3):478-482.
    [CrossRef] [Google Scholar]
  3. AOAC (Association of Official Analytical Chemists). 2012. Standard method performance requirements (AOAC SMPR 2011.009) for Cr, Mo and Se in infant formula and adult/pediatric nutritional formula. J. AOAC Int. 95, 297.
  4. , , , . Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol. Environ. Saf.. 2017;145:377-390.
    [CrossRef] [Google Scholar]
  5. , , , , , , , . Making sense of the “clean label” trends: a review of consumer food choice behavior and discussion of industry implications. Food Res. Int.. 2017;99:58-71.
    [CrossRef] [Google Scholar]
  6. , , . Volatile constituents of Teucrium stocksianum Boiss. fruits from south of Iran. J. Essent. Oil-Bear. Plants. 2015;18(5):1174-1179.
    [CrossRef] [Google Scholar]
  7. , , , , , . Elemental investigation of the leaf and seed of coriander plant by synchrotron radiation X-ray fluorescence spectroscopy. Natl. Acad. Sci. Lett.. 2017;40(5):373-377.
    [CrossRef] [Google Scholar]
  8. , , , , , , , . Antibacterial, antidiarrhoeal, and cytotoxic activities of methanol extract and its fractions of Caesalpinia bonducella (L.) Roxb leaves. BMC Complement. Altern. Med.. 2013;13:1-7.
    [CrossRef] [Google Scholar]
  9. , , , , , . Trace elements in hazardous mineral fibres. Environ. Pollut.. 2016;216:314-323.
    [Google Scholar]
  10. , , , , . Potentially toxic elements (PTEs) associated with asbestos chrysotile, tremolite and actinolite in the Calabria region (Italy) Chem. Geol.. 2020;558:119896.
    [CrossRef] [Google Scholar]
  11. , , , , , , . Accumulation and ecological effects of soil heavy metals in conventional and organic greenhouse vegetable production systems in Nanjing, China. Environ. Earth Sci.. 2014;71(8):3605-3616.
    [CrossRef] [Google Scholar]
  12. , , , , , , . Two phenolic glycosides from Curculigo orchioides Gaertn. Fitoterapia. 2009;80(5):279-282.
    [CrossRef] [Google Scholar]
  13. European Food Safety Authority, 2010. EFSA panel on contaminants in the food chain (CONTAM). EFSA J. 8, 1570.
  14. , , , . Evaluation of analgesic activity of the methanol extract from the galls of Quercus infectoria (Olivier) in rats. Evid. Based Complementary Altern. Med.. 2014;2014:1-6.
    [CrossRef] [Google Scholar]
  15. , , , . Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles. Plant, Cell Environ.. 2019;42(10):2827-2843.
    [CrossRef] [Google Scholar]
  16. , , , , , , , . Bioactivity-guided fractionation for anti-inflammatory and analgesic properties and constituents of Xanthium strumarium L. Phytomedicine. 2007;14(12):825-829.
    [CrossRef] [Google Scholar]
  17. , , , . Mesoporous titanium dioxide as a novel solid-phase extraction material for flow injection micro-column preconcentration on-line coupled with ICP-OES determination of trace metals in environmental samples. Talanta. 2007;73(2):274-281.
    [CrossRef] [Google Scholar]
  18. , , , , , , . Determination of Pb and Cd in Macedonian wines by electrothermal atomic absorption spectrometry (ETAAS) Food Anal. Methods. 2015;8(8):1947-1952.
    [CrossRef] [Google Scholar]
  19. , , , , , . A bioactive cycloartane triterpene from Garcinia hombroniana. Nat. Prod. Res.. 2016;30(12):1388-1397.
    [CrossRef] [Google Scholar]
  20. , , , , , , , , . Determination of macro, micro, trace essential, and toxic elements in Garcinia cambogia fruit and its anti-obesity commercial products. J. Sci. Food Agric.. 2019;99:2455-2462.
    [CrossRef] [Google Scholar]
  21. , , , , , , , , , , , . Characterization of natural gums via elemental and chemometric analyses, synthesis of silver nanoparticles, and biological and catalytic applications. Int. J. Biol. Macromol.. 2020;147:853-866.
    [CrossRef] [Google Scholar]
  22. Joint Food and Agriculture/World Health Organization Expert Committee on Food Additives, 2004. (JECFA 1956–2003), Washington, DC: ILSI Press, International Life Sciences Institute.
  23. Joint Food and Agriculture/World Health Organization Expert Committee on Food Additives. 2010. Geneva. 8–17 June 2010. JECFA/73/SC, pp. 1–17.
  24. , , , , , , . Antitrypanosomal sesquiterpene lactones from Saussurea costus. Fitoterapia. 2011;82(7):955-959.
    [CrossRef] [Google Scholar]
  25. , , , , , . Antiinflammatory evaluation of alcoholic extract of galls of Quercus infectoria. J. Ethnopharmacol.. 2004;90(2-3):285-292.
    [CrossRef] [Google Scholar]
  26. , , , . Anti-inflammatory activity of a water extract of Acorus calamus L. leaves on keratinocyte HaCaT cells. J. Ethnopharmacol.. 2009;122(1):149-156.
    [CrossRef] [Google Scholar]
  27. , , . Plant profile, phytochemistry and pharmacology of Avartani (Helicteres isora Linn.): A review. Asian Pac. J. Trop. Biomed.. 2014;4:S22-S26.
    [CrossRef] [Google Scholar]
  28. , , , , . Total phenolic content, antioxidant and antimicrobial activities of Blepharis edulis extracts. Songklanakarin J. Sci. Technol.. 2013;35(1)
    [Google Scholar]
  29. , , , , , , , , . Medicinal plants of genus Curculigo: Traditional uses and a phytochemical and ethnopharmacological review. J. Ethnopharmacol. 2013;147(3):547-563.
    [CrossRef] [Google Scholar]
  30. , , . Some elemental concentrations in the acorns of Turkish Quercus L. (Fagaceae) taxa. Pak. J. Botany. 2005;37:361.
    [Google Scholar]
  31. , , . Estimation of minerals, nitrate and nitrite contents of medicinal and aromatic plants used as spices, condiments and herbal tea. Food Chem.. 2008;106(2):852-858.
    [CrossRef] [Google Scholar]
  32. , , , , , , , , . Origin discrimination of defatted pork via trace elements profiling, stable isotope ratios analysis, and multivariate statistical techniques. Meat Sci.. 2018;143:93-103.
    [CrossRef] [Google Scholar]
  33. , , , , , , , , . Anti-allergic rhinitis effect of caffeoylxanthiazonoside isolated from fruits of Xanthium strumarium L. in rodent animals. Phytomedicine. 2014;21(6):824-829.
    [CrossRef] [Google Scholar]
  34. , , , , , , , , . In-vivo antinociceptive, anti-inflammatory and antipyretic activity of pistagremic acid isolated from Pistacia integerrima. Phytomedicine. 2014;21:1509-1515.
    [CrossRef] [Google Scholar]
  35. , , , , , , , , . A new sesquiterpene lactone from the roots of Saussurea lappa: Structure–anticancer activity study. Bioorg. Med. Chem. Lett.. 2008;18(14):4015-4017.
    [CrossRef] [Google Scholar]
  36. , , , . Assessment of heavy metal content of branded Pakistani herbal products. Trop. J. Pharm. Res.. 2011;10:499-506.
    [CrossRef] [Google Scholar]
  37. , , . Phytochemicals, antioxidant, antinociceptive and anti-inflammatory potential of the aqueous extract of Teucrium stocksianum bioss. BMC Complement. Altern. Med.. 2015;15:351.
    [CrossRef] [Google Scholar]
  38. , , , , , , . Rapid control of Chinese star anise fruits and teas for neurotoxic anisatin by Direct Analysis in Real Time high resolution mass spectrometry. J. Chromatogr. A. 2012;1259:179-186.
    [CrossRef] [Google Scholar]
  39. , , , . The multi-faceted potential of plant-derived metabolites as antimicrobial agents against multidrug-resistant pathogens. Microb. Pathog.. 2018;116:209-214.
    [CrossRef] [Google Scholar]
  40. , , , , , , . Constituents of the leaves of Holarrhena pubescens. Fitoterapia. 2007;78(3):271-273.
    [CrossRef] [Google Scholar]
  41. , , , , , , . Influence of the extraction mode on the yield of some furanocoumarins from Pastinaca sativa fruits. J. Chromatogr. B. 2004;800(1-2):181-187.
    [CrossRef] [Google Scholar]
  42. , , , , , , , . Insulin sensitizing activity of ethyl acetate fraction of Acorus calamus L. in vitro and in vivo. J. Ethnopharmacol.. 2009;123(2):288-292.
    [CrossRef] [Google Scholar]
  43. , , , , , , , . Antioxidative Phenols and Phenolic Glycosides from Curculigo orchioides. Chem. Pharm. Bull.. 2005;53(8):1065-1067.
    [CrossRef] [Google Scholar]
  44. , , , , , . Steroidal alkaloids from Holarrhena antidysenterica as acetylcholinesterase inhibitors and the investigation for structure–activity relationships. Life Sci.. 2012;90(23-24):929-933.
    [CrossRef] [Google Scholar]

Appendix A

Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.arabjc.2021.103055.

Appendix A

Supplementary material

The following are the Supplementary data to this article:

Supplementary Data 1

Show Sections